博碩士論文 108324038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:18.191.139.25
姓名 葉博森(Po-Sen Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用噴塗法製備氧化石墨烯薄膜 與氣體阻隔性能之探討
(Graphene oxide membranes prepared by spray coating method as barrier film)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 氧化石墨烯是由六碳環所組成的二維結構,其高縱橫比和出色的機械強度,使其在氣體阻隔的應用上是一項具有潛力的材料。相關的研究指出,其材料出色的長徑比為氣體擴散提供了更曲折的路徑,從而提高了整體材料的阻氣性能。氧化石墨烯膜對於控制厚度和堆疊結構以實現卓越性能至關重要,氧化石墨烯整體結構的有序程度是影響分離表現的關鍵因素。因此我們設計一系列的實驗條件來觀察整體結構對氣體滲透的差異,並進一步討論對溶解及擴散係數的影響程度。
在這項研究中,目標為提升整體複合材料的氣體阻隔性能。氧化石墨烯是透過改進的Hummers法從商業石墨粉合成。首先,製備特定濃度的GO分散液,並通過使用逐層組裝提出了簡便的表面塗佈方法,該方法將自動噴塗和溶劑蒸發方法進行結合,此方法提供了連續加工與擴大規模的程序,在乙基纖維素基材上沉積了氧化石墨烯膜以提高氣體阻隔性能。此外,我們可以通過調整噴塗流速和次數來精確操縱氧化石墨烯膜的堆疊結構。從單一氣體分析來看,具有氧化石墨烯沉積的聚合物基材顯示出優異的氧氣阻隔性能,比純乙基纖維素膜降低了89%。
摘要(英) High oxygen barrier performance is one of the essential properties of the food packaging industry. Graphene oxide is a promising candidate for gas barrier materials due to two-dimensional carbon-based structure, high aspect ratio, and excellent mechanical strength. The outstanding aspect ratio from filler provide the more tortuous pathway to diffusing gas, resulting in the gas barrier properties is significantly increased. Graphene oxide membrane is crucial to control the thickness and stacking structures to achieve remarkable performance.
In this work, the graphene oxide is synthesized by modified Hummer’s method from commercial graphite powder. Then, the facile surface coating method is presented by using layer by layer assembly, which is combined the spray-coating and solvent evaporation method to demonstrate a continuous and scalable process for synthesizing graphene oxide membranes on ethyl cellulose substrate to enhance gas barrier properties. Furthermore, the stacking structure of graphene oxide membrane is manipulated precisely by adjusting the flow rate and the number of coating times. From single gas analysis, the polymer substrate with graphene oxide deposition display excellent oxygen barrier properties, which is 89% decreasing than pure ethyl cellulose membrane.
關鍵字(中) ★ 氧化石墨烯
★ 乙基纖維素
★ 噴塗蒸發系統
★ 氣體阻隔膜
關鍵字(英) ★ graphene oxide
★ ethyl cellulose
★ spraying-evaporation assembly system
★ gas barrier
論文目次 摘要.....................................................i
Abstract................................................ii
Acknowledgment.........................................iii
Table of Contents.......................................iv
List of Tables.........................................vii
List of Figures.......................................viii
Chapter 1 Background.....................................1
1-1 Introduction.....................................1
1-2 Review of Relevant Literature....................4
1-2-1 Chemical structure of graphene oxide.............4
1-2-2 Graphene oxide functional groups with gas adsorption ability.......................................4
1-2-3 Graphene oxide preparation history...............6
1-2-4 Transportation mechanism of graphene oxide membrane.................................................6
1-2-5 Graphene oxide stacking structure................8
1-2-6 Graphene oxide membrane fabrication techniques...9
1-2-7 Spray coating method............................10
1-2-8 Modified graphene oxide for gas barrier.........12
1-3 Motivation......................................17
Chapter 2 Experimental..................................18
2-1 Materials and Reagents..........................18
2-2 Instruments.....................................18
2-2-1 Membrane and GO preparation.....................18
2-2-2 Spraying composite membrane system..............19
2-2-3 Single gas permeation measurement system........19
2-3 Instrument Analysis and Identification..........20
2-3-1 X-ray diffraction (XRD).........................20
2-3-2 Fourier-transform infrared spectroscopy (FTIR)..21
2-3-3 Raman spectroscopy..............................21
2-3-4 Atomic force microscopy (AFM)...................22
2-3-5 Optical microscope (OM).........................23
2-3-6 Alpha step......................................23
2-3-7 Single gas separation system....................24
2-4 Experiment Methods..............................26
2-4-1 Preparation of graphene oxide...................26
2-4-2 Casting membrane fabrication....................27
2-4-3 Spray-evaporation coating fabricated GO membrane28
2-4-4 Single gas permeation measurement...............29
Chapter 3 Results and Discussion........................31
3-1 Graphene Oxide Synthesis........................31
3-1-1 X-ray diffraction of graphene oxide.............31
3-1-2 Flask size of graphene oxide sheet..............32
3-1-3 FTIR spectra of graphene oxide..................33
3-1-4 Raman spectra of graphene oxide.................34
3-2 Spraying GO Dispersion On Casting Membrane......36
3-2-1 Adjustment the number of spraying...............36
3-2-2 Adjustment suspension flow rate of spraying.....45
3-3 Performance of Oxygen Barrier...................55
Chapter 4 Conclusion....................................57
Chapter 5 Future Work...................................58
Reference...............................................59
參考文獻 1. H. Wang, Y. Zhao, Z. Wang, Y. Liu, Z. Zhao, G. Xu, T.-H. Han, J.-W. Lee, C. Chen and D. Bao, Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy, 2020. 69: p. 104375.
2. F. Eichie, R. Okor and R. Groning, Structure and barrier property of acrylatemethacrylate film coating in aspirin microcapsules. Journal of applied polymer science, 2006. 99(3): p. 725-727.
3. M.Z. Khajavi, A. Ebrahimi, M. Yousefi, S. Ahmadi, M. Farhoodi, A.M. Alizadeh and M. Taslikh, Strategies for producing improved oxygen barrier materials appropriate for the food packaging sector. Food Engineering Reviews, 2020. 12(3): p. 346-363.
4. R. Ishikawa, S. Watanabe, S. Yamazaki, T. Oya and N. Tsuboi, Perovskite/graphene solar cells without a hole-transport layer. ACS Applied Energy Materials, 2019. 2(1): p. 171-175.
5. J. Brockgreitens and A. Abbas, Responsive food packaging: Recent progress and technological prospects. Comprehensive Reviews in Food Science and Food Safety, 2016. 15(1): p. 3-15.
6. Z. Fang, Y. Zhao, R.D. Warner and S.K. Johnson, Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 2017. 61: p. 60-71.
7. J.W. Han, L. Ruiz‐Garcia, J.P. Qian and X.T. Yang, Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 2018. 17(4): p. 860-877.
8. R. Coles, D. McDowell and M.J. Kirwan, Food packaging technology. Vol. 5. 2003: CRC press.
9. L. Piergiovanni and S. Limbo, Food packaging materials. 2016: Springer.
10. A. Arora and G. Padua, Nanocomposites in food packaging. Journal of Food science, 2010. 75(1): p. R43-R49.
11. C.J. Rhodes, Plastic pollution and potential solutions. Science progress, 2018. 101(3): p. 207-260.
12. H. Ritchie and M. Roser, Plastic pollution. Our World in Data, 2018.
13. G.S. Rekhi and S.S. Jambhekar, Ethylcellulose-a polymer review. Drug development and industrial pharmacy, 1995. 21(1): p. 61-77.
14. Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014. 43(5): p. 1519-1542.
15. G. Murtaza, Ethylcellulose microparticles: A review. Acta Pol Pharm, 2012. 69(1): p. 11-22.
16. D. Wang, J. Li, X. Zhang, J. Zhang, J. Yu and J. Zhang, Poly (propylene carbonate)/clay nanocomposites with enhanced mechanical property, thermal stability and oxygen barrier property. Composites Communications, 2020. 22: p. 100520.
17. P. Xu, W. Yang, D. Niu, M. Yu, M. Du, W. Dong, M. Chen, P.J. Lemstra and P. Ma, Multifunctional and robust polyhydroxyalkanoate nanocomposites with superior gas barrier, heat resistant and inherent antibacterial performances. Chemical Engineering Journal, 2020. 382: p. 122864.
18. S. Komarneni, Nanocomposites. Journal of Materials Chemistry, 1992. 2(12): p. 1219-1230.
19. M.C. Carrera, E. Erdmann and H.A. Destéfanis, Barrier properties and structural study of nanocomposite of HDPE/montmorillonite modified with polyvinylalcohol. Journal of Chemistry, 2013. 2013.
20. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen and R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature, 2007. 448(7152): p. 457-460.
21. Z. Pan, L. He, L. Qiu, A.H. Korayem, G. Li, J.W. Zhu, F. Collins, D. Li, W.H. Duan and M.C. Wang, Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and Concrete Composites, 2015. 58: p. 140-147.
22. H.-B. Yao, L.-H. Wu, C.-H. Cui, H.-Y. Fang and S.-H. Yu, Direct fabrication of photoconductive patterns on LBL assembled graphene oxide/PDDA/titania hybrid films by photothermal and photocatalytic reduction. Journal of Materials Chemistry, 2010. 20(25): p. 5190-5195.
23. J. Hong and S.W. Kang, Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition. Journal of nanoscience and nanotechnology, 2011. 11(9): p. 7771-7776.
24. L. Yu, Y.-S. Lim, J.H. Han, K. Kim, J.Y. Kim, S.-Y. Choi and K. Shin, A graphene oxide oxygen barrier film deposited via a self-assembly coating method. Synthetic Metals, 2012. 162(7-8): p. 710-714.
25. J. Ma, D. Ping and X. Dong, Recent developments of graphene oxide-based membranes: a review. Membranes, 2017. 7(3): p. 52.
26. S.-G. Kim, N.-H. You, W. Lee, J.Y. Hwang, M.J. Kim, D. Hui, B.-C. Ku and J.H. Lee, Effects of the functionalized graphene oxide on the oxygen barrier and mechanical properties of layer-by-layer assembled films. Composites Part B: Engineering, 2016. 92: p. 307-314.
27. J. Heo, M. Choi, J. Chang, D. Ji, S.W. Kang and J. Hong, Highly permeable graphene oxide/polyelectrolytes hybrid thin films for enhanced CO 2/N 2 separation performance. Scientific reports, 2017. 7(1): p. 1-8.
28. J. Heo, M. Choi and J. Hong, Facile surface modification of polyethylene film via spray-assisted layer-by-layer self-assembly of graphene oxide for oxygen barrier properties. Scientific reports, 2019. 9(1): p. 1-7.
29. A.F. Ibrahim and Y. Lin, Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chemical Engineering Science, 2018. 190: p. 312-319.
30. K. Krishnamoorthy, M. Veerapandian, K. Yun and S.-J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 2013. 53: p. 38-49.
31. J. Guerrero-Contreras and F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 2015. 153: p. 209-220.
32. Z. Spitalsky, M. Danko and J. Mosnacek, Preparation of functionalized graphene sheets. Current Organic Chemistry, 2011. 15(8): p. 1133-1150.
33. R. Xing, Y. Li and H. Yu, Preparation of fluoro-functionalized graphene oxide via the Hunsdiecker reaction. Chemical Communications, 2016. 52(2): p. 390-393.
34. M. Shan, Q. Xue, N. Jing, C. Ling, T. Zhang, Z. Yan and J. Zheng, Influence of chemical functionalization on the CO 2/N 2 separation performance of porous graphene membranes. Nanoscale, 2012. 4(17): p. 5477-5482.
35. W.S. Hummers Jr and R.E. Offeman, Preparation of graphitic oxide. Journal of the american chemical society, 1958. 80(6): p. 1339-1339.
36. J. Chen, B. Yao, C. Li and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013. 64: p. 225-229.
37. H. Yu, B. Zhang, C. Bulin, R. Li and R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Scientific reports, 2016. 6(1): p. 1-7.
38. G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng and Q. Wu, Graphene oxide: the mechanisms of oxidation and exfoliation. Journal of Materials Science, 2012. 47(10): p. 4400-4409.
39. J. You, B. Oh, Y.S. Yun and H.-J. Jin, Improvement in Barrier Properties Using a Large Lateral Size of Exfoliated Graphene Oxide. Macromolecular Research, 2020. 28: p. 709-713.
40. T. Yang, H. Lin, K.P. Loh and B. Jia, Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation. Chemistry of Materials, 2019. 31(6): p. 1829-1846.
41. M. Sun and J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 2018. 20: p. 121-137.
42. J. Paredes, S. Villar-Rodil, A. Martínez-Alonso and J. Tascon, Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19): p. 10560-10564.
43. X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang and D. Chen, Alternate multilayer films of poly (vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules, 2010. 43(22): p. 9411-9416.
44. M. Hu and B. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. Journal of Membrane Science, 2014. 469: p. 80-87.
45. G. Ceriotti, A.Y. Romanchuk, A.S. Slesarev and S.N. Kalmykov, Rapid method for the purification of graphene oxide. RSC Advances, 2015. 5(62): p. 50365-50371.
46. C.-H. Tsou, Q.-F. An, S.-C. Lo, M. De Guzman, W.-S. Hung, C.-C. Hu, K.-R. Lee and J.-Y. Lai, Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015. 477: p. 93-100.
47. P. Li, K. Chen, L. Zhao, H. Zhang, H. Sun, X. Yang, N.H. Kim, J.H. Lee and Q.J. Niu, Preparation of modified graphene oxide/polyethyleneimine film with enhanced hydrogen barrier properties by reactive layer-by-layer self-assembly. Composites Part B: Engineering, 2019. 166: p. 663-672.
48. G. Barroso, Thermal barrier coating by polymer-derived ceramic technique for application in exhaust systems. Vol. 12. 2018: Cuvillier Verlag.
49. K. Guan, J. Shen, G. Liu, J. Zhao, H. Zhou and W. Jin, Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Separation and Purification Technology, 2017. 174: p. 126-135.
50. M. Ichiki, L. Zhang, Z. Yang, T. Ikehara and R. Maeda, Thin film formation on non-planar surface with use of spray coating fabrication. Microsystem technologies, 2004. 10(5): p. 360-363.
51. G. Barroso, Q. Li, R.K. Bordia and G. Motz, Polymeric and ceramic silicon-based coatings–a review. Journal of materials chemistry A, 2019. 7(5): p. 1936-1963.
52. X. Li, P. Bandyopadhyay, T.T. Nguyen, O.-k. Park and J.H. Lee, Fabrication of functionalized graphene oxide/maleic anhydride grafted polypropylene composite film with excellent gas barrier and anticorrosion properties. Journal of Membrane Science, 2018. 547: p. 80-92.
53. X. Li, P. Bandyopadhyay, M. Guo, N.H. Kim and J.H. Lee, Enhanced gas barrier and anticorrosion performance of boric acid induced cross-linked poly (vinyl alcohol-co-ethylene)/graphene oxide film. Carbon, 2018. 133: p. 150-161.
54. N.A. Tran, S. Jang and S.-W. Joo, Graphene epoxy spray on 3D-printed acrylonitrile butadiene styrene substrates as O2 gas barrier. Applied Surface Science, 2019. 497: p. 143745.
55. I.U. Unalan, C. Wan, Ł. Figiel, R.T. Olsson, S. Trabattoni and S. Farris, Exceptional oxygen barrier performance of pullulan nanocomposites with ultra-low loading of graphene oxide. Nanotechnology, 2015. 26(27): p. 275703.
56. R.B. Valapa, G. Pugazhenthi and V. Katiyar, Effect of graphene content on the properties of poly (lactic acid) nanocomposites. RSC Advances, 2015. 5(36): p. 28410-28423.
57. Y. Guan, K.P. Meyers, S.K. Mendon, G. Hao, J.R. Douglas, S. Trigwell, S.I. Nazarenko, D.L. Patton and J.W. Rawlins, Ecofriendly fabrication of modified graphene oxide latex nanocomposites with high oxygen barrier performance. ACS applied materials & interfaces, 2016. 8(48): p. 33210-33220.
58. P.-G. Ren, X.-H. Liu, F. Ren, G.-J. Zhong, X. Ji and L. Xu, Biodegradable graphene oxide nanosheets/poly-(butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and water vapor barrier properties. Polymer Testing, 2017. 58: p. 173-180.
59. M.J. Noh, M.J. Oh, J.H. Choi, J.C. Yu, W.-J. Kim, J. Park, Y.-W. Chang and P.J. Yoo, Layer-by-layer assembled multilayers of charged polyurethane and graphene oxide platelets for flexible and stretchable gas barrier films. Soft matter, 2018. 14(32): p. 6708-6715.
60. S. Sudsandee, C.-C. Hu, Y.-L. Liu, S. Worakhunpiset, S. Loahaprapanon, W.-S. Hung, K.-R. Lee and J.-Y. Lai, Improving barrier performance of transparent polymeric film using silk nanofibril combine graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 2019. 95: p. 332-340.
61. R. Silva-Leyton, R. Quijada, R. Bastías, N. Zamora, F. Olate-Moya and H. Palza, Polyethylene/graphene oxide composites toward multifunctional active packaging films. Composites Science and Technology, 2019. 184: p. 107888.
62. A. Khaki, H. Garmabi, A. Javadi and N. Yahyaee, Effect of crystallinity, crystal polymorphism, and graphene oxide nanosheets on the barrier properties of poly (l-lactic acid). European Polymer Journal, 2019. 118: p. 53-63.
63. J. You, B. Oh, Y.S. Yun and H.-J. Jin, Improvement in Barrier Properties Using a Large Lateral Size of Exfoliated Graphene Oxide. Macromolecular Research, 2020. 28(8): p. 709-713.
64. N. Saenko, The X-ray diffraction study of three-dimensional disordered network of nanographites: experiment and theory. Physics Procedia, 2012. 23: p. 102-105.
65. H.A. Daynes, The process of diffusion through a rubber membrane. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1920. 97(685): p. 286-307.
66. L. Shahriary and A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng, 2014. 2(01): p. 58-63.
67. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek and I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 2014. 195: p. 145-154.
68. B. Paulchamy, G. Arthi and B. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 2015. 6(1): p. 1.
69. M. Strankowski, D. Włodarczyk, Ł. Piszczyk and J. Strankowska, Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. Journal of Spectroscopy, 2016. 2016.
70. C. Manoratne, S. Rosa and I. Kottegoda, XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite. Material Science Research India, 2017. 14(1): p. 19-30.
71. B. Warren, X-ray diffraction in random layer lattices. Physical Review, 1941. 59(9): p. 693.
72. J. Aladekomo and R. Bragg, Structural transformations induced in graphite by grinding: analysis of 002 X-ray diffraction line profiles. Carbon, 1990. 28(6): p. 897-906.
73. S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom, S. Oaew, C. Kedkeaw and P. Limsuwan, Preparation and characterization of graphene oxide nanosheets. Procedia Engineering, 2012. 32: p. 759-764.
74. R.M. Erasmus and J.D. Comins, Raman scattering, in Handbook of Advanced Non-Destructive Evaluation. 2018, Springer International Publishing. p. 1-54.
75. L.-Y. Huang, D.-G. Yu, C. Branford-White and L.-M. Zhu, Sustained release of ethyl cellulose micro-particulate drug delivery systems prepared using electrospraying. Journal of Materials Science, 2012. 47(3): p. 1372-1377.
76. B. Yuan, H. Sun, T. Wang, Y. Xu, P. Li, Y. Kong and Q.J. Niu, Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets. Scientific reports, 2016. 6(1): p. 1-11.
77. H. Lu, Q. Wang, G. Li, Y. Qiu and Q. Wei, Electrospun water-stable zein/ethyl cellulose composite nanofiber and its drug release properties. Materials Science and Engineering: C, 2017. 74: p. 86-93.
78. A. Garcia-Gallastegui, D. Iruretagoyena, V. Gouvea, M. Mokhtar, A.M. Asiri, S.N. Basahel, S.A. Al-Thabaiti, A.O. Alyoubi, D. Chadwick and M.S. Shaffer, Graphene oxide as support for layered double hydroxides: enhancing the CO2 adsorption capacity. Chemistry of Materials, 2012. 24(23): p. 4531-4539.
79. P.M. Sudeep, T.N. Narayanan, A. Ganesan, M.M. Shaijumon, H. Yang, S. Ozden, P.K. Patra, M. Pasquali, R. Vajtai and S. Ganguli, Covalently interconnected three-dimensional graphene oxide solids. Acs Nano, 2013. 7(8): p. 7034-7040.
80. J. Wang, X. Mei, L. Huang, Q. Zheng, Y. Qiao, K. Zang, S. Mao, R. Yang, Z. Zhang and Y. Gao, Synthesis of layered double hydroxides/graphene oxide nanocomposite as a novel high-temperature CO2 adsorbent. Journal of Energy Chemistry, 2015. 24(2): p. 127-137.
81. A.M. Varghese, K.S.K. Reddy, S. Singh and G.N. Karanikolos, Performance enhancement of CO2 capture adsorbents by UV treatment: The case of self-supported graphene oxide foam. Chemical Engineering Journal, 2020. 386: p. 124022.
82. F. Tardani, W. Neri, C. Zakri, H. Kellay, A. Colin and P. Poulin, Shear rheology control of wrinkles and patterns in graphene oxide films. Langmuir, 2018. 34(9): p. 2996-3002.
83. S.-H. Hong, T.-Z. Shen and J.-K. Song, Water front recession and the formation of various types of wrinkles in dried graphene oxide droplets. Carbon, 2016. 105: p. 297-304.
指導教授 張博凱(Bor-Kae Chang) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明