參考文獻 |
1. Dever TE, Kinzy TG, Pavitt GD. Mechanism and regulation of protein synthesis in Saccharomyces cerevisiae. Genetics 2016;203:65–107.
2. Johnson AT. Principles of biology. Biol Eng 2020:239–98.
3. Ribas de Pouplana L, Schimmel P. Aminoacyl-tRNA synthetases: Potential markers of genetic code development. Trends Biochem Sci 2001;26:591–6.
4. Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. PNAS 2008;105:11043–9.
5. Ibba M, Dieter S. Aminoacyl-tRNA synthesis. Ann Rev Biochem 2000;69:617–50.
6. Yao P, Fox PL. Aminoacyl-tRNA synthetases in cell signaling. The Enzymes 2020;48:243-275.
7. Freist W, Verhey JF, Rühlmann A et al. Histidyl-tRNA synthetase. Biol.Chem 1999;380:623–46.
8. Tian Q, Wang C, Liu Y et al. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase. Nucleic Acids Res 2015;43:2980–90.
9. Xu Z, Wei Z, Zhou JJ et al. Internally deleted human tRNA synthetase suggests evolutionary pressure for repurposing. Struct Des 2012;20:1470–7.
10. Hirakawa Y, Burki F, Keeling PJ. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes. J Cell Sci 2012;125:6176–84.
11. Levi O, Id YA. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biology 2019:1–24.
12. Freedman R, Gibson B, Donovan D et al. Primary structure of histidine-tRNA synthetase and characterization of hisS transcripts. J Biol Chem 1985;260:10063–8.
13. Adams RA, Fernandes-Cerqueira C, Notarnicola A et al. Serum-circulating his-tRNA synthetase inhibits organ-targeted immune responses. Cell Mol Immunol 2019.
14. Zhou JJ, Wang F, Xu Z et al. Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J Biol Chem 2014;289:19269-75.
15. Ni R, Luo L. A noncanonical function of histidyl-tRNA synthetase: inhibition of vascular hyperbranching during zebrafish development. FEBS Open Bio 2018;8:722–31.
16. Wek SA, Zhu S, Wek RC. The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase Gcn2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 1995;15:4497–506.
17. Lageix S, Zhang J, Rothenburg S et al. Interaction between the tRNA-binding and C-terminal domains of yeast Gcn2 regulates kinase activity in vivo. PLoS Genetic 2015;11:1–28.
18. J.G.Arnez, D.C.Harris, A.Mitschler BR, C.S. Franckyln, and D.Moras CSF. Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate. 1995;14:4143–55.
19. Beuning PJ, Musier-Forsyth K. Transfer RNA recognition by aminoacyl-tRNA synthetases. Biopolymers 1999;52:1–28.
20. Nameki N, Asahara H, Shimizu M et al. Identity elements of Saccharomyces cerevisiae tRNAHis. Nucleic Acids Res 1995;23:389–94.
21. Yan W, Francklyn C. Cytosine 73 is a discriminator nucleotide in vivo for histidyl-tRNA in Escherichia coli. J Biol Chem 1994;269:10022–7.
22. Francklyn C, Schimmel P. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. PNAS 1990;87:8655–9.
23. Himeno H, Hasegawa T, Ueda T et al. Role of the extra G-C pair at the end of the acceptor stem of tRNAHis in aminoacylation. Nucleic Acids Res 1989;17:7855–63.
24. Gu W, Jackman JE, Lohan AJ et al. tRNAHis maturation: An essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev 2003;17:2889–901.
25. Heinemann IU, Nakamura A, O’Donoghue P et al. tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res 2012;40:333–44.
26. Burkards U, Willis I, Soll D. Processing of histidine RNA precursors. J Biol Chem 1988;263:2447–51.
27. Jackman JE, Phizicky EM. tRNAHis guanylyltransferase adds G-1 to the 5′ end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA 2006;12:1007–14.
28. Randau L, Schröder I, Söll D. Life without RNase P. Nature 2008;453:120–3.
29. Rao BS, Jackman JE. Life without post-transcriptional addition of G-1: Two alternatives for tRNAHis identity in Eukarya. RNA 2015;21:243–53.
30. Wang C, Sobral BW, Williams KP. Loss of a universal tRNA feature. J Bacteriol 2007;189:1954–62.
31. Yuan J, Gogakos T, Babina AM et al. Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair. Nucleic Acids Res 2011;39:2286–93.
32. Lee YH, Lo YT, Chang CP et al. Naturally occurring dual recognition of tRNAHis substrates with and without a universal identity element. RNA Biol 2019;16:1275–85.
33. Lee YH, Chang CP, Cheng YJ et al. Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci 2017;74:2663–77.
34. Tsui HW, Mok S, de Souza L et al. Transcriptional analyses of the gene region that encodes human histidyl-tRNA synthetase: Identification of a novel bidirectional regulatory element. Gene 1993;131:201–8.
35. O’Hanlon TP, Miller FW. Genomic organization, transcriptional mapping, and evolutionary implications of the human bi-directional histidyl-tRNA synthetase locus (HARS/HARSL). Biochem Biophys Res Commun 2002;294:609–14.
36. Nakamura A, Wang D, Komatsu Y. Biochemical analysis of human tRNA His guanylyltransferase in mitochondrial tRNA His maturation. Biochemical and Biophysical Research Communications 2018:1–7.
37. Chang KJ, Lin G, Men LC et al. Redundancy of non-AUG initiators: A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 2006;281:7775–83.
38. Chang CP, Lin G, Chen SJ et al. Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 2008;283:30699–706.
39. Amis EJ, Ferry JD, Ris H et al. The C-ala domain brings together editing and aminoacylation. Science 2009;325:744-747.
40. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–5.
41. Chang C, Chien XC, Chang XC et al. A WHEP domain regulates the dynamic structure and activity of Caenorhabditis elegans glycyl-tRNA synthetase *. J. Biol. Chem 2016;291:16567–75.
42. Preston MA, Phizicky EM. The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA 2010;16:1068–77.
43. Seetin MG, Mathews DH. RNA structure prediction: An overview of methods. Methods Mol Biol 2012;905:99–122.
44. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003;31:3429–31.
45. Abbott JA, Guth E, Kim C et al. The Usher syndrome type IIIB histidyl-tRNA synthetase mutation confers temperature sensitivity. Biochemistry 2017;56:3619–31.
46. Englert M, Vargas-Rodriguez O, Reynolds NM et al. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNAHis pair. Biochim Biophys Acta - Gen Subj 2017;1861:3009–15.
47. Diodato D, Ghezzi D, Tiranti V. The mitochondrial aminoacyl tRNA synthetases: Genes and syndromes. Int J Cell Biol 2014;2014:1-11.
48. Pierce SB, Chisholm KM, Lynch ED et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. PNAS 2011;108:6543–8.
49. Suzuki T, Nagao A, Suzuki T. Human mitochondrial trnas: Biogenesis, function, structural aspects, and diseases. Annu Rev Genet 2011;45:299–329.
50. Ames BN, Tsang TH, Buck M et al. The leader mRNA of the histidine attenuator region resembles tRNAHis: possible general regulatory implications. PNAS 1983;80:5240–2.
51. Kumar S, Stecher G, Li M et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547–9.
52. Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 2014;42:320–4. |