博碩士論文 108324052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.144.242.28
姓名 陳怡方(Yi-Fang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用真空變壓吸附法進行沼氣純化升級之雙塔實驗設計分析模擬研究及二氧化碳資源化產物與原料分離純化技術之開發
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 第一部分:
生質沼氣平均成分為60~70%甲烷、30~40%二氧化碳、0~4000 ppm硫化氫及其他微量氣體等,然而甲烷與二氧化碳為溫室效應之主要氣體,其中,甲烷的全球暖化潛勢被估計為二氧化碳之28~36倍,對於溫室效應的影響力不容小覷。
本研究第一階段為三種商用吸附劑的選擇測試,包含13X沸石、5A沸石以及活性碳,針對每一種吸附劑分別進行甲烷及二氧化碳之等溫吸附曲線之實驗測量,並計算不同溫度下二氧化碳對甲烷的選擇率,做出各吸附劑之性能比較,選出13X沸石為較適用於變壓吸附法之吸附劑。第二階段根據第一階段中所選之分離性能最佳的吸附劑,以雙塔八步驟PSA程序進行沼氣純化系統設計,進料組成為核能研究所提供之經厭氧發酵的生質沼氣,其中包含64% 甲烷、36% 二氧化碳以及100 ppm 硫化氫。為了找出最佳的操作條件,本研究將雙塔八步驟PSA程序模擬與實驗設計(Design of experiments, DOE)方法相結合,最終可使塔頂產物甲烷純度達99.5%,甲烷回收率達91.3%,而 塔頂產物之硫化氫含量僅剩0.015 ppm,此產物可被注入於天然氣管網(>95% CH4)中,滿足天然氣管道中流體標準進而作為燃料使用,而程序中純化每噸甲烷產物所估計需要的能耗為0.86 GJ。

第二部分:
鑒於全球暖化日益嚴重,及再生能源發電中棄風棄光現象造成能源大量浪費的問題,因此電轉氣(Power to Gas, P2G)為目前歐盟所積極推動的儲能技術。此技術以電解水來產生氫氣,藉利用水電解產生的氫氣和二氧化碳進行甲烷化反應,為了使氫氣不被浪費,甲烷化反應中常會以二氧化碳過量的方式來進行,經反應後,產物組成為二氧化碳、甲烷及乙烷。為了後續的應用,本研究擬以變壓吸附程序(pressure swing adsorption, PSA)進行二氧化碳及甲烷分離之技術開發。
第一階段先依據文獻資料及吸附量實驗測量尋找至少兩種合適的商業吸附劑,經過二氧化碳對甲烷以及二氧化碳對乙烷的選擇率計算後,選出13X沸石為較適用於變壓吸附法之吸附劑。第二階段根據第一階段中所選之分離性能最佳的吸附劑,以雙塔八步驟PSA程序進行二氧化碳純化之PSA程序設計,以67.9%甲烷、30%二氧化碳及2.1%乙烷作為進料組成,最終可獲得塔頂出口甲烷純度為84.66%,回收率為95.53%,而塔底出口之二氧化碳純度為84.03%,Waste產物流的二氧化碳純度為91.30%,皆有到達純度目標值的70%以上,將此產物回收進行循環利用,以降低二氧化碳的排放量,達到提升碳循環效率。
摘要(英) Part Ⅰ:
The average composition of biogas is 60-70% methane (CH4), 30-40% carbon dioxide (CO2), 0-4000 ppm hydrogen sulfide (H2S), and other trace gases. Both CH4 and CO2 emission are the causes of global warming. Furthermore, CH4 is estimated to have a global warming potential (GWP) of 28-36 over 100 years. Its influence on the greenhouse effect cannot be underestimated.
In the first part of study, PSA simulation program was applied to separate biogas. The adsorbent was chosen based on adsorption data from literature, Afterwards, we chose three commercial adsorbents to compare their performance, including activated carbon, zeolite 5A and zeolite 13X, and the sorbent parameters were calculated from experimental data of the adsorption equilibrium curve. We used 13X zeolite produced by COSMO as adsorbent due to its high CO2/CH4 selectivity. In the second part of study, a 2-bed 8-step PSA process is utilized to separate biogas (36% CO2, 64% CH4 and 100 ppm H2S) after desulphurization and water removal from the Institute of Nuclear Energy Research. After the basic-case simulation, the top product CH4 purity was 95.8 % with 90.9% recovery and the estimated mechanical energy consumption was 0.68 GJ/tonne-CH4. To find the optimal operating conditions, this study combined the simulation of 2-bed 8-step PSA process with design of experiments (DOE) method. After simulation analysis, the study showed a top product CH4 purity of 99.5% with 91.3% recovery, and 0.015 ppm H2S purity, which is suitable to be injected into the natural gas grid (>95% CH4), satisfying the standard of natural gas pipeline and can be used as fuel. The mechanical energy consumption was estimated to be 0.86 GJ/tonne-CH4.

Part Ⅱ:
In view of serious global warming problem and the massive energy waste in renewable energy, power-to-gas (P2G) is currently an energy storage technology actively promoted by the European Union. This technology includes water electrolysis and methanation reaction, and the latter often reacts with excess carbon dioxide. After the reaction, the gas composition is CO2, CH4, C2H6 and a small amount of H2. In this research, we will develop a CO2 purification technology from the outlet gas of methanation by simulation of pressure swing adsorption (PSA) process. First, we will find at least two commercial adsorbents from literature data and the data of adsorption isotherm by experiments. Then, we will establish a simulation program of dual-bed eight-step PSA to develop a CO2 PSA purification process with CO2 product purity above 70%.
In the first part of study, we found suitable commercial adsorbents based on literature data and experimental measurement of equilibrium adsorption. After calculating the selectivity of CO2/CH4 and CO2/C2H6, we chose the zeolite 13X produced by COSMO as the adsorbent in this study. In the second stage, we conducted the PSA simulation program CO2 purification with a dual-bed eight-step process. This research used 67.9% methane, 30% carbon dioxide and 2.1% ethane as the feed, and after the simulation, the study showed a top product CH4 purity of 84.66% with 95.53% recovery, a bottom product CO2 purity of 84.03% and waste CO2 purity of 91.30%, both reaching the target of 70% CO2 purity. Therefore, the process can recycle this product to the reaction of methanation, in order to reduce CO2 emissions and improve the efficiency of carbon cycle.
關鍵字(中) ★ 生質沼氣
★ 變壓吸附法
關鍵字(英) ★ Biogas
★ Pressure Swing Adsorption
論文目次 摘要 ii
Abstract iv
誌謝 vii
目錄 vii
圖目錄 xii
第一章、緒論 1
第二章、簡介 8
2-1 吸附之簡介 8
2-1-1 吸附基本原理 8
2-1-2 吸附劑及其選擇率 9
2-1-3 吸附程序 11
2-1-4 突破曲線 13
2-2 文獻回顧 17
2-2-1 PSA程序之發展與改進 17
2-2-2理論之回顧 22
2-2-3用於生質沼氣分離之吸附劑之回顧 25
2-2-3-1 分離甲烷與二氧化碳之比較 25
2-2-3-2 分離硫化氫之比較 13
2-2-3-3 水氣對吸附劑的影響 26
2-2-3-4 吸附劑相關文獻回顧之結論 28
2-2-4 生質沼氣分離程序之應用 28
2-2-5 乙烷相關之文獻回顧 30
第三章、模擬方法 32
3-1 基本假設與理論 32
3-2 統制方程式 33
3-3 吸附平衡關係式 37
3-3-1 等溫吸附平衡關係式 37
3-3-2 質傳驅動力模式(Driving force model) 38
3-3-3 吸附熱關係式 38
3-4 參數推導 39
3-4-1 軸向分散係數(Axial dispersion coefficient) 39
3-4-2 熱傳係數 41
3-4-3 線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 43
3-5 邊界條件與流速 47
3-5-1 邊界條件與節點流速 47
3-5-2 閥公式 48
3-6 求解步驟 49
3-7 能耗及產率計算公式 52
第四章、等溫吸附曲線之實驗測量及模擬程序所需參數與驗證 54
4-1 吸附平衡 55
4-1-1 測試之吸附劑種類 55
4-1-2 實驗裝置 55
4-1-3 實驗裝置之操作流程 58
4-1-4 天平校正 59
4-1-5 空白實驗 60
4-1-6 吸附劑對於二氧化碳與甲烷選擇率之比較 61
4-1-7 氣體與吸附劑性質 70
4-1-8 等溫吸附平衡曲線之參數擬合 71
4-2 吸附動力學 74
4-2-1 實驗室規模吸附塔之突破曲線模擬驗證 75
4-2-2 單塔三步驟實驗與模擬驗證 77
4-2-3 雙塔六步驟實驗與模擬驗證 81
第五章、PSA沼氣純化系統設計之分離程序 84
5-1 進料流量、組成與狀態+ 84
5-2 雙塔八步驟程序及參數 85
5-3 模擬程序結果與分析 88
5-4 以實驗設計求個響應最佳化結果 91
5-4-1 因子選定 91
5-4-2 殘差分析圖(Analysis of residual plots) 92
5-4-3 變異數分析(Analysis of variance) 95
5-4-4 迴歸分析(Regression analyze) 100
5-4-5 各響應組合之最佳化結果 102
5-4-6 以模擬程序驗證最佳化響應與結果 105
5-5 PSA沼氣純化系統設計分離之放大設計 107
5-5-1 進料流量與狀態 107
5-5-2 模擬程序之參數與結果分析 108
第六章、生質沼氣升級結論 111
第七章、等溫吸附曲線之文獻蒐集以及實驗測量 113
7-1 吸附劑吸附數據蒐集及實驗測量結果 113
7-2 吸附劑對二氧化碳對甲烷以及二氧化碳對乙烷之選擇率計算結果與比較 116
7-3 模擬所需之氣體和吸附劑相關參數 121
7-4 模擬程序結果與分析 124
第八章、P2G甲烷化產物分離結論 127
符號說明 128
參考文獻 133
附錄A、等溫吸附實驗數據 140
附錄B、ANOVA全因子設計之各響應值 146
附錄C、其他補充資料 150
參考文獻 [1] Greenhouse gas emissions: Understanding global warming potentials, United States Environmental Protection Agency. Available: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
[2] C. A. Grande and A. E. Rodrigues, Biogas to Fuel by Vacuum Pressure Swing Adsorption I. Behavior of Equilibrium and Kinetic-Based Adsorbents, Industrial & Engineering Chemistry, vol. 46, pp. 4595–4605, 2007.
[3] Q. Sun , H. Li, J. Yan, L Liu, Z. Yu and X. Yu, Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrding and utilisation, Renewable and Sustainable Energy Reviews, vol. 51, pp. 521-532, 2015.
[4] 蘇忠楨, 農業推廣諮詢:畜牧業沼氣利用推廣, 國立臺灣大學動物科學技術學系。 Available: http://ntucae.blog.ntu.edu.tw/2012/12/31/n96_01/
[5] I. V. Yentekakis and G. Goula, Biogas Management: Advanced Utilization for Production of Renewable Energy and Added Value Chemicals, Frontiers in Environmental Science, vol. 5, 2017.
[6] E. Martín-Hernandez, L.S. Guerras and M. Martín, Optimal technology selection for the biogas upgrading to biomethane, Journal of Cleaner Production, vol. 267, p. 122032, 2020.
[7] 楊立群, 趨向成熟的技術,生物天然氣的純化與應用, 工業局石化產業高值化推動專案, 2017. Available: https://www.pipo.org.tw/Hr/article_more?id=13
[8] 洪凡, 郭家倫, 參加第一屆中歐生物天然氣高峰論壇赴大陸報告,核能研究所, 2016.
[9] 謝宗翰, 以石安牧場為例,打造農畜牧業的循環經濟, 城市發展, 第22冊, 76-87頁, 2017.
[10] 台灣電力股份有限公司,火力電廠環境保護。 Available: http://www.taipower.com.tw/tc/page.aspx?mid=216.
[11] 張素美, 歐盟氣候目標與再生能源發展─2030 年溫室氣體減量至少 40%,再生能源至少 27%, 能源知識庫, 2016.
[12] M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert and T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renewable Energy, vol. 85, pp. 1371-1390, 2016.
[13] R. Augelletti, M. Conti and M. C. Annesini, Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide, Journal of Cleaner Production, vol. 140, pp. 1390-1398, 2017.
[14] S. Sircar, Pressure swing adsorption, Industrial & engineering chemistry research, vol. 41, pp. 1389-1392, 2002.
[15] M. P. S. Santos, C. A. Grande and A. E. Rodrigues, Pressure Swing Adsorption for Biogas Upgrading. Effect of Recycling Streams in Pressure Swing Adsorption Design, Industrial & Engineering Chemistry, pp. 974-985, 2011.
[16] R. T. Yang, Gas Separation by Adsorption Process, vol. 1, Imperial College, London, 1997.
[17] S. U. Rege and R. T. Yang, A Simple Parameter for Selection an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[18] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[19] W. H. McAdams, Heat Transmission, 3rd ed., McGraw Hill, New York, 1954.
[20] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[21] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, London, 1988.
[22] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[23] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[24] P. E. Jahromi, S. Fatemi, A.Vatani, J. A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[25] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[26] R. T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[27] L. Jiang, V. G. Fox and L. T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[28] A. Fuderer and E. Rudelstorfer, Selective Adsorption Process, US Patent 3986849, 1976.
[29] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[30] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[31] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[32] J. A. A. Gibson, A. V. Gromov, S. Brandani and E. E. Campbell, Comparison of amine-impregnated mesoporous carbon with microporous activated carbon and 13X zeolite for biogas purification, Journal of Porous Materials, vol. 24, pp. 1473-1479, 2017.
[33] H. H. Heck, M. L. Hall, R. dos Santos and M. M. Tomadakis, Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X, Separation Science and Technology, vol. 53, pp. 1490-1497, 2017.
[34] F. Gholipour and M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling, The Journal of Supercritical Fluids, vol. 111, pp. 47-54, 2016.
[35] M. Mofarahi and S. M. Salehi, Pure and Binary Adsorption Isotherms of Ethylene and Ethane on Zeolite 5A, Adsorption, vol. 19, pp. 101-110, 2013.
[36] J. A. C. Silva, K. Schumann and A. E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite, Microporous and Mesoporous Materials, vol. 158, pp. 219-228, 2012.
[37] S. Cavenati, C. A. Grande and A. E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, Journal of Chemical & Engineering Data, vol. 49, pp. 1095-1101, 2004.
[38] X. Peng and D. Cao, Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas, AIChE Journal, vol. 59, pp. 2928-2942, 2013.
[39] L. Sigot, G. Ducom, B. Benadda and C. Labouré, Comparison of Adsorbents for H2S and D4 Removal for Biogas Conversion in a Solid Oxide Fuel Cell, Environmental Technology, vol. 37, pp. 86-95, 2016.
[40] A. J. Cruz, J. Pires, A. P. Carvalho and M. B. D. Carvalho, Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure, Adsorption, vol. 11, pp. 569-576, 2005.
[41] M. M. Tomadakis, H. H. Heck, M. E. Jubran and K. Al-Harthi, Pressure-Swing Adsorption Separation of H2S from CO2 with Molecular Sieves 4A, 5A, and 13X, Separation Science and Technology, vol. 46, pp. 428-433, 2011.
[42] K. G. Wynnyk, B. Hojjati and R. A. Marriott, High-Pressure Sour Gas and Water Adsorption on Zeolite 13X, Industrial & Engineering Chemistry Research, vol. 57, pp. 15357-15365, 2018.
[43] A. Alonso-Vicario, J. R. Ochoa-Gómez, S. Gil-Río, O. Gómez-Jiménez-Aberasturi, C. A. Ramírez-López, Torrecilla-Soria, J. and A. Domínguez, Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites, Microporous and Mesoporous Materials, vol. 134, pp. 100-107, 2010.
[44] L. Sigot, M. F. Obis, H. Benbelkacem, P. Germain and G. Ducom, Comparing the performance of a 13X zeolite and an impregnated activated carbon for H2S removal from biogas to fuel an SOFC: Influence of water, International Journal of Hydrogen Energy, vol. 41, pp. 18533-18541, 2016.
[45] T. Tsujiguchi, Y. Miyashita, Y. Osaka and A. Kodama, Influence of Contained Water Vapor on Performance of Simulated Biogas Separation by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 49, pp. 251-256.
[46] S. N. Vyas, S. R. Patwardhan, I. Gupta and V. Burra, Bulk Separation and Purification of CH4/CO2 mixtures on 4A/13X molecular sieves by using pressure swing adsorption, Separation Science and Technology, vol. 26, pp. 1419-1431, 1991.
[47] C. A. Grande and A. E. Rodrigues, Layered Vacuum Pressure-swing Adsorption for Biogas Upgrading, Industrial & engineering chemistry research, vol. 46, pp. 7844-7848, 2007.
[48] M. P. S. Santos, C. A. Grande and A. E. Rodrigues, Dynamic Study of the Pressure Swing Adsorption Process for Biogas Upgrading and Its Responses to Feed Disturbances, Industrial & Engineering Chemistry Research, vol. 52, pp. 5445-5454, 2013.
[49] J. A. Thompson, Acid Gas Adsorption on Zeolite SSZ-13:Equilibrium and dynamic behavior for natural gas applications, AIChE Journal, vol. 66, article e16549, 2020.
[50] S. Hosseinpour, S. Fatemi, Y. Mortazavi, M. Gholamhoseini and M.T. Ravanchi, Performance of CaX zeolite for separation of C2H6, C2H4, and CH4 by adsorption process; capacity, selectivity, and dynamic adsorption measurements, Separation Science and Technology, vol. 46, pp. 349-355, 2010.
[51] G. M. Nam, B. M. Jeong, S. H. Kang, B. K Lee, and D. K. Choi, Equilibrium Isotherms of CH4, C2H6, C2H4, N2, and H2 on Zeolite 5A Using a Static Volumetric Method, Journal of Chemical & Engineering Data, vol. 50, pp. 72-76, 2005.
[52] C. A. Grande, S Roussanaly, R. Anantharaman, K. Lindqvist, P. Singh, and J. Kemper, CO2 Capture in Natural Gas Production by Adsorption Processes, Energy Procedia, vol. 114, pp. 2259-2264, 2017.
[53] D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
[54] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[55] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, New Jersey, 2007.
[56] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[57] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[58] D. F. Fairbanks and C. R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[59] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw Hill, New York, 2005.
[60] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[61] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[62] J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, John Wiley & Sons, New Jersey, 2008.
[63] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, in Perry′s Chemical Engineers′ Handbook, 7th ed., McGraw Hill, New York, 1997.
[64] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic Study of Diffusion in Molecular-sieving Carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[65] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecular Sieves, Langmuir, vol. 19, pp. 393-405, 2003.
[66] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[67] Y. Park, Y. Ju, D. Y. Park and C. H. Lee, Adsorption Equilibria and Kinetics of Six Pure Gases on Pelletized Zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2, Chemical Engineering Journal, vol. 292, pp. 348-365, 2016.
[68] M. I. Hossain, C. E. Holland, A. D. Ebner and J. A. Ritter, Mass Transfer Mechanisms and Rates of CO2 and N2 in 13X Zeolite from Volumetric Frequency Response, Industrial & Engineering Chemistry Research, vol. 58, pp. 21679–21690, 2019.
[69] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[70] Fluid Controls Institute Inc., Recommended Voluntary Standard Formulas for Sizing Control Valves, FCI 62-1, May 1962.
[71] R. C. Patel and C. J. Karamchandani, Element of Heat Engines, Eighteenth Edition, Acharya Book Depot, Vadodara, 1994.
[72] A. Golmakani, S. Fatemi and J. Tamnanloo, CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[73] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學,碩士論文, 民國109年.
[74] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學,碩士論文, 民國104年.
[75] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw Hill, New York, 1987.
[76] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[77] M. J. Ahmed, A. H. A. K. Mohammed and A. A. H. Kadhum, Experimental and theoretical studies of equilibrium isothermsfor pure light hydrocarbons adsorption on 4A zeolite, Korean Journal of Chemical Engineering, vol. 27, pp. 1801-1804, 2010.
[78] E. Khoramzadeh, M. Mofarahi and C. H. Lee, Equilibrium Adsorption Study of CO2 and N2 on Synthesized Zeolites 13X, 4A, 5A, and Beta, Journal of Chemical & Engineering Data, vol. 64, pp. 5648-5664, 2019.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明