博碩士論文 108223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.224.55.31
姓名 王彥貞(Yen-Chen Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 鈷、鎳以及鈷鎳合金薄膜電極材料製備及其產氫活性的研究
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以循環掃描電位的方式,於Au(111)或Pt(111)上沉積鈷、鎳以及不同比例的鈷鎳合金後,於鹼性溶液中(0.1M KOH)測試對氫氣析出反應(hydrogen evolution reaction,HER)之催化活性,而合金中鈷鎳的比例以角解析X射線光電子光譜(ARXPS)來分析,並藉由STM觀察這些金屬的沉積過程與表面形貌。其中CoNi6.1/Au(111)合金電極擁有較小的過電位(-223mV)以及Tafel斜率(87.7mV/dec),對產氫(HER)活性優於純鈷、鎳以及其他比例的合金。於Pt(111)上修飾3層Ni後,其HER活性表現最突出,它有最小的過電位(-53mV),以Tafel斜率(46.9mV/dec)推論, HER的速率決定步驟(rds)為氫氣脫附反應(Heyrovsky步驟),其餘材料的rds皆為氫吸附的反應(Volmer步驟),可能是由於Ni能有利於水的分解,而三層的鎳與白金之間可能有很好的電子效應,能夠提供有利於氫的吸附位點,且OHad與Ni之間的相互作用最為理想,因此大幅提升產氫活性。以STM觀察鈷鎳合金於Au(111)上成長,第一層多以針狀的方式生長為無序或整齊的moiré pattern結構。在Pt(111)上,鈷鎳離子比例為1:1時,第一層沉積膜由兩種金屬共同組成,無整齊的蜂窩狀結構,當鈷鎳比例為1:4時,第一層亦無整齊的蜂窩狀結構,而是長成樹枝狀的樣貌。也以STM觀察pH3與pH5硫酸鹽中,鎳在Au(111)和Pt(111)上的生長。
摘要(英) The electrodeposition of cobalt, nickel and cobalt-nickel alloys on Au(111) and Pt(111) electrodes was studied by using cyclic voltammetry (CV),scanning tunneling microscope (STM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activities of the as-prepared filmy materials toward hydrogen evolution reaction (HER) were examined in alkaline media (0.1 M KOH). The chemical compositions of the Co-Ni alloys were analyzed with angle-resolved X-ray photoelectron spectroscopy (ARXPS).The deposition process and surface morphology of these metallic films were observed by STM. The Au(111)-supported CoNi6.1 alloy film exhibited higher HER activity than pure cobalt, nickel and the other alloys, as manifested by a smaller overpotential (-223 mV) and Tafel slope (87.7 mV/ dec). On the Pt(111) electrode the deposition of three monolayer (ML) Ni led to the most active catalyst for HER, as evaluated from the smallest overpotential (-53 mV) and Tafel slope (46.9 mV/dec). This catalyst was unique, in that the rate-determining step (rds) for HER was the hydrogen desorption reaction, as opposed to the hydrogen adsorption reaction found for others. It is assumed that as-preapred Ni films were active sites for the water splitting reaction, which facilitated dissociation of water molecule to OHad. It is assumed that Pt substrate altered the electronic configuration of the three-layer-thick nickel film, which optimized its interaction of H and OH.The first layer of the depositied Co-Ni alloys on Au(111) assumed a needle-like texture, disordered and ordered moiré patterns, which resemble those features observed with pure Ni deposit. The Co-Ni alloy films deposited on Pt(111) from a 1:1 and 1:4 Co2+/Ni2+ solutions had a disordered structure and a dendritic pattern. The latter resulted from a fractal-like growth mode. The electrodeposition of Ni on Au(111) and Pt(111) in pH 3 and pH 5 sulfate media were also examined.
關鍵字(中) ★ 鈷
★ 鎳
★ 鈷鎳合金
★ 氫氣析出反應
關鍵字(英) ★ cobalt
★ nickel
★ cobalt-nickel alloy
★ hydrogen evolution reaction
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XVIII
第一章、緒論 1
1-1 電化學分解水製氫 1
1-1-1 簡介 1
1-1-2 火山曲線圖(Volcano plot) 4
1-1-3 過電位(Overpotential) 6
1-1-4 塔弗斜率(Tafel slope)與反應機制 7
1-1-5 穩定性(Stability) 10
1-1-6 質量活性與特定活性(Mass and specific activities)10
1-1-7 轉換頻率(Turnover frequency, TOF)與法拉第效率(Faradaic Efficiency, FE) 11
1-1-8 電催化劑 13
1-2 鎳與鈷鎳合金之概論 16
1-2-1 鎳的沉積 16
1-2-2 鎳的應用 17
1-2-3 鈷鎳合金的沉積 26
1-2-4 鈷鎳合金的應用 28
1-3 研究動機 35
第二章、實驗部分 36
2-1 藥品部分 36
2-1-1 實驗用藥品 36
2-1-2 鈷鎳之電鍍液 36
2-2 實驗用氣體 37
2-3 金屬線材 37
2-4 實驗用儀器 37
2-4-1 循環伏安儀(Cyclic Voltammetry , CV) 37
2-4-2 掃描式穿隧電子顯微鏡(Scanning Tunneling Microscope , STM) 37
2-4-3 點焊機(D.C. Spot Welder): 38
2-4-4 研磨拋光機(Grinder and Polisher) 38
2-4-5 超音波震盪器(Ultrasonic Cleaner) 39
2-4-6 X射線光電子能譜(X-ray photoelectron spectroscopy , XPS) 39
2-5 實驗步驟 43
2-5-1 金(111)和鉑(111)單晶CV用的電極製備 43
2-5-2 金(111)和鉑(111)單晶STM用的電極製備 43
2-5-3 STM探針製備 43
2-5-4 循環伏安法(CV)的實驗步驟 44
2-5-5 電化學掃描式穿隧電子顯微鏡(EC-STM)的實驗步驟 45
2-5-6 角解析XPS(ARXPS)的樣品製備 45
第三章、Au(111)上修飾鈷鎳合金對於氫氣析出反應的電化學活性49
3-1 Au(111)上修飾鈷於pH3硫酸鉀溶液中之電沉積探討 49
3-1-1 鈷於Au(111)電極上之循環伏安圖 49
3-1-2 鈷於Au(111)上之STM圖 53
3-2 Au(111)上修飾鎳於pH3硫酸鉀溶液中之電沉積探討 57
3-2-1 鎳於Au(111)電極上之循環伏安圖 57
3-2-2 鎳於Au(111)上之STM圖 60
3-3 Au(111)上修飾鈷鎳合金於pH3硫酸鉀溶液中之電沉積探討63
3-3-1 鈷鎳合金於Au(111)電極上之循環伏安圖 63
3-3-2 鈷鎳合金於Au(111)電極上之元素比例分析 69
3-3-3 鈷鎳合金於Au(111)上之STM圖(Co2+:Ni2+=1:1) 75
3-3-4 鈷鎳合金於Au(111)上之STM圖(Co2+:Ni2+=1:4) 81
3-4 Au(111)上修飾鈷、鎳以及鈷鎳合金氫氧化物對產氫催化活性之探討 84
3-4-1 Au(111)上修飾鈷、鎳以及鈷鎳合金於鹼液中進行HER的測試84
3-4-2 Au(111)上修飾鈷、鎳以及鈷鎳合金氫氧化物於鹼液中進行HER後之電化學特性 90
3-5 Au(111)上修飾鎳於pH5硫酸鉀溶液中對氫氣析出反應之變化93
3-5-1鎳於Au(111)上之STM圖(1mM Ni2+) 93
3-5-2鎳於Au(111)上之STM圖(0.1mM Ni2+) 101
3-6 結論 108
第四章、Pt(111)上修飾鈷鎳合金對於氫氣析出反應的電化學活性109
4-1 Pt(111)上修飾鈷和鎳於pH3硫酸鹽中之電沉積探討 109
4-2 Pt(111)電極上修飾鈷鎳合金於pH3硫酸鹽中之電沉積探討112
4-2-1 鈷鎳合金於Pt(111)電極上之循環伏安圖 112
4-2-2 鈷鎳合金於Pt(111)電極上之STM圖(Co2+:Ni2+=1:1)118
4-2-3 鈷鎳合金於Pt(111)電極上之STM圖(Co2+:Ni2+=1:4)127
4-3 Pt(111)上修飾鈷、鎳以及鈷鎳合金對產氫催化活性之探討133
4-3-1 Pt(111)上修飾鈷、鎳以及鈷鎳合金於鹼液中進行HER之測試133
4-3-2 Pt(111)上修飾鈷、鎳以及鈷鎳合金氫氧化物於鹼液中進行HER後之電化學特性 141
4-3-3 Pt(111)上修飾鎳於鹼性環境中之STM圖 145
4-4 Pt(111)上修飾鎳於pH5硫酸鉀溶液中對氫氣析出反應之變化149
4-5 結論 157
第五章、參考文獻 158
參考文獻 1. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews 2020, 120 (2), 851-918.
2. Balat, M., Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. International Journal of Hydrogen Energy 2008, 33, 4013-4029.
3. Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science 2013, 6 (5), 1509-1512.
4. Fang, Y.-H.; Liu, Z.-P., Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catalysis 2014, 4 (12), 4364-4376.
5. Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J., Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. Journal of Materials Chemistry A 2019, 7 (25), 14971-15005.
6. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S., Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12), 8069-8097.
7. Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S.-Z., The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie International Edition 2018, 57 (26), 7568-7579.
8. Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M., Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nature Energy 2017, 2 (4), 17031.
9. Sarabia, F. J.; Sebastián-Pascual, P.; Koper, M. T. M.; Climent, V.; Feliu, J. M., Effect of the Interfacial Water Structure on the Hydrogen Evolution Reaction on Pt(111) Modified with Different Nickel Hydroxide Coverages in Alkaline Media. ACS Applied Materials & Interfaces 2019, 11 (1), 613-623.
10. Yu, X.; Zhao, J.; Zheng, L.-R.; Tong, Y.; Zhang, M.; Xu, G.; Li, C.; Ma, J.; Shi, G., Hydrogen Evolution Reaction in Alkaline Media: Alpha- or Beta-Nickel Hydroxide on the Surface of Platinum? ACS Energy Letters 2018, 3 (1), 237-244.
11. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials 2012, 11 (6), 550-557.
12. Wang, S.; Lu, A.; Zhong, C.-J., Hydrogen production from water electrolysis: role of catalysts. Nano Convergence 2021, 8 (1), 4.
13. Santos, A. L.; Cebola, M.-J.; Santos, D. M. F., Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers. Energies 2021, 14 (11).
14. Pradhan, N.; Subbaiah, T.; Das, S. C.; Dash, U. N., Effect of zinc on the electrocrystallization of cobalt. Journal of Applied Electrochemistry 1997, 27 (6), 713-719.
15. Allongue, P.; Cagnon, L.; Gomes, C.; Gündel, A.; Costa, V., Electrodeposition of Co and Ni/Au(111) ultrathin layers. Part I: nucleation and growth mechanisms from in situ STM. Surface Science 2004, 557 (1), 41-56.
16. Oriňáková, R.; Turoňová, A.; Kladeková, D.; Gálová, M.; Smith, R. M., Recent developments in the electrodeposition of nickel and some nickel-based alloys. Journal of Applied Electrochemistry 2006, 36 (9), 957-972.
17. Ruqia, B.; Choi, S.-I., Pt and Pt–Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts. ChemSusChem 2018, 11 (16), 2643-2653.
18. Xing, Z.; Han, C.; Wang, D.; Li, Q.; Yang, X., Ultrafine Pt Nanoparticle-Decorated Co(OH)2 Nanosheet Arrays with Enhanced Catalytic Activity toward Hydrogen Evolution. ACS Catalysis 2017, 7 (10), 7131-7135.
19. Hu, H.; Tan, M.; Liu, L., Anomalous codeposition mechanism of Co-Ni alloy nanowires. Journal of Alloys and Compounds 2017, 715, 384-389.
20. Gong, M.; Wang, D.-Y.; Chen, C.-C.; Hwang, B.-J.; Dai, H., A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research 2016, 9 (1), 28-46.
21. Hong, S. H.; Ahn, S. H.; Choi, I.; Pyo, S. G.; Kim, H.-J.; Jang, J. H.; Kim, S.-K., Fabrication and evaluation of nickel cobalt alloy electrocatalysts for alkaline water splitting. Applied Surface Science 2014, 307, 146-152.
22. González-Buch, C.; Herraiz-Cardona, I.; Ortega, E.; García-Antón, J.; Pérez-Herranz, V., Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy 2013, 38 (25), 10157-10169.
23. Fang, M.; Gao, W.; Dong, G.; Xia, Z.; Yip, S.; Qin, Y.; Qu, Y.; Ho, J. C., Hierarchical NiMo-based 3D electrocatalysts for highly-efficient hydrogen evolution in alkaline conditions. Nano Energy 2016, 27, 247-254.
24. Zhang, L.; Xiong, K.; Nie, Y.; Wang, X.; Liao, J.; Wei, Z., Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst. Journal of Power Sources 2015, 297, 413-418.
25. Zhang, J.; Baró, M. D.; Pellicer, E.; Sort, J., Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale 2014, 6 (21), 12490-12499.
26. Negem, M.; Nady, H., Electroplated Ni-Cu nanocrystalline alloys and their electrocatalytic activity for hydrogen generation using alkaline solutions. International Journal of Hydrogen Energy 2017, 42 (47), 28386-28396.
27. Li, Y.; Zhang, X.; Hu, A.; Li, M., Morphological variation of electrodeposited nanostructured Ni-Co alloy electrodes and their property for hydrogen evolution reaction. International Journal of Hydrogen Energy 2018, 43 (49), 22012-22020.
28. Nishizawa, T.; Ishida, K., The Co−Ni (Cobalt-Nickel) system. Bulletin of Alloy Phase Diagrams 1983, 4 (4), 390-395.
29. Sakita, A. M. P.; Della Noce, R.; Fugivara, C. S.; Benedetti, A. V., On the cobalt and cobalt oxide electrodeposition from a glyceline deep eutectic solvent. Physical Chemistry Chemical Physics 2016, 18 (36), 25048-25057.
30. Frank, A. C.; Sumodjo, P. T. A., Electrodeposition of cobalt from citrate containing baths. Electrochimica Acta 2014, 132, 75–82.
31. Abd El Rehim, S. S.; Abd El Wahaab, S. M.; Ibrahim, M. A. M.; Dankeria, M. M., Electroplating of cobalt from aqueous citrate baths. Journal of Chemical Technology & Biotechnology 1998, 73 (4), 369-376.
32. Cui, C. Q.; Lee, J. Y., Nickel deposition from unbuffered neutral chloride solutions in the presence of oxygen. Electrochimica Acta 1995, 40 (11), 1653-1662.
33. Suzuki, T.; Yamada, T.; Itaya, K., In Situ Electrochemical Scanning Tunneling Microscopy of Ni(111), Ni(100), and Sulfur-Modified Ni(100) in Acidic Solution. The Journal of Physical Chemistry 1996, 100 (21), 8954-8961.
34. Baker, H., Introduction to phase diagrams, alloy phase diagrams. ASM International: Cleveland, 1992.
35. García-Torres, J.; Gispert, C.; Gómez, E.; Vallés, E., Alginate electrodeposition onto three-dimensional porous Co–Ni films as drug delivery platforms. Physical Chemistry Chemical Physics 2015, 17 (3), 1630-1636.
36. Tarrús, X.; Montiel, M.; Vallés, E.; Gómez, E., Electrocatalytic oxidation of methanol on CoNi electrodeposited materials. International Journal of Hydrogen Energy 2014, 39 (12), 6705-6713.
37. Yang, K.; Zhou, L.; Xiong, X.; Ye, M.; Li, L.; Xia, Q., RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane. Microporous and Mesoporous Materials 2016, 225, 1-8.
38. Qiu, F.; Li, L.; Liu, G.; Wang, Y.; Wang, Y.; An, C.; Xu, Y.; Xu, C.; Wang, Y.; Jiao, L.; Yuan, H., In situ synthesized Fe–Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane. International Journal of Hydrogen Energy 2013, 38 (8), 3241-3249.
39. Zhang, B.; Zhang, X.; Wei, Y.; Xia, L.; Pi, C.; Song, H.; Zheng, Y.; Gao, B.; Fu, J.; Chu, P. K., General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds 2019, 797, 1216-1223.
40. Qazi, U. Y.; Yuan, C.-Z.; Ullah, N.; Jiang, Y.-F.; Imran, M.; Zeb, A.; Zhao, S.-J.; Javaid, R.; Xu, A.-W., One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2017, 9 (34), 28627-28634.
41. 林廷駿. 以掃描式穿隧電子顯微鏡觀察氫氧化鎳於金(111)上結構及對甲醛氧化活性. 2018.
42. Pissinis, D. E., Utilization of special potential scan programs for cyclic voltammetric development of different nickel oxide-hydroxide species on Ni based electrodes. 2012.
43. Hall, D.; Bock, C.; MacDougall, B., The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution. Journal of The Electrochemical Society 2013, 160, F235-F243.
44. Badawy, W. A.; Nady, H.; Negem, M., Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crystalline Ni–Co cathodes. International Journal of Hydrogen Energy 2014, 39 (21), 10824-10832.
45. Trasatti, S., Electronegativity, work function, and heat of adsorption of hydrogen on metals. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1972, 68 (0), 229-236.
46. Conway, B. E.; Bai, L., Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 198 (1), 149-175.
47. Hamelin, A.; Sottomayor, M. J.; Silva, F.; Chang, S.-C.; Weaver, M. J., Cyclic voltammetric characterization of oriented monocrystalline gold surfaces in aqueous alkaline solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 295 (1), 291-300.
48. Li, -. J.-j.; Wei, -. J.; Cai, -. J.; Chen, -. Y.-x., - pH Effect on Oxidation of Hydrogen Peroxide on Au(111) Electrode in Alkaline Solutions. - Chinese Journal of Chemical Physics 2018, - 31 (- 6), - 779.
49. Diaz-Morales, O.; Calle-Vallejo, F.; de Munck, C.; Koper, M. T. M., Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chemical Science 2013, 4 (6), 2334-2343.
50. Koza, J. A.; Hull, C. M.; Liu, Y.-C.; Switzer, J. A., Deposition of β-Co(OH)2 Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chemistry of Materials 2013, 25 (9), 1922-1926.
51. Pissinis, D.; Sereno, L.; Marioli, J., Utilization of Special Potential Scan Programs for Cyclic Voltammetric Development of Different Nickel Oxide-Hydroxide Species on Ni Based Electrodes. Open J. Phys. Chem. 2012, 2.
52. Young, D. A., Phase diagrams of the elements. Lawrence Livermore National Laboratory: Livermore, California, 1975.
53. Braunschweig, B.; Daum, W., Superstructures and Order−Disorder Transition of Sulfate Adlayers on Pt(111) in Sulfuric Acid Solution. Langmuir 2009, 25 (18), 11112-11120.
54. Seyeux, A.; Maurice, V.; Klein, L. H.; Marcus, P., In situ scanning tunnelling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1 mM NaOH(aq). Journal of Solid State Electrochemistry 2005, 9 (5), 337-346.
55. Zhang, Z.; Lagally, M. G., Atomistic Processes in the Early Stages of Thin-Film Growth. Science 1997, 276 (5311), 377.
56. Schmidt, T. J.; Stamenkovic, V.; Attard, G. A.; Markovic, N. M.; Ross, P. N., On the Behavior of Pt(111)−Bi in Acid and Alkaline Electrolytes. Langmuir 2001, 17 (24), 7613-7619.
57. Spendelow, J. S.; Goodpaster, J. D.; Kenis, P. J. A.; Wieckowski, A., Mechanism of CO Oxidation on Pt(111) in Alkaline Media. The Journal of Physical Chemistry B 2006, 110 (19), 9545-9555.
58. Gómez-Marín, A. M.; Rizo, R.; Feliu, J. M., Oxygen reduction reaction at Pt single crystals: a critical overview. Catalysis Science & Technology 2014, 4 (6), 1685-1698.
59. Marković, N. M.; Schmidt, T. J.; Grgur, B. N.; Gasteiger, H. A.; Behm, R. J.; Ross, P. N., Effect of Temperature on Surface Processes at the Pt(111)−Liquid Interface:  Hydrogen Adsorption, Oxide Formation, and CO Oxidation. The Journal of Physical Chemistry B 1999, 103 (40), 8568-8577.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明