博碩士論文 108827008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:3.133.142.22
姓名 林聖喆(Sheng-Jhe Lin)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 設計開發一多效複合式殼聚醣水凝膠用於慢性傷口修復之研究
(Development of a Multifunctional Chitosan-Based Hydrogel Dressing for Chronic Wound Healing)
相關論文
★ 可動態改變外翻力矩的治療退化性膝關節炎輔具★ 聚乙二醇對於擬球藻生長與脂質堆積之影響
★ 製備包覆靛氰綠及阿黴素之聚乳酸甘醇酸-聚乙二醇交聯標靶奈米粒子用於乳癌光/化學治療之研究★ 研製包覆靛氰綠與阿黴素之標靶氟化奈米乳劑用於乳癌光/化學治療之研究
★ 研究設計全氟碳化物光生物反應器系統用以純化沼氣並藉此提升微藻生物質及生質能源之產量★ 針對糖尿病足潰瘍設計並製作一種抗菌且能促進傷口癒合的甲殼素複合式水凝膠之研究
★ 利用PLGA微球載體結合超聲波駐波場以提高巨噬細胞藥物輸送之效率★ 以血流動力系統探討血管內皮細胞在尼古丁刺激下對層流剪應力之型態異常與自體凋亡之表現變化
★ 以板式流道系統模擬血管內皮細胞於層流剪力影響下受尼古丁刺激產生發炎反應之研究★ 結合超聲波駐波場與層堆疊自體組裝微球載體建構提高分子傳遞至細胞內效率之方法
★ 製備包覆靛氰綠之聚乳酸甘醇酸標靶奈米粒子用於乳癌光熱暨光動治療之研究★ 建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究
★ 研製包覆靛氰綠與利福平之聚乳酸-聚甘醇酸奈米粒子應用於介質內細菌感染治療之研究★ 雙離子矽氧烷共聚物以沉積法對聚二甲基矽氧烷進行生物相容性修飾
★ 開發具有抗菌、消炎、供氧及促使細胞生長特性可注射溫感性水凝膠用於慢性傷口癒合之研究★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-11-1以後開放)
摘要(中) 慢性傷口的定義是傷口經過適當的治療後不能達到結構和外部癒合。當病灶暴露時,人體皮膚上的主要病灶細菌金黃色葡萄球菌大量增殖,減緩皮膚創面的恢復。含銀離子敷料是慢性傷口敷料發展的主流,但近年來,許多研究指出銀離子對細胞有一定程度的毒性損傷。銀離子並不是抗菌敷料的唯一選擇,抗生素的使用也因耐藥性問題而受到限制。然而,聚六亞甲基雙胍(PHMB)已被證明不僅對皮膚細胞的細胞毒性低,而且對細菌有良好的抑制作用。在傷口癒合方面,表皮生長因子 (EGF) 刺激人體角質形成細胞增殖。本研究開發了一種由凍融法合成的敷料,通過殼聚醣的化學聚合和物理相互作用製備了含有 PHMB 和 EGF 奈米顆粒的高強度殼聚醣/PVA 水凝膠。與無載體組相比,EGF-奈米粒子延長了EGF的釋放時間,隨著EGF濃度的增加,對角質形成細胞的生長有顯著的正面影響。根據文獻指出,氧氣對於傷口上微血管的生成具有幫助,所以本研究也將PFOB奈米粒子加入水膠中,使得水膠具有攜帶氧氣的能力。我們的研究顯示了物理分析、機械性能、抗菌、抗炎作用以及氧氣攜帶的能力。這種水凝膠作為主要的敷料材料,創造了一個有助於傷口修復的濕潤環境,不僅具有良好的抗菌作用,而且還具有促進病灶細胞生長的能力,並提供多於正常狀態下的氧氣含量來促進微血管生成。未來,我們預計這種水凝膠可以顯著提高慢性傷口癒合的治療效果。
摘要(英) The definition of chronic wound is that the wound cannot achieve structural and external healing after proper treatment. When the lesion is exposed, Staphylococcus aureus, the main lesion on human skin, proliferates in large quantities, slowing the recovery of the skin wound. Dressings containing silver ions are the mainstream of the development of dressings for chronic wounds, but in recent years, many studies have pointed out that silver ions have a certain degree of toxic damage to cells. Silver ions are not the only option for antibacterial dressings, and the use of antibiotics is also restricted due to drug resistance issues. However, polyhexamethylene biguanide (PHMB) has been proven not only to have low cytotoxicity to skin cells, but also to have a good inhibitory effect on bacteria. In wound healing, epidermal growth factor (EGF) stimulates the proliferation of human keratinocytes. In this study, a dressing synthesized by the freeze-thaw method was developed, and a high-strength chitosan/PVA hydrogel containing PHMB and EGF nanoparticles was prepared through the chemical polymerization and physical interaction of chitosan. Compared with the carrier-free group, EGF-nanoparticles prolonged the release time of EGF. As the concentration of EGF increased, it had a significant positive effect on the growth of keratinocytes. According to the literature, oxygen is helpful for the formation of microvessels on the wound, so this study also added PFOB nanoparticles to the hydrogel to make the hydrogel have the ability to carry oxygen. Our research shows physical analysis, mechanical properties, antibacterial, anti-inflammatory and oxygen carrying capacity. As the main dressing material, this hydrogel creates a moist environment that helps wound repair. It not only has a good antibacterial effect, but also has the ability to promote the growth of lesion cells and provides more than normal oxygen content. To promote microangiogenesis. In the future, we expect that this hydrogel can significantly improve the therapeutic effect of chronic wound healing.
關鍵字(中) ★ 水凝膠
★ 慢性傷口癒合
★ 抗菌
★ 增殖
★ 表皮生長因子
★ 聚已亞甲基鹽酸
關鍵字(英) ★ Hydrogel
★ Chronic wound healing
★ Antibacterial
★ Proliferation
★ EGF
★ PHMB
論文目次 第一章 緒論……………....……………………………1
第二章 研究背景……………………………..….……3
2.1慢性傷口介紹………………………………………………3
2.1.1靜脈性潰瘍…………..………...…...……………..………3
2.1.2糖尿病性潰瘍….……………....…………………...…….4
2.1.3壓瘡性潰瘍……...……………………………......…….4
2.2 慢性傷口可能導致的併發症……….…….…......….…...………5
2.2.1潰瘍………………………………...…...……………..………6
2.2.2蜂窩性組織炎………..……….....…...………………..………6
2.2.3敗血症…….………...………...…...…………………..………7
2.3慢性傷口臨床治療方式…………..……………………..…..8
2.3.1清創 (Debridement)…………….......…...……………….……8
2.3.2外科手術清創(Surgical Debridement)……….…………..……9
2.3.3自溶性清創 (Autolytic Debridement)……….…..…........……9
2.3.4酵素清創(Enzymatic Debridement)..…...…………….....……9
2.3.5生物性清創(Biological Debridement)…....….…………..……9
2.3.6高壓氧治療(Hyperbaric Oxygen Therapy)…….……..……10
2.4傷口護理及傷口敷料………………………………………….10
2.4.1傳統紗布……………………………...….…………………11
2.4.2藻酸鹽敷料……………………… ………….……………..11
2.4.3薄膜性敷料……………………………………………….…12
2.4.4泡沫性敷料……………………………..………….……..13
2.4.5水膠主體敷料……………………..…….…….…………14
2.4.6水凝膠型敷料…………………………………..………15
2.4.7生物性敷料……………………………………………..16
2.5傷口癒合的機至與進程發展….…….……………………...17
2.5.1炎症期………………………………………………….....17
2.5.2增生(擴散)期…………………………………..……..…...….18
2.5.3重塑期………………………………………………….....18
2.6 殼聚醣(Chitosan)………………….…….………….….....…...20
2.7聚乙烯醇(PVA)…………………….…………...………………20
2.8 Cosmocil CQ……….……………….…………..……………...22
2.9 全氟辛基溴(PFOB)……..………………….…..………….….23
2.10 表皮生長因子(Epidermal Growth Factor, EGF)……….…..…24
第三章 實驗部分………………………………..……………….25
3.1實驗藥品、材料及儀器…………………………….…...………25
3.1.1藥品及材料…….……………………………….…………33
3.1.2儀器…………………………..……………………………27
3.1.3縮寫對照表…………………………..……………………28
3.2檢量線…………….…………….…………….…….…………...29
3.2.1 ELISA檢測表皮生長一子標準曲線.………………………29
3.2.1 ELISA檢測IL-8發炎因子準曲線.………………………29
3.2.1 UV-vis檢測Cosmocil CQ標準曲線.………………………30
3.3實驗整體流程………………...…………………….………...…32
3.4 EGF奈米粒子製備…………….………………….…….….....32
3.5 PFOB奈米粒子製備……………….…………………………34
3.6 CTENPs & PFNPs物理&化學特性分析………………………35
3.6.1粒徑分析……………………….…………………………35
3.6.2表面電位分析………….……………..……………………35
3.6.3超高真空場發射掃描式電子顯微鏡(FE-SEM)拍攝……..35
3.6.4包覆率分析………………………….……………………35
3.6.5負載率分析………………………..………………………36
3.7 配製3% Chitosan………………………………..………….....36
3.8配製10% PVA…………………………....……..……………...36
3.9 製作貼片型水膠CPCEPG(含有CTENPs、PFNPs、CQ).……37
3.10 EGF的體外釋放……………….…..………………………...37
3.11 CQ的體外釋放………….…………………….………….…38
3.12氧氣的體外釋放……………………………...….………….…38
3.13熱重儀分析(TGA)……………………...……….………….….39
3.14抗菌試驗-抑菌圈………………..…………….……………….39
3.15抗菌試驗-點盤…..……………………...……….………….….41
3.16細胞毒性試驗…...……………………...……….………….….42
3.17細胞生長試驗…...……………………...……….………….….43
3.18抗發炎能力試驗……………………...……….………….….44
3.19機械性質測試(抗拉強度及延伸率)…...……….………….….45
3.20 C PCEPG之膨潤度與含水率測試…………….………….….46
3.21動物試驗…….……………………...……….………….….47
3.22統計與分析…….……………………...……….………….….47
第四章 結果與討論…………………………………..48
4.1 CTENPs & PFNPs物理及化學性質…….…………...………48
4.2 CTENPs & PFNPs之表面形態分析……………..……………49
4.3 CPCEPG之表面型態分析……………………...….………….49
4.4 CPCEG對於金黃色葡萄球菌抗菌實驗……………………...51
4.4.1 細菌的抑制圈………….…………………….………….…51
4.4.2 細菌菌落的點盤實驗….…………………….………….…52
4.5 CPCEG的CQ體外毒性試驗……………………...………..….53
4.6 人類角質形成細胞之細胞生長實驗…………………...……...54
4.7 CPCEG-GA之抗發炎能力測試………….………….….......…..56
4.8 CPCEPG之體外釋放氧氣試驗…………………………………57
4.9 CPCEPG之TGA結構分析…………………………….……....58
4.10 CPCEPG之機械性質測試(延伸率、抗拉強度)……...…..…59
4.11 CPCEPG之膨潤度及含水率……..…….……........................60
4.12動物實驗………………………………...…………….…….…61
4.13組織切片分析…………………………...…………….…….…64
第五章 結論………………………………………………..66
第六章 未來展望…….……..………………………………67
參考文獻…………………..………..……………..………..…68
參考文獻 1. Mustoe, T.A., K. O′Shaughnessy, and O. Kloeters, Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plastic and Reconstructive Surgery, 2006. 117(7): p. 35s-41s.
2. Han, G. and R. Ceilley, Chronic Wound Healing: A Review of Current Management and Treatments. Advances in Therapy, 2017. 34(3): p. 599-610.
3. Christensen, G.D., et al., Nosocomial septicemia due to multiply antibiotic-resistant Staphylococcus epidermidis. Ann Intern Med, 1982. 96(1): p. 1-10.
4. Werdin, F., M. Tenenhaus, and H.O. Rennekampff, Chronic wound care. Lancet, 2008. 372(9653): p. 1860-1862.
5. Abbade, L.P.F. and S. Lastoria, Venous ulcer: epidemiology, physiopathology, diagnosis and treatment. International Journal of Dermatology, 2005. 44(6): p. 449-456.
6. Abbade, L.P.F., S. Lastoria, and H.D. Rollo, Venous ulcer: clinical characteristics and risk factors. International Journal of Dermatology, 2011. 50(4): p. 405-411.
7. https://www.copyrightpeople.com/new/4ecccf3d04514873a46d5b0d33c998c5, https://www.copyrightpeople.com/new/4ecccf3d04514873a46d5b0d33c998c5. 2020.
8. Jeffcoate, W.J. and K.G. Harding, Diabetic foot ulcers. Lancet, 2003. 361(9368): p. 1545-1551.
9. Leung, P.C., Diabetic foot ulcers - a comprehensive review. Surgeon-Journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 2007. 5(4): p. 219-231.
10. https://thenurseszone.com/new-evidence-based-guidelines-for-diabetic-foot-management/, 新的糖尿病足管理循證指南. 2016.
11. McInnes, E., et al., Support surfaces for pressure ulcer prevention. Cochrane Database of Systematic Reviews, 2015(9).
12. Hopkins, A., et al., Patient stories of living with a pressure ulcer. Journal of Advanced Nursing, 2006. 56(4): p. 345-353.
13. https://owlcation.com/stem/Pressure-Ulcers, pressure ulcer. 2017.
14. Malfertheiner, P., F.K.L. Chan, and K.E.L. McColl, Peptic ulcer disease. Lancet, 2009. 374(9699): p. 1449-1461.
15. https://www.verywellhealth.com/cellulitis-information-1069431, 什麼是蜂窩織炎?.
16. Dominguez, S.R., J.F. Marcinak, and R.S. Daum, Cellulitis. New England Journal of Medicine, 2004. 350(24): p. 2522-2523.
17. Steed, D.L., Debridement. American Journal of Surgery, 2004. 187(5a): p. 71s-74s.
18. Heitz-Mayfield, L.J.A., et al., A systematic review of the effect of surgical debridement vs. non-surgical debridement for the treatment of chronic periodontitis. Journal of Clinical Periodontology, 2002. 29: p. 92-102.
19. Van der Maas, P., et al., Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(III) in BioDeN(x) reactors. Environmental Science & Technology, 2005. 39(8): p. 2616-2623.
20. Rosenberg, L., et al., A novel rapid and selective enzymatic debridement agent for burn wound management: A multi-center RCT. Burns, 2014. 40(3): p. 466-474.
21. Anheller, J.E., et al., Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Arch Dermatol Res, 1989. 281(2): p. 105-10.
22. Epstein, J., et al., Hyperbaric oxygen therapy. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 1996. 81(3): p. 265-266.
23. Triller, C., D. Huljev, and T. Planinsek Rucigaj, [Modern wound dressings]. Acta Med Croatica, 2013. 67 Suppl 1: p. 81-7.
24. 奇美衛教資訊網. 2021: p. https://www.chimei.org.tw/main/cmh_department/59012/info/7501/57501001.html.
25. Groves, A.R. and J.C. Lawrence, Alginate dressing as a donor site haemostat. Ann R Coll Surg Engl, 1986. 68(1): p. 27-8.
26. https://jingyan.baidu.com/article/148a1921677b8c0c70c3b17f.html, 藻酸鹽敷料對傷口的幫助. 2020.
27. Boateng, J.S., H.V. Pawar, and J. Tetteh, Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm, 2013. 441(1-2): p. 181-91.
28. https://mulicia.pixnet.net/blog/post/26382753, 薄膜性敷料. 2011.
29. Jorgensen, B., et al., The silver-releasing foam dressing, Contreet Foam, promotes faster healing of critically colonised venous leg ulcers: a randomised, controlled trial. Int Wound J, 2005. 2(1): p. 64-73.
30. https://www.anscare.tw/chinese/products/detail.php?cpid=3&dpid=51, 泡沫性敷料.
31. Burey, P., et al., Hydrocolloid gel particles: formation, characterization, and application. Crit Rev Food Sci Nutr, 2008. 48(5): p. 361-77.
32. http://www.yidingmed.com/pro_detail/id/23.html, 水膠體敷料.
33. Cabral, J. and S.C. Moratti, Hydrogels for biomedical applications. Future Med Chem, 2011. 3(15): p. 1877-88.
34. https://taicend.com/taicend-hydrogel%EF%BC%88sterile%EF%BC%89-acute-and-chronic-wound-care/, 泰盛水凝膠.
35. Sahoo, S., et al., Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A, 2010. 93(4): p. 1539-50.
36. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009. 37(5): p. 1528-42.
37. Koh, T.J. and L.A. DiPietro, Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med, 2011. 13: p. e23.
38. Witte, M.B. and A. Barbul, General principles of wound healing. Surg Clin North Am, 1997. 77(3): p. 509-28.
39. Chang, M.R., Q. Cheng, and D.A. Lee, Basic science and clinical aspects of wound healing in glaucoma filtering surgery. J Ocul Pharmacol Ther, 1998. 14(1): p. 75-95.
40. Shariatinia, Z., Pharmaceutical applications of chitosan. Adv Colloid Interface Sci, 2019. 263: p. 131-194.
41. Zhang, J., et al., Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs, 2010. 8(7): p. 1962-87.
42. Paradossi, G., et al., Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med, 2003. 14(8): p. 687-91.
43. Peppas, N.A. and E.W. Merrill, Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. J Biomed Mater Res, 1977. 11(3): p. 423-34.
44. Zhi, Z., et al., Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities. ACS Appl Mater Interfaces, 2017. 9(12): p. 10383-10397.
45. Llorens, E., et al., Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater Sci Eng C Mater Biol Appl, 2015. 50: p. 74-84.
46. https://www.sharon-labs.com/knowledge/regulatory-changes-concerning-phmb/, PHMB的監管變化.
47. Coley, B.D., M.A. Trambert, and R.F. Mattrey, Perfluorocarbon-enhanced sonography: value in detecting acute venous thrombosis in rabbits. AJR Am J Roentgenol, 1994. 163(4): p. 961-4.
48. Flaim, S.F., Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol, 1994. 22(4): p. 1043-54.
49. https://www.chemsrc.com/en/cas/423-55-2_444192.html, 全氟辛基溴.
50. Carpenter, G. and S. Cohen, Epidermal growth factor. J Biol Chem, 1990. 265(14): p. 7709-12.
51. https://tw.sinobiological.com/resource/egf/proteins, 表皮生長因子.
52. Berthold, A., K. Cremer, and J. Kreuter, Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for antiinflammatory drugs. Journal of Controlled Release, 1996. 39(1): p. 17-25.
53. Azuma, K., et al., Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater, 2015. 6(1): p. 33-49.
54. Anderson, K.L. and D.Y.C. Fung, Anaerobic Methods, Techniques and Principles for Food Bacteriology: A Review. J Food Prot, 1983. 46(9): p. 811-822.
55. Knighton, D.R., I.A. Silver, and T.K. Hunt, Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery, 1981. 90(2): p. 262-70.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2021-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明