博碩士論文 108324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.15.137.75
姓名 賴藝芳(Yi-Fang Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 紙基微流道升降閥門裝置應用於液態切片中外泌體微小核醣核酸萃取
(Microvalve-controlled fluidic system for extracting exosomal nucleic acids from bio-samples by paper-based devices)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 外泌體能穩定存在人體體液(如:血液、尿液、唾液、腦脊液)且因其內部含有特異性蛋白質,脂質和核酸(包括mRNA,miRNA,DNA)可被攜帶,作為傳輸和細胞間交換訊號的生物標誌分子。因為外泌體有此特性使其在液體活檢中常作為病理治療或癒後追蹤,也可避免對患者進行重複的侵入性檢查,且可即時監測治療效果、耐藥性和疾病的演變。而紙質分析設備在一次性診斷測試方面具有巨大潛力,與傳統的microchip相比,紙張價格低廉可通過毛細作用吸收流體,無需外部泵或電源,而試劑可以通過打印器在紙上進行微流道圖案化,用過的紙設備可以通過焚化處理以避免污染,使這些紙質設備價格實惠且易於使用。但如何控制液體的流動方向及精準分配用以達到多步驟分析及減少人力、儀器、藥品及檢測成本也備受重視。
為此本實驗室欲發展一簡易紙質流體系統,系統中具有升降閥門來控制流體方向及反應時間等。微流體通道是洗削在熱塑性材料 (PMMA) 確保所有液體樣品吸附在親水紙條上,並以 10:1 的比例將疏水性 PDMS 膜夾在兩PMMA 之間作為緩衝層鎖上螺絲形成一封閉空間減少汙染。相關的表面性質也利用表面輪廓儀及AFM確認粗糙度後為後續實驗所用。螺絲閥門作為主動控制閥來減緩液體流速。而紙的孔隙率則用以調節流體的速度並增加延遲時間(10分鐘,最大壓力10MPa)優化核酸吸收的操作時間。結合實驗室對於外泌體純化分離及萃取微小核醣核酸研究,節省市面上對於外泌體純化的昂貴儀器及繁瑣程序人力時間。我們改質抗體於紙基上用以純化外泌體,且在紙基上化學改質二氧化矽藉此吸附裂解外泌體後微小核糖核酸,藉由SEM、NTA及paper-based ELISA確認exosome尺寸大小及其免疫特徵,用最適化條件進行裂解、吸附、清洗及脫附微小核糖核酸。由逆轉錄定量聚合酶鏈反應 (RT-qPCR) 結果得知,相較於無閥門控制的流體系統,使用控制閥門延緩流速,能將萃取到外泌體微小核糖核酸產量提高約 2.47 倍,洗脫萃取效能約為65%,檢測極限落在10PM-100fM之間。最後將紙基升降閥門微流道裝置應用於臨床慢性傷口成功分離純化外泌體和萃取其miR21得到初步慢性傷口和microRNA間意義,期望能以此裝置更貼近POCT的應用。
摘要(英) Paper-based devices, first introduced by Whitesides group in 2007, have been widely developed for infectious conditions, disease status, and medical treatment efficiency because of satisfying the ASSURED criteria (Affordable, Sensitive, Specific, User friendly, Rapid and robust, Equipment-free, and Deliverable to end-users) established by the World Health Organization (WHO). Rerouting fluidic flow is important for lab-on-chip to achieve complex multiple-steps assay. Valves can enable the accurate and timed delivery of fluid by varying the direction and modulating the rate of the flow.
Herein, our lab developed a cost-effective, rapid, and easy-to-use microfluidic system to extract exosome and exosomal nucleic acids by fabricating PMMA microfluidic channel to control the fluidic direction, covered by a 10:1 with hydrophobic PDMS membrane to ensure the adsorption of all liquid sample onto the hydrophilic paper strip. The flow rate was modulated by screw valves as active controllers of the paper porosity for optimal operation time of nucleic acid absorption (10 minutes, maximum pressure 10MPa). Exosome properties were characterized by SEM, NTA and paper-based ELISA whereas miRNA-21 levels were determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR), which reported a 65% of miRNA contents of standard samples retained and presented an increase of 2.47-fold efficiency in extracting exosomal miRNA-21, compared to the similar procedure without the microvalve system. Finally, the designed system was successfully applied for fluidic clinical chronic wounds to capture exosomes and miR21, encouraging an adoption of Point of Care Testing.
關鍵字(中) ★ 微小核醣核酸
★ 紙基微流道
★ 外泌體
★ 閥門控制
關鍵字(英) ★ microRNA
★ Paper-based devices
★ exosome
★ microvalve-controlled
論文目次 摘要 i
ABSTRACT iii
誌謝 iv
目錄 v
圖目錄 x
表目錄 xiv
一、 緒論 1
1.1 研究背景 1
1.2 論文架構 2
二、 文獻回顧 5
2.1 核酸介紹 5
2.1.1 核酸分子 5
2.1.2 去氧核醣核酸 6
2.1.3 核醣核酸 8
2.1.4 微小核醣核酸 9
2.2核酸萃取 11
2.2.1液相核酸萃取 11
2.2.2固相核酸萃取 12
2.2.3核酸吸附二氧化矽機制 12
2.2.4 Langmuir adsorption isotherm model 13
2.3分子生物檢測平台 14
2.3.1聚合酶鏈鎖反應(Polymerase chain reaction, PCR) 14
2.3.2即時定量聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction,qPCR) 15
2.4細胞外囊泡(Extracellular vesicles) 介紹 18
2.4.1外泌體(Exosome)介紹 18
2.4.2外泌體與癌症 20
2.4.3外泌體應用 21
2.5 Paper-based device 23
2.5.1 paper-based immunoaffinity device 23
2.5.2 paper-based sol-gel modification 23
2.5.3 paper-based biosensors for exoxome and exosomal nucleic acids extraction 24
2.6 Controlling the flow rate in paper-based devices 30
2.6.1 controlling the flow control without valves 30
2.6.2 controlling the flow control with valves 32
三、 實驗藥品、儀器及方法 35
3.1實驗藥品 35
3.1.1等溫吸附實驗 35
3.1.2升降閥門微流道裝置材料 35
3.1.3標準品外泌體 35
3.1.4 Paper-based device 36
3.1.5 Paper-based ELISA 36
3.1.6 Paper-based nucleic acid extraction device 37
3.1.7 Nucleic acid extraction kit 37
3.1.8即時聚合酶鏈式反應 37
3.2儀器設備 38
3.3實驗方法 38
3.3.1 恆溫吸附實驗 38
3.3.2微流道裝置來源 39
3.3.3 Sol-gel silica coated method 39
3.3.4細胞培養來源 40
3.3.5外泌體純化濃縮 40
3.3.6 Paper-based immunoaffinity method 40
3.3.7 Paper-based ELISA 42
3.3.8 Paper-based nucleic acid extraction device 43
3.3.9 Microvalve-controlled fluidic system 45
3.3.10反轉錄及時聚合酶鍊式反應(qRT-PCR) 46
四、 結果與討論 48
4.1升降閥門裝置材料鑑定 48
4.1.1 PMMA表面型態以及塗佈PDMS膜前後表面粗糙度變化……….. 48
4.1.2 升降閥門裝置施壓力檢測 52
4.2 paper-based device分離純化外泌體 55
4.2.1 Ultrafiltration方法濃縮HCT116大腸癌細胞培養液中外泌體 55
4.2.2 paper-based immunoaffinity method捕獲外泌體表面型態與 粒徑大小分佈 56
4.2.3 P-ELISA檢測cell culture medium HCT116 exosome免疫特徵…….. 59
4.3 paper-based device萃取外泌體微小核醣核酸 61
4.3.1 paper based sol-gel 改質方法鑑定 61
4.3.2 pH值、鹽類、鹽濃度對核糖核酸吸附於二氧化矽之影響 64
4.4升降閥門裝置應用於純化外泌體以及萃取外泌體內微小核醣核酸 73
4.4.1升降閥門裝置應用於萃取 HCT116癌細胞之exosome 74
4.5升降閥門微流道裝置應用於慢性傷口(chronic wound)檢體 83
五、結論 86
六、未來展望 88
七、參考文獻 89
八、附錄 95
參考文獻 [1] R. Dahm, "Discovering DNA: Friedrich Miescher and the early years of nucleic acid research," Human genetics, vol. 122, no. 6, pp. 565-581, 2008.
[2] M. L. Pardue and J. G. Gall, "Molecular hybridization of radioactive DNA to the DNA of cytological preparations," Proceedings of the National Academy of Sciences, vol. 64, no. 2, pp. 600-604, 1969.
[3] A. Leslie, S. Arnott, R. Chandrasekaran, and R. Ratliff, "Polymorphism of DNA double helices," Journal of molecular biology, vol. 143, no. 1, pp. 49-72, 1980.
[4] X.-J. Lu, Z. Shakked, and W. K. Olson, "A-form conformational motifs in ligand-bound DNA structures," Journal of molecular biology, vol. 300, no. 4, pp. 819-840, 2000.
[5] A. Herbert and A. Rich, "The biology of left-handed Z-DNA," Journal of Biological Chemistry, vol. 271, no. 20, pp. 11595-11598, 1996.
[6] J. Fohrer, M. Hennig, and T. Carlomagno, "Influence of the 2′-hydroxyl group conformation on the stability of A-form helices in RNA," Journal of molecular biology, vol. 356, no. 2, pp. 280-287, 2006.
[7] L.-A. MacFarlane and P. R Murphy, "MicroRNA: biogenesis, function and role in cancer," Current genomics, vol. 11, no. 7, pp. 537-561, 2010.
[8] P. Chomczynski and N. Sacchi, "Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction," Analytical biochemistry, vol. 162, no. 1, pp. 156-159, 1987.
[9] H. Birnboim and J. Doly, "A rapid alkaline extraction procedure for screening plasmid recombinant DNA," Nucleic Acid Res, vol. 7, pp. 15-19, 1979.
[10] M. Querci, M. Jermini, and G. Van den Eede, "The analysis of food samples for the presence of genetically modified organisms," Training course on, p. 33, 2006.
[11] R. Boom, C. Sol, M. Salimans, C. Jansen, P. Wertheim-van Dillen, and J. Van der Noordaa, "Rapid and simple method for purification of nucleic acids," Journal of clinical microbiology, vol. 28, no. 3, pp. 495-503, 1990.
[12] M. L. Hair and W. Hertl, "Acidity of surface hydroxyl groups," The Journal of Physical Chemistry, vol. 74, no. 1, pp. 91-94, 1970.
[13] K. A. Melzak, C. S. Sherwood, R. F. Turner, and C. A. Haynes, "Driving forces for DNA adsorption to silica in perchlorate solutions," Journal of colloid and interface science, vol. 181, no. 2, pp. 635-644, 1996.
[14] A. Zampetaki and M. Mayr, "Analytical challenges and technical limitations in assessing circulating miRNAs," Thrombosis and haemostasis, vol. 108, no. 10, pp. 592-598, 2012.
[15] C. Harding, J. Heuser, and P. Stahl, "Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes," The Journal of cell biology, vol. 97, no. 2, pp. 329-339, 1983.
[16] Y. Sato-Kuwabara, S. A. Melo, F. A. Soares, and G. A. Calin, "The fusion of two worlds: Non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications," International journal of oncology, vol. 46, no. 1, pp. 17-27, 2015.
[17] L. A. Mulcahy, R. C. Pink, and D. R. F. Carter, "Routes and mechanisms of extracellular vesicle uptake," Journal of extracellular vesicles, vol. 3, no. 1, p. 24641, 2014.
[18] U. Gehrmann, T. I. Näslund, S. Hiltbrunner, P. Larssen, and S. Gabrielsson, "Harnessing the exosome-induced immune response for cancer immunotherapy," in Seminars in cancer biology, 2014, vol. 28, pp. 58-67: Elsevier.
[19] N. Javeed et al., "Pancreatic cancer–derived exosomes cause paraneoplastic β-cell dysfunction," Clinical cancer research, vol. 21, no. 7, pp. 1722-1733, 2015.
[20] J. Xiao et al., "Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4," Cell death & disease, vol. 7, no. 6, pp. e2277-e2277, 2016.
[21] V. Budnik, C. Ruiz-Cañada, and F. Wendler, "Extracellular vesicles round off communication in the nervous system," Nature Reviews Neuroscience, vol. 17, no. 3, p. 160, 2016.
[22] D. Hanahan and R. A. Weinberg, "Hallmarks of cancer: the next generation," cell, vol. 144, no. 5, pp. 646-674, 2011.
[23] W. M. Suchorska and M. S. Lach, "The role of exosomes in tumor progression and metastasis," Oncology reports, vol. 35, no. 3, pp. 1237-1244, 2016.
[24] J. A. Cho, H. Park, E. H. Lim, and K. W. Lee, "Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells," International journal of oncology, vol. 40, no. 1, pp. 130-138, 2012.
[25] J. Zhang et al., "Exosome and exosomal microRNA: trafficking, sorting, and function," Genomics, proteomics & bioinformatics, vol. 13, no. 1, pp. 17-24, 2015.
[26] J. Skog et al., "Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers," Nature cell biology, vol. 10, no. 12, pp. 1470-1476, 2008.
[27] J. Silva et al., "Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival," European Respiratory Journal, vol. 37, no. 3, pp. 617-623, 2011.
[28] G. Rabinowits, C. Gerçel-Taylor, J. M. Day, D. D. Taylor, and G. H. Kloecker, "Exosomal microRNA: a diagnostic marker for lung cancer," Clinical lung cancer, vol. 10, no. 1, pp. 42-46, 2009.
[29] T. Yang et al., "Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio," Pharmaceutical research, vol. 32, no. 6, pp. 2003-2014, 2015.
[30] M.-C. Didiot et al., "Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing," Molecular Therapy, vol. 24, no. 10, pp. 1836-1847, 2016.
[31] L.-H. Sun, D. Tian, Z.-C. Yang, and J.-L. Li, "Exosomal miR-21 promotes proliferation, invasion and therapy resistance of colon adenocarcinoma cells through its target PDCD4," Scientific reports, vol. 10, no. 1, pp. 1-8, 2020.
[32] C. Théry, L. Zitvogel, and S. Amigorena, "Exosomes: composition, biogenesis and function," Nature reviews immunology, vol. 2, no. 8, pp. 569-579, 2002.
[33] K. Mahesh and S. Vaidya, "Microfluidics: a boon for biological research," Current Science, pp. 2021-2028, 2017.
[34] T. Pirzada, Z. Ashrafi, W. Xie, and S. A. Khan, "Cellulose silica hybrid nanofiber aerogels: from Sol–Gel electrospun nanofibers to multifunctional aerogels," Advanced Functional Materials, vol. 30, no. 5, p. 1907359, 2020.
[35] Y.-K. Cho, J.-G. Lee, J.-M. Park, B.-S. Lee, Y. Lee, and C. Ko, "One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device," Lab on a Chip, vol. 7, no. 5, pp. 565-573, 2007.
[36] S. Lai, S. Wang, J. Luo, L. J. Lee, S.-T. Yang, and M. J. Madou, "Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay," Analytical chemistry, vol. 76, no. 7, pp. 1832-1837, 2004.
[37] C. M. Cheng et al., "Paper‐based ELISA," Angewandte Chemie International Edition, vol. 49, no. 28, pp. 4771-4774, 2010.
[38] W. Zheng et al., "Lateral flow test for visual detection of multiple MicroRNAs," Sensors and Actuators B: Chemical, vol. 264, pp. 320-326, 2018.
[39] E. A. Phillips et al., "Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples," Lab on a Chip, vol. 19, no. 20, pp. 3375-3386, 2019.
[40] S. Lindström and H. Andersson-Svahn, "Overview of single-cell analyses: microdevices and applications," Lab on a Chip, vol. 10, no. 24, pp. 3363-3372, 2010.
[41] M. Wu et al., "Isolation of exosomes from whole blood by integrating acoustics and microfluidics," Proceedings of the National Academy of Sciences, vol. 114, no. 40, pp. 10584-10589, 2017.
[42] A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, "Diagnostics for the developing world: microfluidic paper-based analytical devices," ed: ACS Publications, 2010.
[43] X. Li, D. R. Ballerini, and W. Shen, "A perspective on paper-based microfluidics: Current status and future trends," Biomicrofluidics, vol. 6, no. 1, p. 011301, 2012.
[44] R. Müller and D. Clegg, "Automatic paper chromatography," Analytical Chemistry, vol. 21, no. 9, pp. 1123-1125, 1949.
[45] J. Comer, "Semiquantitative specific test paper for glucose in urine," Analytical Chemistry, vol. 28, no. 11, pp. 1748-1750, 1956.
[46] R. Zuk et al., "Enzyme immunochromatography--a quantitative immunoassay requiring no instrumentation," Clinical chemistry, vol. 31, no. 7, pp. 1144-1150, 1985.
[47] A. J. Mariani, S. Luangphinith, S. Loo, A. Scottolini, and C. V. Hodges, "Dipstick chemical urinalysis: an accurate cost-effective screening test," The Journal of urology, vol. 132, no. 1, pp. 64-66, 1984.
[48] S. Mathivanan, H. Ji, and R. J. Simpson, "Exosomes: extracellular organelles important in intercellular communication," Journal of proteomics, vol. 73, no. 10, pp. 1907-1920, 2010.
[49] D. D. Taylor and C. Gercel-Taylor, "MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer," Gynecologic oncology, vol. 110, no. 1, pp. 13-21, 2008.
[50] J. C. Contreras-Naranjo, H.-J. Wu, and V. M. Ugaz, "Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine," Lab on a Chip, vol. 17, no. 21, pp. 3558-3577, 2017.
[51] J. Ko et al., "Smartphone-enabled optofluidic exosome diagnostic for concussion recovery Sci," Rep, vol. 6, p. 31215, 2016.
[52] M. He, J. Crow, M. Roth, Y. Zeng, and A. K. Godwin, "Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology," Lab on a Chip, vol. 14, no. 19, pp. 3773-3780, 2014.
[53] H. Shao et al., "Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma," Nature communications, vol. 6, no. 1, pp. 1-9, 2015.
[54] D. Ma et al., "Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering," Biosensors and Bioelectronics, vol. 101, pp. 167-173, 2018.
[55] Y.-F. Tian, C.-F. Ning, F. He, B.-C. Yin, and B.-C. Ye, "Highly sensitive detection of exosomes by SERS using gold nanostar@ Raman reporter@ nanoshell structures modified with a bivalent cholesterol-labeled DNA anchor," Analyst, vol. 143, no. 20, pp. 4915-4922, 2018.
[56] J. U. Lee, W. H. Kim, H. S. Lee, K. H. Park, and S. J. Sim, "Quantitative and specific detection of exosomal miRNAs for accurate diagnosis of breast cancer using a surface‐enhanced Raman scattering sensor based on plasmonic head‐flocked gold nanopillars," Small, vol. 15, no. 17, p. 1804968, 2019.
[57] Z. Chen et al., "Detection of exosomes by ZnO nanowires coated three-dimensional scaffold chip device," Biosensors and Bioelectronics, vol. 122, pp. 211-216, 2018.
[58] J. Chen, Y. Xu, Y. Lu, and W. Xing, "Isolation and visible detection of tumor-derived exosomes from plasma," Analytical chemistry, vol. 90, no. 24, pp. 14207-14215, 2018.
[59] Y. Xia et al., "A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA," Analytical chemistry, vol. 90, no. 15, pp. 8969-8976, 2018.
[60] P. Li et al., "Ultrasensitive and reversible nanoplatform of urinary exosomes for prostate cancer diagnosis," ACS sensors, vol. 4, no. 5, pp. 1433-1441, 2019.
[61] S.-Y. Hou, Y.-L. Hsiao, M.-S. Lin, C.-C. Yen, and C.-S. Chang, "MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles," Talanta, vol. 99, pp. 375-379, 2012.
[62] S. Mendez et al., "Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments," Langmuir, vol. 26, no. 2, pp. 1380-1385, 2010.
[63] I. Jang and S. Song, "Facile and precise flow control for a paper-based microfluidic device through varying paper permeability," Lab on a Chip, vol. 15, no. 16, pp. 3405-3412, 2015.
[64] D. C. d. Matos, "Digital microfluidics on paper," 2014.
[65] X. Sun et al., "Improved assessment of accuracy and performance using a rotational paper-based device for multiplexed detection of heavy metals," Talanta, vol. 178, pp. 426-431, 2018.
[66] B. J. Toley et al., "A versatile valving toolkit for automating fluidic operations in paper microfluidic devices," Lab on a Chip, vol. 15, no. 6, pp. 1432-1444, 2015.
[67] H. Fu et al., "A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays," Microsystems & nanoengineering, vol. 5, no. 1, pp. 1-12, 2019.
[68] J. Park and J.-K. Park, "Finger-actuated microfluidic device for the blood cross-matching test," Lab on a Chip, vol. 18, no. 8, pp. 1215-1222, 2018.
[69] J. Park, J. H. Shin, and J.-K. Park, "Pressed paper-based dipstick for detection of foodborne pathogens with multistep reactions," Analytical chemistry, vol. 88, no. 7, pp. 3781-3788, 2016.
[70] J. H. Shin, J. Park, S. H. Kim, and J.-K. Park, "Programmed sample delivery on a pressurized paper," Biomicrofluidics, vol. 8, no. 5, p. 054121, 2014.
[71] H. Lim, A. T. Jafry, and J. Lee, "Fabrication, flow control, and applications of microfluidic paper-based analytical devices," Molecules, vol. 24, no. 16, p. 2869, 2019.
[72] I. Balcells, S. Cirera, and P. K. J. B. b. Busk, "Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers," vol. 11, no. 1, p. 70, 2011.
[73] S. L. Sahoo and C.-H. Liu, "Adsorption behaviors of DNA by modified magnetic nanoparticles: effect of spacer and salt," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 482, pp. 184-194, 2015.
[74] F. A. Castro-Smirnov et al., "Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells," Scientific reports, vol. 6, no. 1, pp. 1-14, 2016.
[75] X. Li, J. Zhang, and H. Gu, "Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution," Langmuir, vol. 28, no. 5, pp. 2827-2834, 2012.
[76] L. Xu et al., "Altered nucleic acid partitioning during phenol extraction or silica adsorption by guanidinium and potassium salts," Analytical biochemistry, vol. 419, no. 2, pp. 309-316, 2011.
[77] N. Sun et al., "Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles: application to viral nucleic acid extraction from serum," Journal of Chromatography A, vol. 1325, pp. 31-39, 2014.
[78] J. Watson, R. Cumming, G. Street, and J. Tuffnell, "Release of intracellular protein by thermolysis," ed: Ellis Horwood, London, 1987, pp. 105-109.
[79] Y.-C. Chen, "改良二氧化矽纖維膜分離程序於培養的細胞中微核醣核酸之純化," National Central University, 2018.
[80] T. Wang et al., "miR-21 regulates skin wound healing by targeting multiple aspects of the healing process," The American journal of pathology, vol. 181, no. 6, pp. 1911-1920, 2012.
[81] R. Madhyastha, H. Madhyastha, Y. Nakajima, S. Omura, and M. Maruyama, "MicroRNA signature in diabetic wound healing: promotive role of miR‐21 in fibroblast migration," International wound journal, vol. 9, no. 4, pp. 355-361, 2012.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2021-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明