博碩士論文 108821603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.227.52.94
姓名 范氏青薇(Pham Thi Thanh Vy)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(S-palmitoylation is required for meiotic entry in Schizosaccharomyces pombe)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) S- palmitoylation是一種轉譯後蛋白質修飾作用,涉及palmitate通過thioester鍵與目標蛋白質的cysteine殘基共價連接。這種修飾促進了這些蛋白質與膜的結合,影響了膜之間的囊泡運輸,並調節了一些蛋白質與蛋白質之交互作用。 S- palmitoylation由一系列跨膜蛋白催化,該蛋白家族包含一個由稱為palmitoyl-acyltransferases (PAT) 的 asp-his-his-cys (DHHC) 組成的催化結構域。儘管S-palmitoylation的基本機制已經被發現一段時間,但PATs與其目標蛋白質的具體相關性仍不清楚。為了更深入地了解 PATs 在生物過程中的作用,我們使用 Schizosaccharomyces pombe作為研究對象,以確定一些 PATs 的受質,並研究驅動這些蛋白質功能的機制。在 S. pombe 中,Akr1、Erf2-Erf4、Pfa3、Pfa5 和 Swf1 屬於 PATs 家族。本研究結果發現,這些蛋白質位於細胞的不同細胞區室,表明PATs酶可能參與了裂殖酵母的各種生物過程。值得注意的是,Erf2-Erf4 和 Akr1 的功能喪失會導致一些減數分裂缺陷,例如無法交配細胞和異常孢子形成。詳細地說,Erf2-Erf4 複合物通過 Ras1 的palmitoylation影響進入減數分裂,Ras1 是一種調節交配費洛蒙反應的基本訊息傳導蛋白。我們還在 Akr1 缺失突變體的 S 期減數分裂中觀察到twin horsetail movement。該結果顯示 Akr1 受質的palmitoylation可能在減數分裂的核配中發揮作用。根據這些發現,我們假設 S- palmitoylation調節了 S. pombe 減數分裂的不同階段。
摘要(英) S-palmitoylation is a post-translational modification that involves the covalent attachment of palmitate to the cysteine residue of the targeted proteins via a thioester linkage. This modification facilitates the association of these proteins to the membrane and influences vesicular trafficking between membranes as well as regulates some protein-protein interactions. S-palmitoylation is catalyzed by a family of transmembrane proteins that contains a catalytic domain consisting of asp-his-his-cys (DHHC) called palmitoyl-acyltransferases (PATs). Although the basic mechanisms of S-palmitoylation have been discovered for some time, the specific correlations of PATs and their substrates are still unclear. To get more insights into the roles of PATs in biological processes, we used Schizosaccharomyces pombe as the research subject to identify substrates of some PATs as well as investigating the mechanisms that drive the functions of these proteins. In S. pombe, Akr1, Erf2-Erf4, Pfa3, Pfa5, and Swf1 belong to the PATs family. The results of this study have shown that these proteins locate at different cellular compartments of the fission yeast cells, indicating that the PATs enzymes may involve in various biological processes of S. pombe. Notably, the loss of functions of Erf2-Erf4 and Akr1 cause several meiosis defects such as the inability to mate cells and aberrant spore formation. In detail, the Erf2-Erf4 complex affects the meiotic entry by palmitoylation of Ras1, an essential signal transduction protein regulating the mating pheromone response. We also observed a twin horsetail movement at S phase meiosis in Akr1 deleted mutant. This result implies that the palmitoylation of an Akr1′s substrate may play a role in the karyogamy of meiosis. According to these findings, we hypothesize that S-palmitoylation regulates different stages of meiosis in S. pombe.
關鍵字(中) ★ palmitoylation 關鍵字(英)
論文目次 中文摘要 i
ABSTRACT ii
Acknowledgments iii
Table of Contents iv
List of Figures vi
List of Tables vii
Abbreviations viii
Chapter I. INTRODUCTION 1
1.1. The structure of PATs 1
1.2. The mechanism of S-palmitoylation 2
1.3. The roles of S-palmitoylation in cellular processes. 4
1.4. Palmitoylation and human disease 4
1.4.1. Huntington’s disease 5
1.4.2. Human cancer 5
1.5. PATs and palmitoylated proteins in S. pombe 6
1.6. Meiosis in S. pombe 7
Chapter II. MATERIAL AND METHOD 10
2.1. Fission yeast strains and growth condition 10
2.2. Lithium acetate transformation 11
2.3. PATs genes deletion and tag fusion 11
2.4. Colony PCR from yeast cells 12
2.5. Gene overexpression 12
2.6. Site-directed mutagenesis 14
2.7. Transformation of E. coli 15
2.8. Crosses and tetrad dissection 15
2.9. Microscopy 15
2.10. Protein extraction and Western blotting 15
Chapter III. RESULT 17
3.1. The PATs family of S. pombe 17
3.2. The involvement of the PATs in the fission yeast meiosis 19
3.3. The role of Erf2-Erf4 in matting of fission yeast 21
3.4. Akr1 is important for karyogamy of meiosis in fission yeast. 24
Chapter IV. CONCLUSION AND DISCUSSION 26
Reference 31
參考文獻 [1] S. M. Mumby. "Reversible palmitoylation of signaling proteins", Current Opinion in Cell Biology, 9, 2, 1997, 148-154.
[2] O. Rocks, et al. "An Acylation Cycle Regulates Localization and Activity of Palmitoylated Ras Isoforms", Science, 307, 5716, 2005, 1746-1752.
[3] J. Sobocińska, P. Roszczenko-Jasińska, A. Ciesielska and K. Kwiatkowska. "Protein Palmitoylation and Its Role in Bacterial and Viral Infections", Frontiers in Immunology, 8, 2003, 2018,
[4] M. F. G. Schmidt and M. J. Schlesinger. "Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein", Cell, 17, 4, 1979, 813-819.
[5] E. Conibear and N. G. Davis. "Palmitoylation and depalmitoylation dynamics at a glance", Journal of Cell Science, 123, 23, 2010, 4007-4010.
[6] S. Tabaczar, et al. "Protein palmitoylation: Palmitoyltransferases and their specificity", Exp Biol Med (Maywood), 242, 11, 2017, 1150-1157.
[7] R. Stix, C.-J. Lee, J. D. Faraldo-Gómez and A. Banerjee. "Structure and Mechanism of DHHC Protein Acyltransferases", Journal of Molecular Biology, 432, 18, 2020, 4983-4998.
[8] J. Valdez-Taubas and H. Pelham. "Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation", Embo j, 24, 14, 2005, 2524-32.
[9] A. F. Roth, Y. Feng, L. Chen and N. G. Davis. "The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase", The Journal of cell biology, 159, 1, 2002, 23-28.
[10] J. E. Smotrys , M. J. Schoenfish , M. A. Stutz and M. E. Linder "The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p", Journal of Cell Biology, 170, 7, 2005, 1091-1099.
[11] R. Verardi, J.-S. Kim, R. Ghirlando and A. Banerjee. "Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase", Structure (London, England : 1993), 25, 9, 2017, 1337-1347.e6.
[12] B. C. Jennings and M. E. Linder. "DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities", J Biol Chem, 287, 10, 2012, 7236-45.
[13] W. Yang, et al. "Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes", Molecular & cellular proteomics : MCP, 9, 1, 2010, 54-70.
[14] E. Kong, et al. "Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto-oncogene H-ras product and growth-associated protein-43", J Biol Chem, 288, 13, 2013, 9112-25.
[15] L. E. P. Dietrich and C. Ungermann. "On the mechanism of protein palmitoylation", EMBO reports, 5, 11, 2004, 1053-1057.
[16] M. Zaręba-Kozioł, I. Figiel, A. Bartkowiak-Kaczmarek and J. Włodarczyk. "Insights Into Protein S-Palmitoylation in Synaptic Plasticity and Neurological Disorders: Potential and Limitations of Methods for Detection and Analysis", Frontiers in Molecular Neuroscience, 11, 175, 2018,
[17] A. J. Laude and I. A. Prior. "Palmitoylation and localisation of RAS isoforms are modulated by the hypervariable linker domain", J Cell Sci, 121, Pt 4, 2008, 421-7.
[18] M. E. Linder and R. J. Deschenes. "Palmitoylation: policing protein stability and traffic", Nature Reviews Molecular Cell Biology, 8, 1, 2007, 74-84.
[19] P. A. Hemsley and C. S. Grierson. "The Ankyrin Repeats and DHHC S-acyl Transferase Domain of AKR1 Act Independently to Regulate Switching from Vegetative to Mating States in Yeast", PLOS ONE, 6, 12, 2011, e28799.
[20] M. Yeste-Velasco, M. E. Linder and Y.-J. Lu. "Protein S-palmitoylation and cancer", Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1856, 1, 2015, 107-120.
[21] M. M. Zhang, et al. "Quantitative Control of Protein S-Palmitoylation Regulates Meiotic Entry in Fission Yeast", PLOS Biology, 11, 7, 2013, e1001597.
[22] R. R. Singaraja, et al. "HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis", Hum Mol Genet, 11, 23, 2002, 2815-28.
[23] K. Huang, et al. "Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins", Neuron, 44, 6, 2004, 977-86.
[24] A. Yanai, et al. "Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function", Nat Neurosci, 9, 6, 2006, 824-31.
[25] C. Sharma, X. H. Yang and M. E. Hemler. "DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151", Mol Biol Cell, 19, 8, 2008, 3415-25.
[26] A. Pedram, M. Razandi, R. J. Deschenes and E. R. Levin. "DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors", Molecular Biology of the Cell, 23, 1, 2012, 188-199.
[27] D. Hungermann, et al. "Influence of whole arm loss of chromosome 16q on gene expression patterns in oestrogen receptor-positive, invasive breast cancer", The Journal of Pathology, 224, 4, 2011, 517-528.
[28] A. Rossin, et al. "Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability", Cell Death Differ, 22, 4, 2015, 643-53.
[29] L. Zhao, et al. "Erf4p and Erf2p form an endoplasmic reticulum-associated complex involved in the plasma membrane localization of yeast Ras proteins", J Biol Chem, 277, 51, 2002, 49352-9.
[30] C. Salaun, et al. "Accessory proteins of the zDHHC family of S-acylation enzymes", J Cell Sci, 133, 22, 2020,
[31] L. Sánchez-Mir, et al. "Rho2 Palmitoylation Is Required for Plasma Membrane Localization and Proper Signaling to the Fission Yeast Cell Integrity Mitogen-Activated Protein Kinase Pathway", Molecular and Cellular Biology, 34, 14, 2014, 2745-2759.
[32] L. Davis and G. R. Smith. "Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe", Proceedings of the National Academy of Sciences, 98, 15, 2001, 8395-8402.
[33] B. K. Benton, M. S. Reid and H. Okayama. "A Schizosaccharomyces pombe gene that promotes sexual differentiation encodes a helix-loop-helix protein with homology to MyoD", The EMBO journal, 12, 1, 1993, 135-143.
[34] O. Nielsen, J. Davey and R. Egel. "The ras1 function of Schizosaccharomyces pombe mediates pheromone-induced transcription", The EMBO journal, 11, 4, 1992, 1391-1395.
[35] L. Merlini, O. Dudin and S. G. Martin. "Mate and fuse: how yeast cells do it", Open Biology, 3, 3, 2013, 130008.
[36] A. Vjestica, et al. "Microscopy of Fission Yeast Sexual Lifecycle", Journal of visualized experiments : JoVE, 109, 2016, 53801.
[37] B. J. Scott, E. M. Neidt and D. R. Kovar. "The functionally distinct fission yeast formins have specific actin-assembly properties", Mol Biol Cell, 22, 20, 2011, 3826-39.
[38] J. Petersen, O. Nielsen, R. Egel and I. M. Hagan. "FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation", J Cell Biol, 141, 5, 1998, 1217-28.
[39] D. P. Mulvihill, S. R. Edwards and J. S. Hyams. "A critical role for the type V myosin, Myo52, in septum deposition and cell fission during cytokinesis in Schizosaccharomyces pombe", Cell Motil Cytoskeleton, 63, 3, 2006, 149-61.
[40] L. Merlini, et al. "Inhibition of Ras activity coordinates cell fusion with cell–cell contact during yeast mating", Journal of Cell Biology, 217, 4, 2018, 1467-1483.
[41] D. Q. Ding, A. Yamamoto, T. Haraguchi and Y. Hiraoka. "Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast", Dev Cell, 6, 3, 2004, 329-41.
[42] J. Blyth, et al. "Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen", Genetics, 208, 2, 2018, 589-603.
[43] T. Dudler and M. H. Gelb. "Palmitoylation of Ha-Ras Facilitates Membrane Binding, Activation of Downstream Effectors, and Meiotic Maturation in Xenopus Oocytes ", Journal of Biological Chemistry, 271, 19, 1996, 11541-11547.
[44] J. Fang, et al. "Involvement of Protein Acyltransferase ZDHHC3 in Maintaining Oocyte Meiotic Arrest in Xenopus laevis1", Biology of Reproduction, 95, 3, 2016,
[45] L. Freudzon , et al. "Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein", Journal of Cell Biology, 171, 2, 2005, 255-265.
[46] Y. Li, et al. "Both male and female gametogenesis require a fully functional protein S-acyl transferase 21 in Arabidopsis thaliana", The Plant Journal, 100, 4, 2019, 754-767.
[47] S. A. Sabatinos and S. L. Forsburg, Molecular Genetics of Schizosaccharomyces pombe, 470, Molecular Genetics of Schizosaccharomyces pombe, Academic Press, 2010.
[48] M. Sato, S. Dhut and T. Toda. "New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe", Yeast, 22, 7, 2005, 583-591.
[49] A. Yamashita, T. Sakuno, Y. Watanabe and M. Yamamoto. "Analysis of Schizosaccharomyces pombe Meiosis", Cold Spring Harb Protoc, 2017, 9, 2017, pdb.top079855.
[50] B. Onken, H. Wiener, M. R. Philips and E. C. Chang. "Compartmentalized signaling of Ras in fission yeast", Proceedings of the National Academy of Sciences of the United States of America, 103, 24, 2006, 9045-9050.
[51] J. Z. Dalgaard and A. J. S. Klar. "Does S. pombe exploit the intrinsic asymmetry of DNA synthesis to imprint daughter cells for mating-type switching?", Trends in Genetics, 17, 3, 2001, 153-157.
[52] M. J. Nadolski and M. E. Linder. "Molecular recognition of the palmitoylation substrate Vac8 by its palmitoyltransferase Pfa3", The Journal of biological chemistry, 284, 26, 2009, 17720-17730.
[53] J. Greaves, J. A. Carmichael and L. H. Chamberlain. "The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway: regulation by a C-terminal domain", Molecular biology of the cell, 22, 11, 2011, 1887-1895.
[54] J. Bahler, P. Schuchert, C. Grimm and J. Kohli. "Synchronized meiosis and recombination in fission yeast: observations with pat1-114 diploid cells", Current Genetics, 19, 6, 1991, 445-451.
[55] C. Weston, M. Bond, W. Croft and G. Ladds. "The Coordination of Cell Growth during Fission Yeast Mating Requires Ras1-GTP Hydrolysis", PLoS ONE, 8, 10, 2013, e77487.
[56] C. Sedwick. "Palmitoylation: A New Regulatory Role in Meiosis", PLOS Biology, 11, 7, 2013, e1001598.
[57] Y. Tange, et al. "A novel fission yeast gene, tht1+, is required for the fusion of nuclear envelopes during karyogamy", The Journal of cell biology, 140, 2, 1998, 247-258.
指導教授 王紹文 葉淑丹(Shao-Win Wang Shu-Dan Yeh) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明