博碩士論文 108324026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:3.137.192.3
姓名 李宗軒(Zong-Syuan Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討利用Lactobacillus plantarum發酵青花菜對蘿蔔硫素與抗氧化活性及成分的影響
(Enhancing sulforaphane, phenolic compounds and other biological activity of Brassica oleracea var. italic by Lactobacillus plantarum)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 十字花科植物作為人們最主要的日常飲食之一,除了易於取得外,植物內部蘊含豐富生物活性物質能幫助人體抵抗許多疾病。在十字花科中,青花菜被許多研究指出具有降低罹癌風險的功效,主要歸因於青花菜內含大量的蘿蔔硫苷,蘿蔔硫苷本身並不具有生物活性,但當植物遭到破壞時,從植物細胞內部釋放出的黑芥子酶會與蘿蔔硫苷反應並產生具生物活性的蘿蔔硫素。
近年來雖有許多探討環境、處理方式對蘿蔔硫素影響之研究,但透過微生物發酵對蘿蔔硫素產量影響的文獻卻寥寥無幾。因此本研究探討了利用植物乳桿菌Lactobacillus plantarum BCRC15478發酵青花菜對蘿蔔硫素的影響,也針對發酵前後抗氧化活性及成份進行比較。此外,本研究著重於不同條件的探討如滅菌方式、預處理步驟、發酵環境不同等,最終整理出Lactobacillus plantarum發酵青花菜提升蘿蔔硫素與抗氧化活性及成份之最適化條件。經研究顯示,比起傳統高溫高壓滅菌法,採用巴氏滅菌法對於青花菜汁更為合適。在經發酵後,微生物會分解青花菜細胞壁,釋放更多黑芥子酶,進而使蘿蔔硫素產量提升,總多酚含量及DPPH自由基清除能力也於發酵後明顯上升。最後本研究將調整青花菜汁pH值至6、添加1%葡萄糖及2%黃豆粉作為營養源並以70°C滅菌10分鐘後進行發酵作為最適化操作條件,蘿蔔硫素及總多酚含量在經發酵後分別提升4.01 mg/gDW及205.03 mg/L,DPPH自由基清除能力也從原本的29.6%上升至51%。
摘要(英) Cruciferous vegetable is one of the most famous regular consumption for human diet. Among Cruciferous vegetable, broccoli has been known as reducing the risk of cancer due to its high value of sulforaphane. Sulforaphane is a health-promoting compound of isothiocyante group which is rich in Cruciferous vegetables such as broccoli, cabbages, nanohana. It is produced while myrosinase, an enzyme inside plant, transforms glucoraphanin into sulforaphane upon damage to the plant.
In this experimental, Lactobacillus plantarum is used to fermenting with broccoli juice in order to enhance the biotransformation of glucoraphanin into sulforaphane. A few studies indicate that ferment broccoli puree with lactic acid bacteria (LAB) can increase sulforaphane content. For our study, we focus on the quantity of sulforaphane after fermentation by changing some variable such as sterilize method before ferment, different nutrition addition, initial pH of broccoli juice. Research also discusses total phenol content (TPC) and DPPH free radical scavenging activity after fermentation. Results show that amount of sulforaphane and antioxidant activity or compounds can be improved in fermented broccoli juice. Pasteurized broccoli juice presents more biochemical compounds than autoclaved broccoli juice. In addition, optimal pasteurization temperature and initial pH for the growth of cell viability and bioactivity compounds from fermented broccoli juice was determined. Sulforaphane and total phenol content increase 4.01 mg/gDW and 205.03 mg/L, respectively. DPPH free radical scavenging activity also increase from 29.6 to 51% after fermentation.
關鍵字(中) ★ 發酵
★ 青花菜
★ 綠色花椰菜
★ 乳酸菌
★ 蘿蔔硫素
★ 抗氧化
關鍵字(英) ★ Fermentation
★ Broccoli
★ Brassicaceae
★ Lactic acid bacteria
★ Sulforaphane
★ Antioxidant
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
一、 緒論 1
1-1研究動機 1
1-2研究目的 2
二、 文獻回顧 3
2-1十字花科植物(Brassicaceae) 3
2-1-1 十字花科植物的基本介紹 3
2-1-2 十字花科植物的生物活性物質 3
2-1-3 十字花科植物的功效 6
2-1-4 青花菜的基本介紹 7
2-2硫代葡萄糖苷(Glucosinolate) 8
2-2-1 硫代葡萄糖苷的基本介紹 8
2-2-2 環境對異硫氰酸鹽的影響 10
2-2-3 硫代葡萄糖糖的功效 12
2-3癌症 13
2-3-1 癌症的基本介紹 13
2-3-2 癌症的治療方式 14
2-4乳酸菌發酵 15
2-4-1 Lactobacillus plantarum的基本介紹 15
2-4-2 乳酸菌發酵的優勢 15
2-5青花菜發酵研究 19
三、 材料與方法 22
3-1實驗規劃 22
3-2實驗材料 23
3-2-1 實驗菌株 23
3-2-2 實驗藥品 24
3-2-3 實驗儀器及設備 26
3-3實驗方法 28
3-3-1 菌種保存及培養方式 28
3-3-2 液態發酵實驗探討 30
3-3-3 菌種及菌落分析實驗 32
3-4分析方法 36
3-4-1 pH值分析 36
3-4-2 乳酸濃度分析 36
3-4-3 還原糖濃度分析(Reducing sugar concentration) 38
3-4-4 總多酚含量分析(Total phenolic compounds) 40
3-4-5 DPPH自由基清除能力分析(DPPH scavenging activity) 41
3-4-6 蘿蔔硫素濃度分析 42
四、 結果與討論 44
4-1 Lactobacillus plantarum之生長曲線 44
4-2不同滅菌方式對發酵青花菜汁之影響 45
4-2-1 滅菌方式對Lactobacillus plantarum之影響 45
4-2-2 滅菌方式對發酵液抗氧化活性及總多酚含量之影響 47
4-2-3 滅菌方式對發酵液中蘿蔔硫素之影響 49
4-2-4 不同滅菌方式對青花菜發酵液影響之結論 50
4-3添加不同營養源對發酵青花菜汁之影響 52
4-3-1 營養源濃度對Lactobacillus plantarum生長之影響 52
4-3-2 營養源濃度對發酵液抗氧化活性及總多酚含量之影響 54
4-3-3 營養源濃度對發酵液中蘿蔔硫素之影響 56
4-3-4 不同營養源添加量對青花菜發酵液影響之結論 56
4-4不同預處理對發酵青花菜汁之影響 59
4-4-1 預處理對Lactobacillus plantarum生長之影響 59
4-4-2 預處理對發酵液抗氧化活性及總多酚含量之影響 60
4-4-3 預處理對發酵液中蘿蔔硫素之影響 62
4-4-4 預處理對青花菜發酵液影響之結論 65
4-5不同滅菌條件對發酵青花菜汁之影響 66
4-5-1 滅菌條件對Lactobacillus plantarum生長及其他菌種之影響 66
4-5-2 滅菌條件對發酵液抗氧化活性及總多酚含量之影響 69
4-5-3 滅菌條件對發酵液中蘿蔔硫素的影響 71
4-5-4 不同滅菌條件對青花菜發酵液影響之結論 72
4-6不同pH值對發酵青花菜汁之影響 73
4-6-1 pH值對Lactobacillus plantarum生長之影響 73
4-6-2 pH值對致病菌種生長之影響 74
4-6-3 pH值對發酵液抗氧化活性及總多酚含量之影響 75
4-6-4 pH值對發酵液中蘿蔔硫素的影響 77
4-6-5 不同pH值對青花菜發酵液影響之結論 79
4-7優化過程之比較 80
4-8高溫高壓滅菌與最佳化巴氏滅菌程序之比較 81
五、 結論與建議 83
參考文獻 85
參考文獻 [1] D. Ramirez, A. Abellán-Victorio, V. Beretta, A. Camargo, and D. A. Moreno, "Functional ingredients from Brassicaceae species: Overview and perspectives," International journal of molecular sciences, vol. 21, no. 6, p. 1998, 2020.
[2] V. Cheynier, "Phenolic compounds: from plants to foods," (in English), Phytochemistry Reviews, vol. 11, no. 2-3, pp. 153-177, Jun 2012, doi: 10.1007/s11101-012-9242-8.
[3] M. E. Cartea, M. Francisco, P. Soengas, and P. Velasco, "Phenolic compounds in Brassica vegetables," Molecules, vol. 16, no. 1, pp. 251-280, 2011.
[4] A.-S. Keck and J. W. Finley, "Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium," Integrative Cancer Therapies, vol. 3, no. 1, pp. 5-12, 2004.
[5] R. F. Mithen, M. Dekker, R. Verkerk, S. Rabot, and I. T. Johnson, "The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods," Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 967-984, 2000.
[6] K. Papoutsis, J. Zhang, M. C. Bowyer, N. Brunton, E. R. Gibney, and J. Lyng, "Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review," Food Chemistry, p. 128119, 2020.
[7] G.-N. Kim, J.-G. Shin, and H.-D. Jang, "Antioxidant and antidiabetic activity of Dangyuja (Citrus grandis Osbeck) extract treated with Aspergillus saitoi," Food Chemistry, vol. 117, no. 1, pp. 35-41, 2009.
[8] H. Ahsan, A. Ahad, J. Iqbal, and W. A. Siddiqui, "Pharmacological potential of tocotrienols: a review," Nutrition & metabolism, vol. 11, no. 1, pp. 1-22, 2014.
[9] H. Y. Peh, W. D. Tan, W. Liao, and W. F. Wong, "Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol," Pharmacology & Therapeutics, vol. 162, pp. 152-169, 2016.
[10] E. Pierpaoli, V. Viola, A. Barucca, F. Orlando, F. Galli, and M. Provinciali, "Effect of annatto-tocotrienols supplementation on the development of mammary tumors in HER-2/neu transgenic mice," Carcinogenesis, vol. 34, no. 6, pp. 1352-1360, 2013.
[11] E. Llorent-Martínez, J. Ortega-Vidal, A. Ruiz-Riaguas, P. Ortega-Barrales, and M. Fernández-de Córdova, "Comparative study of the phytochemical and mineral composition of fresh and cooked broccolini," Food Research International, vol. 129, p. 108798, 2020.
[12] M. Gordaliza, "Natural products as leads to anticancer drugs," Clinical and Translational Oncology, vol. 9, no. 12, pp. 767-776, 2007.
[13] D. L. Palliyaguru et al., "Sulforaphane Diminishes the Formation of Mammary Tumors in Rats Exposed to 17β-Estradiol," Nutrients, vol. 12, no. 8, p. 2282, 2020.
[14] S. R. Bhandari and J.-H. Kwak, "Chemical composition and antioxidant activity in different tissues of Brassica vegetables," Molecules, vol. 20, no. 1, pp. 1228-1243, 2015.
[15] K. Radošević, V. G. Srček, M. C. Bubalo, S. R. Brnčić, K. Takács, and I. R. Redovniković, "Assessment of glucosinolates, antioxidative and antiproliferative activity of broccoli and collard extracts," Journal of Food Composition and Analysis, vol. 61, pp. 59-66, 2017.
[16] J. M Calderon-Montano, E. Burgos-Morón, C. Pérez-Guerrero, and M. López-Lázaro, "A review on the dietary flavonoid kaempferol," Mini reviews in medicinal chemistry, vol. 11, no. 4, pp. 298-344, 2011.
[17] J. E. Koper et al., "Aryl hydrocarbon Receptor activation during in vitro and in vivo digestion of raw and cooked broccoli (brassica oleracea var. Italica)," Food & function, vol. 11, no. 5, pp. 4026-4037, 2020.
[18] U.S. DEPARTMENT OF AGRICULTURE : FoodData Central [Online] Available: https://fdc.nal.usda.gov/fdc-app.html#/food-details/747447/nutrients
[19] P. Soundararajan and J. S. Kim, "Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers," Molecules, vol. 23, no. 11, p. 2983, 2018.
[20] L. Mandrich and E. Caputo, "Brassicaceae-derived anticancer agents: Towards a green approach to beat cancer," Nutrients, vol. 12, no. 3, p. 868, 2020.
[21] "Global Market Insights." https://www.gminsights.com/industry-analysis/glucosinolates-market (accessed.
[22] S. D. Naidu, L. Brodziak-Jarosz, C. Gerhäuser, and A. T. Dinkova-Kostova, "The Chemopreventive Power of Isothiocyanates," Natural Products for Cancer Chemoprevention, pp. 271-318, 2020.
[23] S. Zhang et al., "Sulforaphane in broccoli-based matrices: Effects of heat treatment and addition of oil," LWT, vol. 128, p. 109443, 2020.
[24] A. Mahn, A. Saavedra, and M. P. Rubio, "Kinetic study of sulforaphane stability in blanched and un-blanched broccoli (Brassica oleracea var. italica) florets during storage at low temperatures," Journal of food science and technology, vol. 55, no. 11, pp. 4687-4693, 2018.
[25] Y. Wu, J. Mao, Y. You, and S. Liu, "Study on degradation kinetics of sulforaphane in broccoli extract," Food chemistry, vol. 155, pp. 235-239, 2014.
[26] J. Román, A. Castillo, and A. Mahn, "Molecular docking of potential inhibitors of broccoli myrosinase," Molecules, vol. 23, no. 6, p. 1313, 2018.
[27] J. H. Cohen, A. R. Kristal, and J. L. Stanford, "Fruit and vegetable intakes and prostate cancer risk," Journal of the National Cancer Institute, vol. 92, no. 1, pp. 61-68, 2000.
[28] D. S. Michaud, D. Spiegelman, S. K. Clinton, E. B. Rimm, W. C. Willett, and E. L. Giovannucci, "Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort," Journal of the National Cancer Institute, vol. 91, no. 7, pp. 605-613, 1999.
[29] E. Heiss, C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhäuser, "Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms," Journal of Biological Chemistry, vol. 276, no. 34, pp. 32008-32015, 2001.
[30] T. Liu, L. Zhang, D. Joo, and S.-C. Sun, "NF-κB signaling in inflammation," Signal transduction and targeted therapy, vol. 2, no. 1, pp. 1-9, 2017.
[31] "Cancer-NHS." https://www.nhs.uk/conditions/cancer/ (accessed.
[32] "World Cancer Report 2020 - World Health Organization."
[33] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, "Cancer Statistics, 2021," CA: a Cancer Journal for Clinicians, vol. 71, no. 1, pp. 7-33, 2021.
[34] C. P. Barros et al., "Paraprobiotics and postbiotics: concepts and potential applications in dairy products," Current Opinion in Food Science, vol. 32, pp. 1-8, 2020.
[35] I. S. Kim et al., "Oral administration of β-Glucan and Lactobacillus Plantarum Alleviates Atopic dermatitis-like symptoms," Journal of microbiology and biotechnology, vol. 29, no. 11, pp. 1693-1706, 2019.
[36] I. Lee et al., "Lipoproteins Contribute to the Anti-inflammatory Capacity of Lactobacillus plantarum WCFS1," Frontiers in microbiology, vol. 11, p. 1822, 2020.
[37] S. Li et al., "Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods," Food chemistry, vol. 135, no. 3, pp. 1914-1919, 2012.
[38] J. Lee, K. T. Hwang, M. Y. Chung, D. H. Cho, and C. S. Park, "Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect," Journal of food science, vol. 70, no. 8, pp. m388-m391, 2005.
[39] Y. Wang et al., "Antioxidant properties of probiotic bacteria," Nutrients, vol. 9, no. 5, p. 521, 2017.
[40] V. R. Yenuganti et al., "In vitro evaluation of anticancer effects of different probiotic strains on HCT‐116 cell line," Journal of Applied Microbiology, 2021.
[41] A. N. El-Dein et al., "Assessment of exopolysaccharides, bacteriocins and in vitro and in vivo hypocholesterolemic potential of some Egyptian Lactobacillus spp," International Journal of Biological Macromolecules, vol. 173, pp. 66-78, 2021.
[42] W. Di, L. Zhang, H. Yi, X. Han, Y. Zhang, and L. Xin, "Exopolysaccharides produced by Lactobacillus strains suppress HT‑29 cell growth via induction of G0/G1 cell cycle arrest and apoptosis," Oncology letters, vol. 16, no. 3, pp. 3577-3586, 2018.
[43] R. A. Bagarolli et al., "Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice," The Journal of nutritional biochemistry, vol. 50, pp. 16-25, 2017.
[44] Y. X. Cai, J. H. Wang, C. McAuley, M. A. Augustin, and N. S. Terefe, "Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree," Journal of Functional Foods, vol. 61, p. 103461, 2019.
[45] R. Ohba and M. Iio, "Optimum conditions for making lactic acid beverage by using broccoli powder: development of lactic acid beverage by using vegetable part I," Nippon Shokuhin Kagaku Kogaku Kaishi= Journal of the Japanese Society for Food Science and Technology, vol. 47, no. 5, pp. 384-389, 2000.
[46] R. OHBA, M. IIO, and Y. SASAKI, "Storage of a Broccoli Lactic Acid Bacteria Drink," Food Science and Technology Research, vol. 8, no. 2, pp. 162-165, 2002.
[47] J.-H. Ye, L.-Y. Huang, N. S. Terefe, and M. A. Augustin, "Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria," Food chemistry, vol. 286, pp. 616-623, 2019.
[48] Y. X. Cai, M. A. Augustin, H. Jegasothy, J. H. Wang, and N. S. Terefe, "Mild heat combined with lactic acid fermentation: A novel approach for enhancing sulforaphane yield in broccoli puree," Food & function, vol. 11, no. 1, pp. 779-786, 2020.
[49] P. Khandpur and P. R. Gogate, "Evaluation of ultrasound based sterilization approaches in terms of shelf life and quality parameters of fruit and vegetable juices," Ultrasonics sonochemistry, vol. 29, pp. 337-353, 2016.
[50] 王鵬榮, "探討固態發酵自行生產纖維水解酵素用於分解稻稈及生產生質酒精之研究," 中央大學化學工程與材料工程學系學位論文, pp. 1-74, 2015.
[51] 黃季婷, 歐柏廷, and 蔡文城, "煮沸時程與頻率以及 47℃ 水浴放置時程不影響 Violet Red Bile Glucose Agar 檢測腸桿菌科的能力," 檢驗及品保雜誌, vol. 8, no. 4, pp. 140-145, 2019.
[52] "衛生福利部食品藥舞管理署食品微生物之檢驗方法-腸桿菌科之檢驗." https://www.fda.gov.tw/TC/siteListContent.aspx?sid=103&id=36999 (accessed.
[53] "Biocyclopedia-Estimation of Reducing Sugars by the Dinitro Salicylic Acid (DNS) Method."https://biocyclopedia.com/index/biotechnology_methods/biochemistry/estimation_of_reducing_sugars_by_the_dinitro_salicylic_acid_dns_method.php (accessed.
[54] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, "Protein measurement with the Folin phenol reagent," Journal of biological chemistry, vol. 193, pp. 265-275, 1951.
[55] T.-H. Liu, "探討利用 Lactobacillus plantarum 發酵 Momordica charantia 山苦瓜對其降血糖及其他生物活性之影響," National Central University, 2020.
[56] M. Massaro et al., "A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin," Journal of Materials Chemistry B, vol. 4, no. 13, pp. 2229-2241, 2016.
[57] H. Liang, Q. Yuan, and Q. Xiao, "Purification of sulforaphane from Brassica oleracea seed meal using low-pressure column chromatography," Journal of Chromatography B, vol. 828, no. 1-2, pp. 91-96, 2005.
[58] A. Khosravi and S. H. Razavi, "Therapeutic effects of polyphenols in fermented soybean and black soybean products," Journal of Functional Foods, vol. 81, p. 104467, 2021.
[59] A. Pękal and K. Pyrzynska, "Effect of pH and metal ions on DPPH radical scavenging activity of tea," International journal of food sciences and nutrition, vol. 66, no. 1, pp. 58-62, 2015.
[60] F. S. Hanschen, C. Kühn, M. Nickel, S. Rohn, and M. Dekker, "Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products," Food chemistry, vol. 263, pp. 240-250, 2018.
[61] D. H. Kadir, "Statistical evaluation of main extraction parameters in twenty plant extracts for obtaining their optimum total phenolic content and its relation to antioxidant and antibacterial activities," Food Science & Nutrition, 2021.
[62] M. Ferri, A. Gianotti, and A. Tassoni, "Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components," Journal of Food Composition and Analysis, vol. 30, no. 2, pp. 94-101, 2013.
[63] A. Mahn, A. Angulo, and F. Cabanas, "Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase)," Journal of agricultural and food chemistry, vol. 62, no. 48, pp. 11666-11671, 2014.
[64] E. B. Dosz and E. H. Jeffery, "Commercially produced frozen broccoli lacks the ability to form sulforaphane," Journal of Functional Foods, vol. 5, no. 2, pp. 987-990, 2013.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明