博碩士論文 108223054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.133.141.6
姓名 陳怡均(Yi-Chun Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含有醯胺基團之乙炔蒽衍生物:碳氫長鏈與碳氟長鏈對於有機凝膠之形成及固態刺激響應行為之研究
(Ethylanthracene Derivatives with Amide-Functional Group: Investigation of Gel Formation and Stimuli-Responsive Behavior On Solid State with Hydrocarbons Chain and Perfluoroalkyl Chain.)
相關論文
★ 含有醯胺基團之乙炔蒽衍生物:取代基團位置對於有機凝膠之形成及固態刺激響應行為之研究★ 2,3位置含長鏈吡啶二醯胺基團之蒽衍生物:碳橋基及碳鏈長度對於有機凝膠形成及固態刺激響應性質之研究
★ 含醯胺官能基之蒽衍生物及其刺激響應行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-31以後開放)
摘要(中) 本篇論文合成出三個含有醯胺基團之乙炔蒽衍生物,分別為以碳氟長鏈的單取代膠體片段FH95、以碳氫長鏈的單取代膠體片段FH109,以及以碳氫長鏈的雙取代膠體片段FH117進行探討。從形成凝膠的能力測試結果可以發現此三個化合物皆可在多種溶劑中形成凝膠,其中FH117可以在最多種溶劑中形成凝膠,它在benzene中的臨界凝膠濃度為3.5 mg/mL,是膠體測試中形成凝膠能力最好的溶劑。以變溫1H NMR可得知凝膠分子主要是透過分子間氫鍵、π-π作用力進行自組裝。透過變溫吸收光譜、放射光譜及不同濃度與狀態下的吸收、放射光譜探討分子間作用力及光物理變化,FH95及FH109的凝膠分子可能是透過J-type aggregation形式進行自組裝;特別的是FH117它在高溫時會形成蒽的excimer,隨著溫度降低溶劑參與分子自組裝,因此蒽之間的作用力減弱,轉變為類似單體的形式聚集,因此在變溫放射光譜會觀察到隨著溫度降低,螢光有逐漸藍移的趨勢。經由SEM的觀察會發現凝膠分子會以纖維狀結構或是球狀結構聚集。利用PXRD來探討形成乾凝膠後的堆疊模式,並對FH95、FH109及FH117的粉末進行固態刺激響應行為的測試。
摘要(英) In this thesis, we synthesized three anthracene-based organogelators, FH95, FH109 and FH117. Compound FH95 contains perfluoroalkyl chain and pyridine dicarboxamide functional groups. Compounds FH109 and FH117 contain hydrocarbon chain and pyridine dicarboxamide functional groups. These gelators are able to immobilize many organic solvents and transform into organogels. FH117 exhibits the best ability to form stable gel in benzene (the critical gelation concentration is 3.5 mg/mL). A variety of spectroscopic methods were employed to identify the driving forces responsive for gel formation and to explore the photo-physical properties. The primary driving forces are intermolecular hydrogen bonding and π-π interactions. Compounds FH95 and FH109 are considered to form J-type aggregation upon gel formation. Interestingly, the anthracene-based excimer of FH117 was identified at high temperature. As temperature decrease, solvent participate in self-assemble so anthracene moiety will gradually lose interaction between each other and FH117 monomer will aggregate together with fluorescence blue-shift. The morphologies studied by SEM revealed that the gelators can self-assemble into fibers or spheres. Besides, PXRD was utilized to explore the molecular stacking pattern in xerogels. A variety of external stimulus was applied to FH95, FH109 and FH117 in solid state to explore the stimuli-responsive behaviors of these powder samples.
關鍵字(中) ★ 有機凝膠分子
★ 超分子自組裝
★ 固態刺激響應行為材料
★ 蒽
★ 醯胺
關鍵字(英) ★ Organogels
★ supramolecular self-assembly
★ solid-state stimuli-responsive behavior
★ anthracene
★ amide
論文目次 摘要 I
Abstract II
誌謝辭 III
目錄 IV
圖目錄 VII
表目錄 XIV
化合物對照表 XV
一、 緒論 1
1.1前言 1
1.1.1凝膠的定義 2
1.1.2凝膠的形成 2
1.1.3凝膠的分類 4
1.2有機凝膠的分類 5
1.2.1含有蒽的有機凝膠 5
1.2.2含有醯胺官能基的有機凝膠 10
1.2.3含有芳香環的有機凝膠 13
1.2.4 含有碳氫鏈與碳氟鏈有機凝膠 15
1.2.5 含有單取代及雙取代的有機凝膠 20
1.3 蒽的準分子特性 22
1.4刺激響應 25
1.4.1具有刺激響應行為的分子 25
1.5研究動機 28
二、 結果與討論 32
2.1實驗流程 32
2.2凝膠分子FH95、FH109、FH117之光物理性質 42
2.3凝膠分子FH95、FH109、FH117的自組裝行為 49
2.3.1不同溶劑中形成凝膠能力的測試 49
2.3.2變溫核磁共振實驗 54
2.3.3變濃度UV-Vis吸收實驗、放射與激發光譜實驗 61
2.3.4變溫UV-Vis吸收實驗、變溫放光實驗 66
2.3.5稀薄溶液、凝膠、薄膜狀態的吸收及放射實驗 72
2.3.6分子聚集形貌研究 78
2.3.7 FH95、FH109、FH117與實驗室近年開發之凝膠分子比較 90
2.4 固態行為研究 97
2.4.1 Xerogel堆疊模式探討 97
2.4.2 刺激響應行為測試 101
2.4.3 熱穩定性質及熱刺激響應行為 108
三、 結論 114
四、 實驗部分 116
4.1 分析儀器 116
4.2 實驗藥品 120
4.3 實驗合成步驟 121
五、 參考資料 138
六、 附錄 144
參考文獻 1. Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem. Rev. 1997, 97, 3133-3160.
2. Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34, 821-836.
3. Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science, 2002, 295, 2414.
4. von Lipowitz, A. Versuche und Resultate über die Löslichkeit der Harnsäure Liebigs Ann. Chem. Pharm. 1841, 38, 348-355.
5. Graham, T. Phil. Trans. Roy. Soc. 1861, 151, 183.
6. Lloyd, D. J. The problem of gel structure, In Colloid Chemistry, Alexander, J.; ed. The Chemical Catalogue Company, New York, USA, 1926, 767-782.
7. Slomkowski1, S.; Aleman, J. V.; Gilbert, R. G.; Hess, M.; Horie, K.; Jones, R. G.; Kubisa1, P.; Meisel, I.; Mormann, W.; Penczek, S.; Stepto, R. F. T. Pure Appl. Chem. 2011, 83,2229.
8. Yu, G.; Yan, X.; Han, C.; Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 2013, 42, 6697.
9. Xu, J. F.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.; Yang, Q. Z. Dynamic Covalent Bond Based on Reversible Photo [4 + 4] Cycloaddition of Anthracene for Construction of Double-Dynamic Polymers. Org. Lett., 2013, 15, 6148–6151.
10. Oliveira, M. S.; Severino, D.; Prado, F. M.; Angeli, J. P. F.; Motta, F. D.; Baptista, M. S.; Medeiros, M. H. G.; Di Mascio, P. Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3’-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction. Photochem. Photobiol. Sci., 2011, 10, 1546-1555.
11. Wang, C.; Zhang, D.; Wiang, J.; Zhu, D. New Organogels Based on an Anthracene Derivative with One Urea Group and Its Photodimer: Fluorescence Enhancement after Gelation. Langmuir 2007, 23, 9195-9200.
12. Rajamalli, P.; Prasad, E. Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection. Org. Lett. 2011, 13, 3714-3717.
13. Das, S.; Okamura, N.; Yagi, S.; Ajayaghosh, A. Supramolecular Gel Phase Controlled [4+2] Diels-Alder Photocycloaddition for Electroplex Mediated White Electroluminescence. J. Am. Chem. Soc. 2019, 141, 5635−5639.
14. Mondal, S.; Bairi, P.; Das, S.; Nandi, A. K. Phase selective organogel from an imine based gelator for use in oil spill recovery. J. Mater. Chem. A, 2019, 7, 381–392.
15. Shirakawa, M.; Kawano, S. I.; Fujita, N.; Sada, K.; Shinkai, S. J. Hydrogen-Bond-Assisted Control of H versus J Aggregation Mode of Porphyrins Stacks in an Organogel System. Org. Chem. 2003, 68, 5037-5044.
16. Basak, S.; Nanda, J.; Banerjee, A. J. A new aromatic amino acid based organogel for oil spill recovery. Mater. Chem., 2012, 22, 11658–11664.
17. Gong, J.; Yu, M.; Wang, C.; Tan, J.; Wang, S.; Zhao, S.; Zhao, Z.; Qin, A.; Tang, B.; Zhang, X. Reaction-based chiroptical sensing of ClO- using circularly polarized luminescence via self-assembly organogel. Chem. Commun., 2019, 55, 10768-10771.
18. Ishi-I, T.; Hirayama, T.; Murakami, K.; Tashiro, H.; Thiemann, T.; Kubo, K.; Mori, A.; Yamasaki, S.; Akao, T.; Tsuboyama, A.; Mukaide, T.; Ueno, K.; Mataka, S. Combination of an Aromatic Core and Aromatic Side Chains Which Constitutes Discotic Liquid Crystal and Organogel Supramolecular Assemblies. Langmuir 2005, 21, 1261-1268.
19. Bairi, P.; Roy, B.; Routh, P.; Sen, K.; Nandi, A. K. Self-sustaining, fluorescent and semi-conducting co-assembled organogel of Fmoc protected phenylalanine with aromatic amines. Soft Matter, 2012, 8, 7436–7445.
20. Park, J. M.; Park, J.; K, Y. H.; Z, H.; Lee, Y.; J, S. H.; M, J.; Lee, T. W.; Sun, J. Y. Aromatic nonpolar organogels for efficient and stable perovskite green emitters. Nature Communications, 2020, 11(1):4638.
21. Abdallah, D. J.; Weiss, R. G. n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids). Langmuir 2000, 16, 352-355.
22. Twieg, R. J.; Russell, T. P.; Seimens, R.; Rabolt, J. F. Observations of a gel phase in binary mixtures of semifluorinated n-alkanes with hydrocarbon liquid. Macromolecules 1985, 18, 1361-1362.
23. Tomalia, D. A. Fluorine makes a difference. Nat. Mater. 2003, 2, 711.
24. Young, C. L. Upper critical solution temperature of perfluoro-n-alkane and n-alkane mixtures. Trans. Faraday Soc. 1969, 65, 2639.
25. George, M.; Snyder, S. L.; Terech, P.; Glinka, C. J.; Weiss, R. G. N-Alkyl Perfluoroalkanamides as Low Molecular-Mass Organogelators. J. Am. Chem. Soc. 2003, 125, 10275-10283.
26. George, M.; Snyder, S. L.; Terech, P.; Weiss, R. G. Gelation of Perfluorinated Liquids by N-Alkyl Perfluoroalkanamides. Langmuir 2005, 21,9970-9977.
27. Krieg, E.; Weissman, H.; Shimoni, E.; On, A. B.; Rybtchinski, B. Understanding the Effect of Fluorocarbons in Aqueous Supramolecular Polymerization: Ultrastrong Noncovalent Binding and Cooperativity. J. Am. Chem. Soc. 2014, 136, 9443−9452.
28. Kumari, H.; Armitage, S. E.; Kline, S. R.; Damodaran, K. K.; Kennedy, S. R.; Atwood, J. L.; Steed, J. W. Fluoros ‘ponytails’ lead to strong gelators showing thermally induced structure evolution. Soft Matter, 2015, 11, 8471-8478.
29. Vijayakumar, C.; Varghese, R.; George, S. J.; Ajayaghosh, A. Cholesterol-aided supramolecular control over chromophore packing: twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew. Chem. Int. Ed. 2006, 45, 456 –460.
30. Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. RGB Emission through Controlled Donor Self-Assembly and Modulation of Excitation Energy Transfer: A Novel Strategy to White-Light-Emitting Organogels. Adv. Mater. 2009, 21, 2059–2063.
31. Winnik, F. M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev., 1993, 93, 587.
32. Forster, T. Excimers. Angew. Chem., Int. Ed., 1969, 8, 333.
33. Liu, H.; Yao, L.; Li, B.; Chen, X.; Gao, Y.; Zhang, S.; Li, W.; Lu, P.; Yang, B.; Ma, Y. Excimer-induced high-efficiency fluorescence due to pairwise anthracene stacking in a crystal with long lifetime. Chem. Commun., 2016, 52, 7356-7359.
34. Gao, Y.; Liu, H.; Zhang. S.; Gu, Q.; Shen, Y.; Ge, Y.; Yang, B. Excimer formation and evolution of excited state properties in discrete dimeric stacking of an anthracene derivative: a computational investigation. Phys. Chem. Chem. Phys., 2018, 20, 12129-12137.
35. Wu, X.; Guo, J.; Cao, Y.; Zhao, J.; Jia, W.; Chen, Y.; Jia, D. Mechanically triggered reversible stepwise tricolor switching and thermochromism of anthracene-o-carborane dyad. Chem. Sci., 2018, 9, 5270-5277.
36. Hsu, L. Y.; Maity, S.; Matsunaga, Y.; Hsu, Y. F.; Liu, Y. H.; Peng, S. M.; Shinmyozu, T.; Yang, J. S. Photomechanochromic vs. mechanochromic fluorescence of a unichromophoric bimodal molecular solid: multicolour fluorescence patterning. Chem. Sci., 2018, 9, 8990–9001.
37. Zhang, M.; Wei, J.; Zhang, Y.; Bai, B.; Chen, F.; Wang, H.; Li, M. Multi-stimuli-responsive fluorescent switching properties of anthracene-substituted acylhydrazone derivative. Sens. Actuators B Chem. 2018, 273, 552-558
38. Seidel, N.; Hahn, T.; Liebing, S.; Seichter, W.; Kortus, J.; Weber, E. Synthesis and properties of new 9,10-anthraquinone derived compounds for molecular electronics. New J. Chem. 2013, 37, 601-610.
39. Kang, H.; Shih, H.; Kim, B.; Park, J. Position Effect Based on Anthracene Core for OLED Emitters. Journal of Nanoscience and Nanotechnology, 2016, 16, 3045-3048.
40. Xiao, Q.; Ranasinghe, R. T.; Tang, A. P. M.; Brown, T. Naphthalenyl- and anthracenyl-ethynyl dT analogues as base discriminating fluorescent nucleosides and intramolecular energy transfer donors in oligonucleotide probes. Tetrahedron 2007, 63, 3483-3490.
41. Horváth, G.; Rusa, C.; Köntös, Z.; Gerencsér, J.; Huszthy, P. A new efficient method for the preparation of 2,6-pyridinedimethyl ditosylates from dimethyl 2,6-pyridinedicarboxylates. Synth. Commun. 1999, 3719-3731.
42. Pryor, K. E.; Shipps, G. W.; Skyler, D. A.; Rebek, J. The activated core approach to combinatorial chemistry: A selection of new core molecules. Tetrahedron 1998, 54, 4107-4124.
43. Das, K.; Nakade, H.; Penelle, J.; Rotello, V. M. The activated core approach to combinatorial chemistry: A selection of new core molecules. Macromolecules 2004, 37, 310-314.
44. Selva, M.; Tundo, P.; Perosa, A. Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. J. Org. Chem. 2003, 68, 19, 7374-7378.
45. Kapustikova, I.; Bak, A.; Gonec, T.; Kos, J.; Kozik, T.; Jampilek, J. Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides. Molecules 2018, 23, 1635.
46. D-C, E; Kelly, B.; Rozas, I One-step double reduction of aryl nitro and carbonyl groups using hydrazine. Tetrahedron Lett. 2011, 52, 6702-6704.
47. Tsou, C. C.; Sun, S. S. New Fluorescent Amide-Functionalized Phenylethynylthiophene Low Molecular Weight Gelator. Org. Lett. 2006, 8, 387-390.
48. 郭婷怡,含有醯胺基團之乙炔蒽衍生物:取代基團位置對於有機凝膠之形成及固態刺激響應行為之研究,碩士論文,國立中央大學化學研究所 (2020)。
49. 蔡孟學,疏氟效應及鉑-鉑金屬作用力之超分子凝膠自組裝行為之研究,碩士論文,國立中央大學化學研究所 (2013)。
50. 呂幸紋,設計並合成含有醯胺官能基的乙炔蒽和乙炔芘衍生物之有機凝膠分子,碩士論文,國立台灣師範大化學研究所 (2014)。
51. 紀國棟,含醯胺官能基之乙炔蒽衍生物的超分子自組裝行為之研究,碩士論文,國立中正大學化學暨生物化學研究所 (2020)。
指導教授 孫世勝 陳銘洲(Shih-Sheng Sun Ming-Chou Chen) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明