博碩士論文 108324072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.139.239.18
姓名 吳志耀(Chih-Yao Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溶液剪切力法製備具硫鏈醌型環戊烷二噻吩(CSRCDT) n型小分子半導體於有機場效應電晶體
(Solution-sheared cyclopentadithiophene based n-type quinoidal small molecules with bis(alkylthio)methylene side chains (CSRCDT) for organic field effect transistors.)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以醌型為主要結構之n型小分子作為有機半導體材料,並以可溶液製程法之剪切力塗佈法製備具有單一方向性與高結晶性之有機場效應電晶體。一系列以環戊烷二噻吩 (cyclopentadithiophene)為核心之醌型 (quinoidal) n型小分子CSRCDTQ,發展出以碳-碳雙鍵作為起點並接上不同側鏈長度之硫碳鏈 (alkylthio),並以三種小分子材料(CSRCDT8Q、CSRCDT10Q及CSRCDT12Q分別為硫原子後接上8個、10個及12個碳之側鏈),藉由硫-硫元素相互作用力來增強分子之共平面性,並利用密度泛函計算佐證。探討有機場效應電晶體之電荷傳輸與薄膜微結構以及分子堆疊排列三者間之關係。改變側鏈長度對於元件效能、分子排列以及結晶性產生之影響,將利用光學顯微鏡、紫外光-可見光光譜儀、原子力顯微鏡以及低掠角廣角X光繞射來分析。CSRCDT12Q具有最長之側鏈長度,故溶解性最佳,其薄膜具有高結晶性、最短π-π堆疊距離(3.43 Å)以及連續之特性、晶粒較大且分子排列為有利於電荷傳輸之單一方向排列,因此達到最高垂直方向之電子遷移率 (μe)為0.14 cm2 V-1 s-1以及平行方向之電子遷移率為 0.08 cm2 V-1 s-1、電流開關比 (ION/IOFF)超過103。CSRCDT10Q亦具備高結晶性、晶粒最大且分子排列為單一方向,但由於溶解性沒有前者好,且π-π堆疊距離為3.47 Å導致度垂直方向電子遷移率較低,為0.09 cm2 V-1 s-1而平行方向之電子遷移率為0.05 cm2 V-1 s-1、電流開關比亦超過103。最後CSRCDT8Q為最短側鏈之分子,其溶解性較差,雖然仍具有單一方向分子排列之特性,但其晶粒尺寸小於前面兩者,π-π堆疊距離為3.49 Å,因此不利於電荷傳輸,垂直方向電子遷移率為0.025 cm2 V-1 s-1、平行方向之電子遷移率為 0.018 cm2 V-1 s-1,可藉由垂直方向以及平行方向電子遷移率之比較,得知元件具備異向性 (anisotropy)之特性。同時CSRCDTQ系列存放於濕度控制於30~40 %之大氣環境下一個月,仍維持良好的空氣穩定度。結果證實,以碳-碳雙鍵作為起點並接上不同側鏈長度之硫碳鏈於環戊烷二噻吩有助於調控分子堆疊以及提高溶解度,從而提高有機場效應電晶體之電子遷移率。
摘要(英) Three quinoidal bis(alkylthio)methylene-cyclopentadithiophene (CSRCDTQ) small molecule compounds with dicyanomethylene end‐capping units and octylthio/ decylthio/dodecylthio side chains were synthesized as n‐type organic semiconductors for solution‐processable organic field effect transistors (OFETs). The planar CDT core with methylene group at side chains as starting points improves the backbone stacking due to the effect from less free rotation of the side chain linkage. The sulfur−sulfur chalcogen interactions extend the molecular coplanarity with strong interchain packing, which is confirmed by density functional calculations. The top contact bottom gate (TC / BG) device architectures of OFETs were fabricated with the solution-sheared organic semiconductor layer. The effect of changing the side chain length on device performance, molecular packing and crystallinity were studied by using the polarized optical microscopy (POM), UV-vis spectroscopy, atomic force microscope (AFM) and grazing-incidence X-ray diffraction (GIXRD). OFETs based on solution-sheared CSRCDT8Q, CSRCDT10Q and CSRCDT12Q exhibit the electron mobility of up to 0.025, 0.09 and 0.14 cm2 V-1 s-1 in the perpendicular direction and up to 0.018, 0.05, 0.08 cm2 V-1 s-1 in the parallel direction with current ON/OFF ratio (ION/IOFF) of 103-105. Due to poor solubility and cracks in the films, the mobility of CSRCDT8Q and CSRCDT10Q are lower. The different direction of electron mobility demonstrates the anisotropy in CSRCDTQ films fabricated by the solution-sheared process. The CSRCDTQ films are stored in an atmospheric environment with a humidity controlled at 30-40% for one month, and still maintain good air stability. The result confirms that side chain length of bis(alkylthio)methylene can help for tuning molecular packing and improving solubility to enable the improved charge transport mobility of solution-processed OFETs.
關鍵字(中) ★ 有機場效應電晶體
★ 半月型塗佈法
★ 具硫鏈醌有機小分子
★ 醌型環戊烷二噻吩
關鍵字(英) ★ OFET
★ Solution-sheared
★ small molecules with bis(alkylthio)methylene side chains
★ cyclopentadithiophene based n-type quinoidal
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
一、緒論 1
1-1 前言 1
1-2 有機場效應電晶體簡介 2
1-2-1 元件結構 2
1-2-2 工作機制 7
1-2-3 電晶體特性曲線及效能參數 8
1-3 有機半導體材料 11
1-3-1 p型有機半導體 11
1-3-1-1 多環芳香烴和其衍生物 11
1-3-1-2 含硫多環和其衍生物 12
1-3-1-3 含氮多環及其衍生物 12
1-3-2 n型有機半導體 14
1-3-2-1 含氟化合物 14
1-3-2-2 含醯亞胺(Imide)基化合物 14
1-3-2-3 含氰基化合物 15
1-3-2-4 醌型(Quinoidal)有機小分子材料 15
1-3-3 以碳-碳雙鍵作為起點之硫碳側鏈材料 22
1-4 有機半導體薄膜製程 24
1-4-1 液滴塗佈法 (drop casting) 25
1-4-2 旋轉塗佈法 ( Spin-coating) 27
1-4-3 印刷法 (printing) 28
1-4-4 半月型塗佈法 (Meniscus-guided method) 30
1-5 分子排列 33
1-5-1 π共軛主鏈之分子堆疊 33
1-5-2 分子間π-π堆疊之分子排列 35
1-6 研究動機 37
二、實驗方式 38
2-1 實驗藥品 38
2-2 實驗設備 40
2-2-1 紫外光-可見光光譜儀 (UV-vis Spectroscopy) 41
2-2-2 分子模擬計算 41
2-2-3 元件電性量測 41
2-2-4 偏光光學顯微鏡 (Polarized Optical Microscopy, POM) 41
2-2-5 原子力學顯微鏡 (AFM) 41
2-2-6 低掠角廣角X光繞射 (Grazing incidence X-ray diffraction, GIXRD) 42
2-3 實驗方法 43
2-3-1 基板前處理與表面修飾 43
2-3-2 元件製程 44
三、結果與討論 47
3-1 有機小分子半導體材料性質分析 47
3-1-1 熱性質分析 47
3-1-2 紫外光可見光吸收圖譜分析 48
3-1-3 光學性質及分子軌域 51
3-1-4 單晶結構 54
3-2 有機場效應電晶體電性分析 56
3-3 薄膜形貌分析 61
3-3-1 光學顯微鏡下之表面形貌 61
3-3-2 原子力學顯微鏡下之表面形貌 62
3-4 有機小分子半導體薄膜微結構分析 64
3-4-1 低掠角廣角X光繞射 (Grazing incidence X-ray diffraction, GIXRD) 64
四、結論與未來展望 69
參考文獻 71
附錄 74
參考文獻 [1.] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
[2.] J. Li, Z. Sun, F. Yan, Adv. Mater. 2012, 24, 88.
[3.] J. T. E. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, J. Mater. Chem. C 2017, 5, 8654.
[4.] X. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114, 8943.
[5.] J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107, 1296.
[6.] Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 606.
[7.] S. K. Park, T. N. Jackson, J. E. Anthony, D. A. Mourey, Appl. Phys. Lett. 2007, 91, 063514.
[8.] K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, X. Zhan, G. Yu, J. Qin, W. Hu, D. Zhu, J. Am. Chem. Soc. 2005, 127, 13281.
[9.] S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson, J. E. Anthony, J. Am. Chem. Soc. 2008, 130, 2706.
[10.] Q. Tang, D. Zhang, S. Wang, N. Ke, J. Xu, J. C. Yu, Q. Miao, Chem. Mater. 2009, 21, 1400.
[11.] W. Hong, Z. Wei, H. Xi, W. Xu, W. Hu, Q. Wang, D. Zhu, J. Mater. Chem. 2008, 18.
[12.] Y. Sakamoto, M. Suzuki T Fau - Kobayashi, Y. Kobayashi M Fau - Gao, Y. Gao Y Fau - Fukai, Y. Fukai Y Fau - Inoue, F. Inoue Y Fau - Sato, S. Sato F Fau - Tokito, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
[13.] D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M. Meyer, J. T. Carey, Chem. Mater. 2008, 20, 7486.
[14.] R. J. Chesterfield, C. R. Newman, T. M. Pappenfus, P. C. Ewbank, M. H. Haukaas, K. R. Mann, L. L. Miller, C. D. Frisbie, Adv. Mater. 2003, 15, 1278.
[15.] K. Yamamoto, Y. Ie, M. Nitani, N. Tohnai, F. Kakiuchi, K. Zhang, W. Pisula, K. Asadi, P. W. M. Blom, Y. Aso, J. Mater. Chem. C 2018, 6, 7493.
[16.] S. Handa, E. Miyazaki, K. Takimiya, Y. Kunugi, J. Am. Chem. Soc. 2007, 129, 11684.
[17.] S. Handa, E. Miyazaki, K. Takimiya, Chem. Commun. 2009, 3919.
[18.] Y. Suzuki, E. Miyazaki, K. Takimiya, J. Am. Chem. Soc. 2010, 132, 10453.
[19.] Y. Suzuki, M. Shimawaki, E. Miyazaki, I. Osaka, K. Takimiya, Chem. Mater. 2011, 23, 795.
[20.] Y. Qiao, J. Zhang, W. Xu, D. Zhu, J. Mater. Chem. 2012, 22.
[21.] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 28, 5949.
[22.] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084.
[23.] C. Wang, Y. Qin, Y. Sun, Y.-S. Guan, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15978.
[24.] T. Kashiki, E. Miyazaki, K. Takimiya, Chem. Lett. 2009, 38, 568.
[25.] S. Wang, M. Wang, X. Zhang, X. Yang, Q. Huang, X. Qiao, H. Zhang, Q. Wu, Y. Xiong, J. Gao, H. Li, Chem. Commun. 2014, 50, 985.
[26.] Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem. Mater. 2011, 23, 3138.
[27.] Q. Wu, X. Qiao, Q. Huang, J. Li, Y. Xiong, X. Gao, H. Li, RSC Adv. 2014, 4, 16939.
[28.] S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2017, 27.
[29.] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26, 5782.
[30.] T. Mori, N. Yanai, I. Osaka, K. Takimiya, Org. Lett. 2014, 16, 1334.
[31.] J. Li, X. Qiao, Y. Xiong, W. Hong, X. Gao, H. Li, J. Mater. Chem. C 2013, 1, 5128.
[32.] Q. Wu, S. Ren, M. Wang, X. Qiao, H. Li, X. Gao, X. Yang, D. Zhu, Adv. Funct. Mater. 2013, 23, 2277.
[33.] L. Ren, D. Yuan, E. Gann, Y. Guo, L. Thomsen, C. R. McNeill, C.-a. Di, Y. Yi, X. Zhu, D. Zhu, Chem. Mater. 2017, 29, 4999.
[34.] C. Zhang, Y. Zang, E. Gann, C. R. McNeill, X. Zhu, C.-a. Di, D. Zhu, J. Am. Chem. Soc. 2014, 136, 16176.
[35.] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C. A. Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 28, 8456.
[36.] C. Zhang, D. Yuan, H. Wu, E. Gann, L. Thomsen, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, J. Mater. Chem. C 2017, 5, 1935.
[37.] L. Ren, D. Yuan, X. Zhu, Chem. - Asian J. 2019, 14, 1717.
[38.] S.-H. Lee, B. Lim, M. Pei, H. Yang, Y.-Y. Noh, J. Mater. Chem. C 2018, 6, 7604.
[39.] S. J. Cho, M. J. Kim, Z. Wu, J. H. Son, S. Y. Jeong, S. Lee, J. H. Cho, H. Y. Woo, ACS Appl. Mater. Interfaces 2020, 12, 41842.
[40.] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
[41.] C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, Y.-L. Loo, Appl. Phys. Lett. 2008, 93, 103302.
[42.] H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, Z. Bao, J. Am. Chem. Soc. 2012, 134, 2760.
[43.] F. Zhang, C. A. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H. Sirringhaus, D. Zhu, Adv. Mater. 2013, 25, 1401.
[44.] M. Shao, S. Das, K. Xiao, J. Chen, J. K. Keum, I. N. Ivanov, G. Gu, W. Durant, D. Li, D. B. Geohegan, J. Mater. Chem. C 2013, 1, 4384.
[45.] W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, K. Müllen, Adv. Mater. 2005, 17, 684.
[46.] M. Chen, B. Peng, S. Huang, P. K. L. Chan, Adv. Funct. Mater. 2019, 30, 1905963.
[47.] I. Osaka, K. Takimiya, Polymer 2015, 59, A1.
[48.] Z.-F. Yao, J.-Y. Wang, J. Pei, Cryst. Growth Des. 2018, 18, 7.
[49.] X. Zhang, J. P. Johnson, J. W. Kampf, A. J. Matzger, Chem. Mater. 2006, 18, 3470.
[50.] M. Pandey, N. Kumari, S. Nagamatsu, S. S. Pandey, J. Mater. Chem. C 2019, 7, 13323.
[51.] A. S. M. Tripathi, S. Sadakata, R. K. Gupta, S. Nagamatsu, Y. Ando, S. S. Pandey, ACS Appl. Mater. Interfaces 2019, 11, 28088.
[52.] J. Rivnay, S. C. Mannsfeld, C. E. Miller, A. Salleo, M. F. Toney, Chem. Rev. 2012, 112, 5488.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明