博碩士論文 108223006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.145.41.253
姓名 陳科廷(Ke-Ting Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具磺酸官能基中孔洞矽材與製備奈米鈀金屬於中孔洞碳氮材在有機催化反應之應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究主要探討方向分為兩大部分。第一部分是利用TEOS及MPTMS為共同矽源,P123作為軟模板,在酸性環境下以雙氧水作為氧化劑,並以直接合成法的方式合成出具有磺酸官能基之中孔洞矽材K6SX及S15SX。由於K6SX及S15SX具有高比表面積以及良好的孔洞體積,並且經官能基修飾後,表面會富含磺酸官能基,藉此期望在果醣水解產出5-羥甲基糠醛(HMF)反應上會擁有良好的表現。本實驗將製成的K6SX以及S15SX應用在催化果醣水解反應上,分別探討二維結構以及三維結構、不同溫度以及不同催化劑量對催化活性之影響。經過一系列的探討,K6S20作為催化劑去進行果醣水解反應,其HMF產率可達87.42%( Ratio(Mfructose/Mcata) = 9)。在這項研究中, K6S20展示了其應用於催化果醣水解產HMF是一具高催化活性的催化劑。
而在第二部分研究中,透過三維結構之中孔洞碳材CMK-9及中孔洞碳氮材N-CMK-9作為載體,並利用化學還原劑使金屬還原速率上升,將奈米鈀金屬還原在N-CMK9及CMK-9中。CMK-9及N-CMK-9具有高比表面積以及良好的孔洞體積,此外N-CMK-9還具有缺陷的CN位點,更能使離子鈀金屬快速且平均分散在孔道之中,進而提高催化活性。本實驗將製成的Pd(X)@C9以及Pd(X)@NC9應用在催化六價鉻還原反應當中,分別探討不同載體以及不同含浸金屬量對催化活性之影響。在催化六價鉻還原反應的研究中,Pd(2)@NC9展現出很高的催化活性,其TOF值可達1.78 min-1。在這項研究中,Pd(2)@NC9展示其用於六價鉻還原催化反應中是具有高前景的催化劑。
摘要(英) This thesis consists of two parts. In the first part, the sulfonic acid functionalized mesoporous silicas (K6SX and S15SX) have been successfully synthesized by one-pot synthesis using tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) as silicon source, P123 as a soft template and hydrogen peroxide as an oxidant in an acidic environment. According to the BET result, the surface area of K6S20 and S15S20 was confirmed about 682.6 m2/g and 452.5 m2/g. Because of the high surface area, good pore volume, and rich in sulfonic acid functional groups, K6S20 and S15S20 might have a good performance in the reaction of fructose hydrolysis to produce 5-hydroxymethylfurfural (HMF). Among all the as-prepared catalysts, K6S20 exhibited the highest HMF yield of 87.42 % at 135oC with 20 mg catalyst, 3 ml DMSO and 1 mmol fructose.
In the second part, palladium nanoparticles embedded in mesoporous N-doped carbon material (N-CMK-9), which was synthesized by nanocasting, through the double agent chemical reduction method as a catalytic catalyst. N-doped carbon material N-CMK-9 has a high surface area, good pore volume, defective CN sites and nitrogen gaps, so palladium nanoparticles could be uniformly dispersing in the materials to improve the catalytic activity. According to the TEM images, the particle size of the palladium nanoparticles was confirmed about 2-6 nm and 2-5 nm. The Pd(X)@C9 and Pd(X)@NC9 exhibited high catalytic activity for the reduction of environmentally harmful Cr(VI) to Cr (III). Among all the as-prepared catalysts, Pd(2)@NC9 exhibited the highest turnover frequency of 1.72 min-1.
關鍵字(中) ★ 奈米鈀金屬
★ 中孔洞矽材
★ 中孔洞碳氮材
★ 果醣水解反應
★ 六價鉻還原
關鍵字(英) ★ palladium nanoparticles
★ mesoporous silicas
★ mesoporous N-doped carbon material
★ fructose hydrolysis
★ reduction of Cr(VI)
論文目次 摘要 i
Abstract iii
謝誌 iv
目錄 vi
圖目錄 xi
表目錄 xvii
第一章 緒論 1
第壹部分 具磺酸官能基中孔洞矽材催化水解果醣 1
1-1中孔洞矽材(Ordered Mesoporous Silica, OMS) 1
1-1-1中孔洞矽材之簡介 1
1-1-2 中孔洞矽材的定義 1
1-1-3 中孔洞矽材合成方法 3
1-1-3 軟性模板-微胞結構 4
1-2 二維與三維中孔洞矽材 7
1-2-1 二維與三維中孔洞矽材之差異 7
1-2-2 二維及三維中孔洞矽材-M41S 7
1-2-3 二維中孔洞矽材-SBA-15 8
1-2-1三維中孔洞矽材-KIT-6 9
1-3 官能基化中孔洞矽材 10
1-3-1中孔洞矽材表面修飾法 10
1-3-2表面修飾含磺酸官能基之中孔洞矽材 12
1-4 果糖水解反應 16
1-4-1 羥甲基糠醛(Hydroxymethylfurfural)介紹 16
1-4-2具磺酸官能基中孔洞矽材催化果糖水解反應文獻回顧 17
第貳部分 鈀金屬在中孔洞碳氮材催化鉻還原反應 21
1-5 中孔洞碳氮材 21
1-5-1 有序中孔洞碳材(Ordered Mesoporous Carbons, OMCs) 21
1-5-2 有序中孔洞碳氮材 22
1-5-3 奈米鑄模法(Nanocasting)合成機制 23
1-5-4奈米鑄模法合成有序中孔洞碳氮材之發展 24
1-6 鈀金屬催化六價鉻還原反應 31
1-6-1 六價鉻介紹 31
1-6-2 鈀金屬催化六價鉻還原機制介紹 33
1-6-3 鈀金屬催化六價鉻還原反應文獻回顧 34
1-7 研究動機與目的 37
第二章 實驗部分 38
2-1 實驗藥品 38
2-2 實驗步驟 40
第壹部分 具磺酸官能基中孔洞矽材催化水解果醣 40
2-2-1 合成具磺酸官能基之SBA-15(S15SX) 40
2-2-2 合成具磺酸官能基之KIT-6(K6SX) 40
2-2-4 以硫酸溶液裂解孔洞中模板 41
2-2-5 催化水解果糖實驗 41
2-2-6 催化水解果糖重複使用實驗 42
2-2-7 合成碳孔洞材料CMK9 42
2-2-8合成碳氮孔洞材料N-CMK9 43
2-2-9利用雙還原劑還原法還原奈米金屬[Pd(Y)@C9、Pd(Y)@NC9] 43
2-2-10 催化六價鉻還原反應 45
2-3 實驗設備 47
2-3-1實驗合成設備 47
2-3-2 實驗鑑定儀器 47
2-4 鑑定儀器之原理 49
2-4-1同步輻射光束線 49
2-4-2 X射線粉末繞射(PXRD) 51
2-4-3傅立葉紅外線吸收光譜儀(FTIR) 52
2-4-4固態核磁共振(Solid State NMR) 53
2-4-5氮氣吸脫附等溫曲線、表面積與孔洞特性鑑定 63
2-4-6穿透式電子顯微鏡(TEM) 68
2-4-7掃描式電子顯微鏡(SEM) 70
2-4-8元素分析儀(Elemental Analyzer;EA) 71
2-4-9光電子能譜 XPS 72
2-4-10感應偶和電漿原子發射光譜分析儀 (ICP-AES) 73
2-4-10紫外光-可見光光譜儀 (UV-Vis) 74
2-4-10高效能液相層析儀 (HPLC) 76
第三章 結果與討論 77
第壹部分 具磺酸官能基中孔洞矽材催化水解果醣 77
3-1材料基本性質鑑定 77
3-1-1 小角度X光繞射圖(SAXRD) 77
3-1-2 氮氣吸脫附鑑定(BET) 80
3-1-3 掃描式電子顯微鏡(SEM) 83
3-1-4 穿透式電子顯微鏡(TEM) 85
3-1-5 傅立葉紅外線吸收光譜(FT-IR) 87
3-1-6 Solid NMR 88
3-1-7元素分析(EA) 91
3-2果糖水解產HMF實驗 92
3-2-1 K6SX催化果糖水解反應 92
3-2-2 S15SX催化果糖水解反應 94
3-2-3不同材料對催化果糖水解反應之比較 96
3-2-4不同溫度對催化果糖水解反應之比較 98
3-2-5不同比例之催化劑與果糖對催化果糖水解反應之比較 100
第貳部分 奈米鈀金屬催化鉻還原反應 103
3-3 材料基本性質鑑定 103
3-3-1 小角度X光繞射圖(SAXRD) 103
3-3-2 廣角度X光繞射圖(WAXRD) 106
3-3-2 等溫氮氣吸脫附鑑定(BET) 108
3-3-3穿透式電子顯微鏡(TEM) 112
3-3-4 X射線光電子能譜(XPS)及元素分析(EA) 119
3-4 奈米鈀金屬催化六價鉻還原反應實驗 124
3-4-1 Pd(X)@C9六價鉻還原 126
3-4-2 Pd(X)@NC9六價鉻還原 128
3-4-3 Pd(2)@NC9六價鉻還原之反應動力學探討 131
第四章 結論 138
第五章 參考資料 140
參考文獻 1. D. Saikia, Y.-Y.H., C.-E. Wu and H.-M. Kao,, RSC Advances, 2016. 6: p. 35167-35176.
2. H. Gu, H.F.J., Y. L. Deng and R. J. Dai, Materials Technology, 2014. 29: p. 21-24.
3. J. Manna, S.A.a.S.Ö., Applied Catalysis B: Environmental, 2017. 208: p. 104-115.
4. S. Hao, A.V., P. Aprea, F. Pepe, D. Caputo and W. Zhu, Microporous and Mesoporous Materials, 2016. 236: p. 250-259.
5. Y. Ge, W.Y., Z. H. Shah, X. Lin, R. Lu and S. Zhang, ACS applied materials & interfaces, 2017(9): p. 3749-3756.
6. Y.-C. Yang, J.R.D., C.-E. Wu, C.-H. Tsai, D. Saikia and H.-M. Kao, Journal of Materials Science, 2017. 52: p. 6322-6340.
7. Z. Liang, W.S., Z. Zhao, T. Sun and F. Cui, Journal of Colloid and Interface Science, 2017. 496: p. 382-390.
8. Zadeh, P.S.N. and B. Åkerman, The Journal of Physical Chemistry B, 2017. 121: p. 2575-2583.
9. Yu, P.-J., et al., RSC Advances, 2015. 5: p. 13985-13992.
10. Da′na, E., Microporous and Mesoporous Materials, 2017. 247: p. 145-157.
11. N. I. Vazquez, Z.G., B. Ferrari and Y. Castro, Boletín de la Sociedad Española de Cerámica y Vidrio, 2017. 56: p. 139-145.
12. D. Karimian, B.Y.a.V.M., Microporous and Mesoporous Materials, 2017. 247: p. 23-30.
13. Everett, D.H., MANUAL OF SYMBOLS AND TERMINOLOGY FOR PHYSICOCHEMICAL QUANTITIES AND UNITS APPENDIX II Definitions, Terminology and Symbols in Colloid and Surface Chemistry PART I. Pure Apple. Chem, 1972. 31: p. 578-638.
14. Frank, H.M., C.; Jürgen, M.; Michael, F., Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 2006. 45(20): p. 3216-3251.
15. Raman, N.K.A., M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials, 1996. 8 (8): p. 1682-1701.
16. 黃昱源 and 吳嘉文, 中孔洞奈米材料之孔洞方向控制及其應用. 科學發展, 2015. 513: p. 16-21.
17. L. V.-E. Juan, C.Y.-D., C. W. W. Kevin and Y. Yusuke, Science and Technology of Advanced Materials, 2012. 13: p. 013003.
18. Yang, K.N., et al., pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med, 2014. 11(1): p. 34-43.
19. Jadhav, K.S., P. S. Dumbare, and V. V. Pande, Mesoporous Silica Nanoparticles (MSN): A nanonetwork and hierarchical structure in drug delivery. J Nanomed Res, 2015. 2(5): p. 1-8.
20. Y. Shi, Y.W.a.D.Z., Chem Soc Rev, 2011. 40: p. 3854-3878.
21. Tarek A. Fayed, M.H.S., Marwa N. El‑Nahass, Fathy M. Hassan, Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. Chemical and Applied Biological Sciences, 2014. 1(2): p. 1-74.
22. S.-H. Wu, C.-Y.M.a.H.-P.L., Chemical Society Reviews, 2013. 42: p. 3862-3875.
23. de AA. Soler-Illia, G.J., et al, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews (Washington, D. C.), 2002. 102: p. 4093-4138.
24. Evans, H.W.D.F., The Colloidal Domain: Where Physics. Chemistry, Biology, and Technology Meet, 1999. Vol. 2nd Edition.
25. Han, L., and Shunai Che., An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self‐assembled systems. Advanced Materials and Processes, 2018. 30: p. 1705708.
26. Kresge, A.C., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature (London), 1992. 359: p. 710-712.
27. Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114: p. 10834-10843.
28. Sayari, A., Catalysis by crystalline mesoporous molecular sieves. Chemistry of Materials, 1996. 8: p. 1840-1852.
29. Neumann, R., and Alexander M. Khenkin., Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides. Chemical Communications, 1996. 23: p. 2643-2644.
30. Chakraborty, B., Alex C. Pulikottil, and B. Viswanathan., Alkylation of naphthalene with alcohols over mesoporous MCM-41. Catalysis letters, 1996. 39: p. 63-65.
31. Lee, Y.S., Dede Surjadi, and James F. Rathman., Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates. Langmuir 1996. 12: p. 6202-6210.
32. Ko, C.H., and Ryong Ryoo., Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications, 1996. 21: p. 2467-2468.
33. Belmabkhout, Y., Rodrigo Serna-Guerrero, and Abdelhamid Sayari., Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: Pure CO2 adsorption. Chemical Engineering Science, 2009. 64: p. 3721-3728.
34. Robles-Dutenhefner, P.A., et al., Cobalt-catalyzed oxidation of terpenes: Co-MCM-41 as an efficient shape-selective heterogeneous catalyst for aerobic oxidation of isolongifolene under solvent-free conditions. Journal of catalysis, 2009. 265: p. 72-79.
35. Yang, H., et al., Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Applied Clay Science, 2010. 47: p. 351-355.
36. Zhao, D., et al. , Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science & Culture, 1998. 279: p. 548-552.
37. Galarneau, A., et al., Understanding the stability in water of mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C, 2007. 111: p. 8268-8277.
38. Kleitz, F., Shin Hei Choi, and Ryong Ryoo., Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. chemical Communications, 2003. 17: p. 2136-2137.
39. Almar, L., Colldeforns, B., Yedra, L., Estrade, S., Peiró, F., Morata, A., High-temperature long-term stable ordered mesoporous Ni–CGO as an anode for solid oxide fuel cells. Journal of Materials Chemistry A, 2013. 1: p. 4531-4538.
40. Steel, A., S.W. Carr, and M.W. Anderson, 29Si solid-state NMR study of mesoporous M41S materials. Chem. Mater., 1995. 7: p. 1829-1832.
41. Lim, M.H., C.F. Blanford, and A. Stein, Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chem. Mater., 1998. 10(2): p. 467-470.
42. Melero, J.A., Rafael van Grieken, and Gabriel Morales., Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials. Chemical Reviews (Washington, D. C.), 2006. 106: p. 3790-3812.
43. Van Rhijn, W.M.V., D., D.E.; Sels, BF; Bossaert, WD; Jacobs,P.A., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chem. Commun., 1998. 317.
44. Margolese, D., et al., Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials, 2000. 12: p. 2448-2459.
45. Yang, Q., Liu, J., Yang, J., Kapoor, M. P., Inagaki, S., and Li, C., Synthesis, characterization, and catalytic activity of sulfonic acid-functionalized periodic mesoporous organosilicas. Journal of catalysis 2004. 228: p. 265-272.
46. Tsai, H.H.G., Chiu, P. J., Jheng, G. L., Ting, C. C., Pan, Y. C., & Kao, H. M, Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups. Journal of colloid and interface science, 2011. 359: p. 86-94.
47. Chisti, Y., Biodiesel from microalgae. Biotechnology advances, 2007. 25: p. 294-306.
48. Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., and Dumesic, J. A., Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature (London), 2007. 447: p. 982-985.
49. Sievers, C., Musin, I., Marzialetti, T., Valenzuela Olarte, M. B., Agrawal, P. K., and Jones, C. W. , Acid‐catalyzed conversion of sugars and furfurals in an ionic‐liquid phase. ChemSusChem, 2009. 2: p. 665-671.
50. Ray, D., Mittal, N., and Chung, W. J., Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature. Carbohydrate research, 2011. 346: p. 2145-2148.
51. Thananatthanachon, T., and Rauchfuss, T. B. , Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation. ChemSusChem, 2010. 3: p. 1139-1141.
52. Jing, Y., Gao, J., Liu, C., and Zhang, D., Theoretical insight into the conversion mechanism of glucose to fructose catalyzed by CrCl2 in imidazolium chlorine ionic liquids. The Journal of Physical Chemistry B, 2017. 121: p. 2171-2178.
53. B Nasirudeen, M., Helen C Hailes, and Julian RG Evans., Preparation of 5-hydroxymethylfurfural from glucose and fructose in ionic liquids by reactive vacuum distillation over a solid catalyst. Current Organic Synthesis, 2017. 14: p. 596-603.
54. Tang, H., et al., Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin. Green Chemistry 2017. 19: p. 1855-1860.
55. Koujout, S., and D. R. Brown., The influence of solvent on the acidity and activity of supported sulfonic acid catalysts. Catalysis letters, 2004. 98: p. 195-202.
56. Crisci, A.J., Tucker, M. H., Lee, M. Y., Jang, S. G., Dumesic, J. A., and Scott, S. L. , Acid-functionalized SBA-15-type silica catalysts for carbohydrate dehydration. Acs Catalysis, 2011. 1: p. 719-728.
57. Guo, X., Cao, Q., Jiang, Y., Guan, J., Wang, X., and Mu, X., Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl. Carbohydrate research, 2012. 351: p. 35-41.
58. Hafizi, H., Chermahini, A. N., Saraji, M., and Mohammadnezhad, G., The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica. Chemical Engineering Journal, 2016. 294: p. 380-388.
59. Maldonado, C.S., De la Rosa, J. R., Lucio-Ortiz, C. J., Valente, J. S., and Castaldi, M. J. , Synthesis and characterization of functionalized alumina catalysts with thiol and sulfonic groups and their performance in producing 5-hydroxymethylfurfural from fructose. Fuel, 2017. 198: p. 134-144.
60. Chermahini, A.N., Hafizi, H., Andisheh, N., Saraji, M., and Shahvar, A. , The catalytic effect of Al-KIT-5 and KIT-5-SO 3 H on the conversion of fructose to 5-hydroxymethylfurfural. Research on Chemical Intermediates, 2017. 43: p. 5507-5521.
61. Sui, Z., Meng, Q., Zhang, X., Ma, R., & Cao, B. , Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry, 2012. 22: p. 8767-8771.
62. Wang, W.Y., D., Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific reports of cetacean research, 2014. 4: p. 5711.
63. Fang, W.Z., N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta, 2017. 238: p. 202-209.
64. Lamond, T.G.M., H., The surface properties of carbon—III the process of activation of carbons. Carbon, 1964. 1: p. 293-307.
65. Hu, Z.S., M. P.; Ni, Y., Preparation of Mesoporous High-Surface-Area Activated Carbon. Advanced Materials, 2000. 12: p. 62-65.
66. Tamon, H.I., H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon, 1999. 37: p. 2049-2055.
67. Pekala, R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science, 1989. 24: p. 3221-3227.
68. Marsh, H.R., B., The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. . Carbon 1971. 9: p. 63-77.
69. Tamai, H.K., T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules. Chemistry of Materials, 1996. 8: p. 454-462.
70. Oya, A.Y., S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon, 1995. 33: p. 1085-1090.
71. Ozaki, J.E., N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997. 35: p. 1031-1033.
72. Liang, C.H., K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition, 2004. 43: p. 5785-5789.
73. Liang, C.D., S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006. 128: p. 5316-5317.
74. Knox, J.H.K., B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A, 1986. 352: p. 3-25.
75. Knox, J.H., Unger, K. K.; Mueller, H., Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography. . Journal of Liquid Chromatography, 1983. 6: p. 1-36.
76. Li, W.-C.L., A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004. 16: p. 5676-5681.
77. Ryoo, R.J., S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B, 1999. 103: p. 7743-7746.
78. Ryoo, R.J., S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. 2001.
79. Wang, Y.W., X.; Antonietti, M., Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. . Angewandte Chemie International Edition, 2012. 51: p. 68-89.
80. Zheng, Y.L., J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science, 2012. 5: p. 6717-6731.
81. Zhu, C.D., S., Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale, 2013. 5: p. 1753-1767.
82. Portehault, D.G., C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M., High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials, 2010. 20: p. 1827-1833.
83. Lee, J.H.R., J.; Kim, J. Y.; Nam, S.-W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W., Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. Journal of Materials Chemistry A 2014. 2: p. 9190-9495.
84. Deng, Q.-F.L., L.; Lin, X.-Z.; Du, G.; Liu, Y.; Yuan, Z.-Y., Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal, 2012. 203: p. 63-70.
85. Wei, J.Z., D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials 2013. 23: p. 2322-2328.
86. Xiao, J.X., Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H., Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental, 2016. 181: p. 420-428.
87. Malik, R.T., V. K.; Dankwort, T.; Mishra, Y. K.; Kienle, L., Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. Journal of Materials Chemistry A, 2018. 6: p. 10718-10730.
88. Vinu, A.A., K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y., Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials and Processes, 2005. 17: p. 1648-1652.
89. Mane, G.P.D., D. S.; Anand, C.; Ariga, K.; Ji, Q.; Wahab, M. A.; Mori, T.; Vinu, A., Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 2013. 1: p. 2913-2920.
90. Ding, Q., & Hu, X. , Mesoporous materials as catalyst support for wastewater treatment. . Journal of Nanotechnology & Nanoscience., 2019.
91. Qiu, Y.G., L., Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chemical Communications, 2003. 18: p. 2378-2379.
92. Guo, Q.Y., Q.; Zhu, L.; Yi, C.; Zhang, S.; Xie, Y., A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications, 2004. 132: p. 369-374.
93. Kaatz, F.H.D., J. Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H., Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE). Journal of Crystal Growth, 2003. 247: p. 509-515.
94. Zimmerman, J.L.W., R.; Khabashesku, V. N.; Margrave, J. L., Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters, 2001. 1: p. 731-734.
95. Zhao, D.F., J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science & Culture, 1998. 279: p. 548.
96. Zhong, L.A., C.; Lakhi, K. S.; Lawrence, G.; Vinu, A., Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific reports of cetacean research, 2015. 5: p. 12901.
97. Vinu, A.S., P.; Sawant, D. P.; Mori, T.; Ariga, K.; Chang, J.-S.; Jhung, S.-H.; Balasubramanian, V. V.; Hwang, Y. K., Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials, 2007. 19: p. 4367-4372.
98. Lakhi, K.S.C., W. S.; Joseph, S.; Wood, B. J.; Aldeyab, S. S.; Lawrence, G.; Choy, J.-H.; Vinu, A., Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 2015. 243: p. 209-217.
99. Jin, X.B., V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A., Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metal-Free Basic Catalyst. Angewandte Chemie International Edition, 2009. 48: p. 7884-7887.
100. Talapaneni, S.N.M., G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A., Synthesis of Nitrogen-Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem, 2012. 5: p. 700-708.
101. Talapaneni, S.N.A., S.; Mane, G. P.; Anand, C.; Dhawale, D. S.; Varghese, S.; Mano, A.; Mori, T.; Vinu, A., Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry A, 2012. 22: p. 9831-9840.
102. Ma, F.Z., H.; Sun, L.; Li, Q.; Huo, L.; Xia, T.; Gao, S.; Pang, G.; Shi, Z.; Feng, S., A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry, 2012. 22: p. 13464-13468.
103. Chen, X.Y.C., C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W., Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. . Journal of Power Sources 2013. 230: p. 50-58.
104. Sun, G.M., L.; Ran, J.; Li, B.; Shen, X.; Tong, H., Sun, G.; Ma, L.; Ran, J.; Li, B.; Shen, X.; Tong, H. Electrochimica Acta, 2016. 194: p. 168-178.
105. Nriagu, J.O., Chromium in the Natural and Human Environments. Wiley Interscience: New York, 1988: p. 81-105.
106. Zhu, K.C., C.; Xu, H.; Gao, Y.; Tan, X.; Alsaedi, A.; Hayat, T., Cr(VI) Reduction and Immobilization by Core Double Shell Structured Magnetic Polydopamine@Zeolitic Idazolate Frameworks 8 Microspheres. ACS Sustain. Chem. Eng., 2017. 5: p. 6795-6802.
107. Zhu, K.G., Y.; Tan, X.; Chen, C., Polyaniline Modified Mg/Al Layered Double Hydroxide Composites and Their Application in Efficient Removal of Cr(VI). ACS Sustain. Chem. Eng., 2016. 4: p. 4361-4369.
108. Gao, Y.C., C.; Tan, X.; Xu, H.; Zhu, K., Polyaniline modified 3D flower like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interface Sci., 2016. 476: p. 62-70.
109. Liu, M.W., T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X., Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Trans., 2013. 42: p. 14710.
110. World Health Organization, Guidelines for Drinking Water Quality. WHO, Press, Geneva., 2008.
111. USEPA. Toxicology Reviews of Hexavalent Chromium, CAS No. 18540 29 9. U.S. Environmental Protection Agency: Washington, DC., 1998.
112. Zhao, Z., An, H., Lin, J., Feng, M., Murugadoss, V., Ding, T., ... and Guo, Z., Progress on the photocatalytic reduction removal of chromium contamination. The Chemical Record, 2019. 19: p. 873-882.
113. Zhitkovich, A., Chromium in drinking water: sources, metabolism, and cancer risks. Chem. Res. Toxicol., 2011. 24: p. 1617-29.
114. Mori, K.D., M.; Yamashita, H., Pd and Pd Ag Nanoparticles within a Macroreticular Basic Resin: An Efficient Catalyst for Hydrogen Production from Formic Acid Decomposition. ACS Catal., 2013. 3: p. 1114-1119.
115. Celebi, M.Y., M.; Bulut, A.; Kaya, M.; Zahmakiran, M., Palladium nanoparticles supported on amine functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl. Catal. B, 2016. 180: p. 53-64.
116. Omole, M.A.K.O., I. O.; Sadik, O. A., Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Appl. Catal., B, 2007. 76: p. 158-167.
117. Dandapat, A.J., D.; De, G., Pd nanoparticles supported mesoporous γ Al2O3 film as a reusable catalyst for reduction of toxic CrVI to CrIII in aqueous solution. Appl. Catal., A, 2011. 396: p. 34-39.
118. Huang, Y., Ma, H., Wang, S., Shen, M., Guo, R., Cao, X., ... & Shi, X., Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. . ACS applied materials & interfaces, 2012. 4: p. 3054-3061.
119. Brunauer, S., et al., On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc., 1940. 62: p. 1723-1732.
120. Gregg, S.J. and K.S.W. Sing, Adsorption, Surface Area and Porosity 2nd ed., Academic press, New work. 1982.
121. Zhao, J., Zhou, C., He, C., Dai, Y., Jia, X., & Yang, Y. , Efficient dehydration of fructose to 5-hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catalysis Today, 2016. 264: p. 123-130.
122. Qi, X., Watanabe, M., Aida, T. M., & Smith Jr, R. L., Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catalysis Communications, 2009. 10: p. 1771-1775.
123. Wang, N., Yao, Y., Li, W., Yang, Y., Song, Z., Liu, W., ... & Gao, H., Catalytic dehydration of fructose to 5-hydroxymethylfurfural over a mesoscopically assembled sulfated zirconia nanoparticle catalyst in organic solvent. . Rsc Advances, 2014. 4: p. 57164-57172.
124. I. J.Morales, M.M.R., J. S. González, P. M. Torres, A. J. López, Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst. Appl. Catal. B, 2015. 164: p. 70-76.
125. T. N. Ng, X.Q.C., K. L. Yeung, Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis. RSC Adv., 2015. 5: p. 13331-13340.
126. B. Karimi, H.M.M., The influence of hydrophobic/hydrophilic balance of the mesoporous solid acid catalysts in the selective dehydration of fructose into HMF. RSC Adv., 2013. 3: p. 20655-20661.
127. Wang, L., Zhang, L., Li, H., Ma, Y., & Zhang, R., High selective production of 5-hydroxymethylfurfural from fructose by sulfonic acid functionalized SBA-15 catalyst. Composites Part B: Engineering, 2019. 156: p. 88-94.
128. Tian, X., Liu, M., Iqbal, K., Ye, W., & Chang, Y., Facile synthesis of nitrogen-doped carbon coated Fe3O4/Pd nanoparticles as a high-performance catalyst for Cr (VI) reduction. Journal of Alloys and Compounds, 2020. 826: p. 154059.
129. Huang, Y., Ma, H., Wang, S., Shen, M., Guo, R., Cao, X., Zhu, M., Shi, X., Efficient catalytic reduction of hexavalent chromium using palladium nanoparticleimmobilized electrospun polymer nanofibers. ACS Appl. Mater. Interfaces, 2012. 4: p. 3054-3061.
130. Fu, G.-T., Jiang, X., Wu, R., Wei, S.-H., Sun, D.-M., Tang, Y.-W., Lu, T.-H., Chen, Yu, Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. . ACS Appl. Mater. Interfaces, 2014. 6: p. 22790-22795.
131. Veerakumar, P., Salamalai, K., Dhenadhayalan, N., & Lin, K. C., Catalytic activity of bimetallic (Ruthenium/Palladium) nano‐alloy decorated porous carbons toward reduction of toxic compounds. Chemistry–An Asian Journal, 2019. 14: p. 2662-2675.
132. Li, D.N., Shao, F. Q., Feng, J. J., Wei, J., Zhang, Q. L., & Wang, A. J. , Uniform Pt@ Pd nanocrystals supported on N-doped reduced graphene oxide as catalysts for effective reduction of highly toxic chromium (VI). Materials Chemistry and Physics, 2018. 205: p. 64-71.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2021-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明