參考文獻 |
[1] https://blog.pgesolar.com.tw/2021/03/24/%E5%8F%B0%E7%81%A3%E7%94%A8%E9%9B%BB%E7%B5%90%E6%A7%8B台灣用電結構
[2] O. A.A., Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes, J. CO2 Util, vol. 3, pp. 74-92, 2013.
[3] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘, 富氧燃燒技術之應用與分析, 台灣能源期刊, 二卷3期, pp. 323-331, 2015.
[4] A. Agarwal, , Advanced strategies for optimal design and operation of pressure swing adsorption processes, Carnegie Mellon University, 2010.
[5] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[6] C. W. Skarstrom, Esso Research and Engineering Company. US Patent 2944627, 1960.
[7] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, Boston, 1988.
[8] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[9] D. Daniel, M. P. G. De, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[10] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[11] K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[12] J. J. Collins, Air Separation by Adsorption. US Patent 4026680, 1975.
[13] S. J. Doong, R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[14] L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[15] A. Fuderer, E. Rudelstorfer, Selective Adsorption Process. US Patent 3986849, 1976.
[16] P. H. Turnock, R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[17] R.T. Yang, S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[18] S. Farooq, D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[19] E. Glueckauf, J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[20] L. Wang, Z. Liu, P. Li, J. Wang, and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18, no. 5-6, pp. 445-459, 2012.
[21] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu , and A. E. Rodrigues, Experimental Evaluation of Adsorption Technology for CO2 Capture, Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[22] Cho S. H., Park J. H., Beum H. T., Han S. S., and Kim J. N, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Stud SUrf Sci Catal, no. 153, pp. 405-410, 2004.
[23] G. N. Nikolaidis, E. S. Kikkinides, and M. C. Georgiadis, Model-Based Approach for the Evaluation of Materials and Processes for Post-Combustion Carbon Dioxide Capture from Flue Gas by PSA/VSA Processes, Industrial & Engineering Chemistry Research, vol. 55, no. 3, pp. 635-646, 2016.
[24] H. Prats, D. Bahamon, G. Alonso, X. Giménez, P. Gamallo, and R. Sayós, Optimal Faujasite structures for post combustion CO2 capture and separation in different swing adsorption processes, Journal of CO2 Utilization, vol. 19, pp. 100-111, 2017.
[25] Q. Huang and M. Eić, "Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process," Sep. Purif. Technol., vol. 103, pp. 203-215, 2013.
[26] J. White, Development of a Pressure Swing Adsorption(PSA) Cycle for CO2 Capture From Flue Gas Using a 4-Bed PSA Apparatus, 2016.
[27] M. Khurana and S. Farooq, Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture, Chemical Engineering Science, vol. 152, pp. 507-515, 2016.
[28] J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[29] C. T. Chou and C. Y. Chen, Carbon Dioxide Recovery by Vacuum SwingAdsorption, Separation and Purification Technology, vol. 39, pp.51-65, 2004.
[30] D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, 1998.
[31] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[32] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[33] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[34] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[35] D. F. Fairbanks and C.R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[36] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[37] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[38] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of The one-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[39] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[40] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[41] J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[42] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[43] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecular-sieving carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[44] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[45] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[46] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[47] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 碩士論文,
國立中央大學化學工程與材料工程學系, 2015.
[48] W.L. McCabe, J.C. Smith, P. Harriott, Unit operations of chemical engineering. 7 ed, McGraw-Hill: New York, 2005.
[49] R. A. Fisher, Statistical Methods for Research Worker, Oliver and Boyd, Edinburgh, 1925.
[50] R. G. Lomax, D. L. Hahs-Vaughn, Statistical Concepts: A Second Course, 4th ed., Routledge, New York, 2012.
[51] 田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 國立中央大學,碩士論文, 2013.
[52] G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[53] R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[54] 葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 2005.
[55] D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009. |