博碩士論文 107821013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.138.170.21
姓名 黃玲茹(Ling-Ru Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 兒茶素調節米色脂肪細胞的分化
(Tea Catechins Regulate Beige Adipogenic Differentiation)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 根據文獻研究,綠茶的多種兒茶素,尤其是表沒食子兒茶素沒食子酸酯(EGCG) 可減輕體重並調節脂肪細胞的活性。雖然EGCG被發現調控白色脂肪細胞、米色脂肪細胞和棕色脂肪細胞的生長及分化,但是EGCG及其結構相關的兒茶素,如表兒茶素(EC)、表沒食子兒茶素(EGC)和表兒茶素沒食子酸酯(ECG),對米色脂肪細胞成脂分化的確切機制仍尚未釐清。因此,本論文的目的是研究兒茶素對 D12 米色脂肪細胞分化的影響。結果表明茶中的兒茶素對米色脂肪細胞分化具有差異性作用,如總三酸甘油酯累積的變化所示,一般來說,EGCG 比Catechin、EC、ECG 和 EGC 更有效地減少三酸甘油酯的累積以及細胞數。此外,EGCG抑制D12 米色細胞中成脂分化指標基因的表達,包括 C/EBPα、Cidea 、PGC-1α、PPAR γ 、TBX1和 UCP-1,且呈現劑量依賴性。由於白色脂肪細胞的分化可以通過 microRNA ( miR )-let-7a和 miR-143進行調節,因此本論文也探討D12米色脂肪細胞分化期間處理EGCG時,miR-let-7a和 miR-143的表達變化。結果顯示miR-let-7a和miR-143在米色脂肪細胞分化期間第8天時顯著增加其表現量,EGCG顯著抑制miR-let-7a表達並增加miR-143表現量,且EGCG的影響呈現劑量依賴性。此外,在EGCG誘導下顯著增加HMGA2 (miR-let-7a的標的基因)及其蛋白質含量,但是對DLK1(miR-143的標的基因)的表達沒有顯著影響。為了探討EGCG對三種脂肪細胞分化期間的影響,使用了3T3-L1白色脂肪細胞和HIB1B棕色脂肪細胞進行比較,我們發現白色脂肪細胞分化期間的EGCG處理組,Cidea、PGC-1α和UCP1的mRNA表現量增加,而C/EBPα 和PPARγ的 mRNA表現量下降。有趣的是,EGCG抑制棕色脂肪細胞分化期間所有分化指標基因mRNA表達,C/EBPα 、CIDEA、PGC-1α、PPARγ 和UCP1的 mRNA表現量都下降。綜上所述,EGCG對成脂分化過程的影響呈現脂肪細胞類型非依賴性以及兒茶素依賴性。由於肥胖與脂肪細胞的活性有關,而米色脂肪細胞和棕色脂肪細胞的活性與癌症患者的惡病質有關,本論文的結果提供兒茶素用於肥胖症及癌症惡病質的可能性。
摘要(英) Green tea catechins, particularly epigallocatechin gallate (EGCG), have been reported to reduce body weight and regulate fat cell activity. Although EGCG was found to mediate the growth and differentiation of white, beige, and brown fat cells, the exact mechanisms of the actions of EGCG and other structurally-related tea catechins, such as epicatechin (EC), epigallocatechin (EGC), and epicatechin gallate (ECG), on beige adipogenic differentiation are still not clear. Thus, the objective of the present thesis was designed to investigate the effect of tea catechin on the differentiation of D12 beige fat cells. The results indicated catechin-specific effect of tea on beige cell differentiation, as indicated by changes in the total triglyceride accumulation. Generally, EGCG was more effective than catechin, EC, ECG, and EGC to reduce the accumulation of triglyceride, as well as reducing the number of cells. In addition, EGCG dose-dependently suppressed the expression of adipogenic differentiation marker genes in D12 beige cells, including C/EBPα, Cidea, PGC-1α, PPARγ, TBX1, and UCP-1. Since the differentiation of white fat cells can be regulated by microRNA (miR)-let-7a and miR-143, changes in their expression during adipogenic differentiation of D12 cells induced by EGCG were accessed. The results showed that miR-let-7a and miR-143 significantly increased their expression levels during the 8-day period of beige fat cell differentiation and that EGCG significantly inhibited miR-let-7a mRNA expression and increased miR-143 mRNA levels in a dose-dependent way. Also, EGCG induced significant increases in the HMGA2 (a target of miR-let-7a) mRNA and protein levels and had no significant effect on DLK1 (a target of miR-143) mRNA expression. Using 3T3-L1 white and HIB1B brown fat cells for comparison with the effect of EGCG on the differentiation among three fat cell types, we found that EGCG induced increases in levels of Cidea, PGC-1α and UCP1 mRNAs and decreases in levels of C/EBPα and PPARγ mRNAs during the differentiation of white fat cells. Interestingly, EGCG inhibited the mRNA expression of all C/EBPα, Cidea, PGC-1α, PPARγ, and UCP1 mRNAs during brown fat cell differentiation. In conclusions, the effect of EGCG on the process of adipogenic differentiation appears fat cell type-independent and catechin-dependent. As obesity is associated with fat cell activity and as the activities of beige and brown fat cells are associated with cachexia of cancer patients, the results of the present thesis may provide the evidence by which tea catechin exert its effects on obesity and cancer cachexia.
關鍵字(中) ★ 表沒食子兒茶素沒食子酸酯
★ 米色脂肪細胞
★ 分化
★ 總三酸甘油酯
★ 分化指標基因
關鍵字(英) ★ EGCG
★ EC
★ EGC
★ ECG
★ C/EBPα
★ Cidea
★ UCP-1
★ microRNA
★ miR-let-7a
★ miR-143
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
縮寫與全名對照表 viii
壹、前言 1
一、肥胖症 1
二、脂肪細胞 1
三、兒茶素與肥胖症 2
四、兒茶素與脂肪細胞 2
五、脂肪細胞分化的指標基因 3
六、microRNA 與兒茶素之關係 5
七、microRNA 與脂肪細胞之關係 6
八、研究動機與目的 6
貳、材料與方法 8
一、實驗材料 8
二、實驗方法 8
參、實驗結果 18
一、建立米色脂肪脂肪細胞的分化過程 18
二、EGCG影響米色脂肪細胞的細胞數及油滴量 19
三、兒茶素及其結構官能基影響米色脂肪細胞的細胞數及油滴量 19
四、兒茶素及其結構官能基抑制米色脂肪細胞內分化的指標基因表現 20
五、EGCG在米色脂肪細胞分化期間對miR-let-7a、miR-143及其標的基因的表現之影響 21
六、兒茶素及其結構官能基在米色脂肪細胞分化期間對miR-let-7a和miR-143的表現之影響 22
七、EGCG在3T3L1白色脂肪細胞分化期間的影響 22
八、EGCG在白色脂肪細胞分化期間對miR-let-7a、miR-143及其標的基因的表現之影響 23
九、EGCG在HIB1B棕色脂肪細胞分化期間的影響 24
十、EGCG在棕色脂肪細胞分化期間對miR-let-7a、miR-143及其標的基因的表現之影響 24
肆、討論 25
一、兒茶素對米色脂肪細胞分化時之油滴及細胞數的影響 25
二、兒茶素抑制米色脂肪細胞分化期間指標基因的表現 26
三、兒茶素對米色脂肪細胞分化期間miR-let-7a的影響 27
四、兒茶素對米色脂肪細胞分化期間miR-143的影響 28
五、EGCG對白色脂肪、米色脂肪和棕色脂肪分化期間指標基因表現的影響 29
六、EGCG對白色脂肪、米色脂肪和棕色脂肪分化期間miR-let-7a、miR-143及其標的基因的表現之影響 29
伍、結論 31
陸、參考文獻 33
柒、附錄 66
附錄一、使用試劑之配方 66
附錄二、抽RNA所需要的試劑之配方 70
附錄三、萃取RNA流程 71
附錄四、Reverse transcription protocol 72
附錄五、RT-PCR protocol 73
參考文獻 1. Alexander R, Lodish H, Sun L.(2011) MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opinion on Therapeutic Targets 15:623-636.
2. Arola-Arnal A, Bladé C. (2011) Proanthocyanidins Modulate MicroRNA Expression in Human HepG2 Cells. Public Library of Science One 6:e25982.
3. Barclay JL, Agada H, Jang C, Ward M, Wetzig N,Ho KKY.(2015) Effects of glucocorticoids on human brown adipocytes. Endocrinology 224: 139–147.
4. Chan CY. (2019) Natural and synthetic compunds regulate the differentiation of preadipocytes to adipocytes.
5. Chen CP. (2020) Green tea epigallocatechin gallate inhibits 3T3-L1 preadipocyte growth through the microRNA-143/DLK1 pathways.
6. Cheng M, Zhang X, Miao Y, Cao J, Wu Z, Weng P. (2017)The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3”Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International 92: 9-16.
7. Chomczynski P, Sacchi N. (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protocols 1: 581-585.
8. Chung DJ, Wu YL, Yang MY, Chan KC, Lee HJ, Wang CJ. (2020) Nelumbo nucifera leaf polyphenol extract and gallic acid inhibit TNF-α-induced vascular smooth muscle cell proliferation and migration involving the regulation of miR-21, miR-143 and miR-145. Food & Function 11: 8602-8611.
9. Darlington GJ, Ross SE, MacDougald OA.(1998) The Role of C/EBP Genes in Adipocyte Differentiation. Journal of Biological Chemistry 273: 30057-30060.
10. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P, Vandermander J. (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. The American Journal of Clinical Nutrition 70: 1040–1045.
11. Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387: 90–94.
12. Esau C, Kang X, Persalta E, Hanson E, Maarcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. (2004) MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry 279:52361–52365.
13. Esquela-Kerscher A, Slack FJ.(2006) Oncomirs – microRNAs with a role in cancer. Nature Reviews Cancer 6: 259–269.
14. Fajas L, Fruchart JC, Auwerx J. (1998) Transcriptional control of adipogenesis. Current Opinion in Cell Biology 10:165-173.
15. Furuyashiki T, Nagayasu H, Aoki Y, Bessho H, Hashimoto T, Kanazawa K, Ashida H. (2004) Tea Catechin Suppresses Adipocyte Differentiation Accompanied by Down-regulation of PPARγ2 and C/EBPα in 3T3-L1 Cells. Bioscience, Biotechnology, and Biochemistry 68: 2353–2359.
16. Giralt M, Villarroya F.(2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 154: 2992-3000.
17. Halbleib M, Skurk T, Luca C, Heimburg D, Hauner H.(2003) Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials 24:3125-3132.
18. Harms M, Seale P. (2013) Brown and beige fat: Development, function and therapeutic potential. Nature Medicine 19: 1252–1263.
19. Hilton C, Neville MJ, Karpe F. (2013) MicroRNAs in adipose tissue: their role in adipogenesis and obesity. International Journal of Obesity 37: 325–332.
20. Ikeda K, Maretich P, Kajimura1 S. (2018) The Common and Distinct Features of Brown and Beige Adipocytes. Trends in Endocrinology & Metabolism 29:191-200.
21. Ishii T, Minoda K, Bae MJ, Mori T, Uekusa Y, Ichikawa T, Aihara Y, Furuta T , Wakimoto T, Kan T, Nakayama T.(2010) Binding affinity of tea catechins for HSA: Characterization by high-performance affinity chromatography with immobilized albumin column. Molecular Nutrition & Food Research 54: 816–822.
22. Jash S, Banerjee S, Lee MJ, Farmer SR, Puri V.(2019) CIDEA Transcriptionally Regulates UCP1 for Britening and Thermogenesis in Human Fat Cells. iScience 20: 73-89.
23. Jiang Y, Ding S, Li F, Zhang C, Sun-Waterhouse D, Chen Y, Li D.(2019) Effects of (+)-catechin on the differentiation and lipid metabolism of 3T3-L1 adipocytes. Journal of Functional Foods 62: 103558.
24. Kajimura S, Spiegelman BM, Seale P. (2015) Brown and beige fat: Physiological roles beyond heat generation. Cell Metabolism 22: 546–559.
25. Kao YH, Hiipakka RA, Liao S. (2000a) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980–987.
26. Kao YH, Hippakka RA, Liao S. (2000b) Modulation of obesity by a green tea catechin. American Journal of Clinical Nutrition 72:1232–1241.
27. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA. (2007) C/EBPβ Reprograms White 3T3-L1 Preadipocytes to a Brown Adipocyte Pattern of Gene Expression. Journal of Biological Chemistry 282: 24660-24669.
28. Kim H, Hiraishi A, Tsuchiya K, Sakamoto K. (2010) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 62: 245–255.
29. Kim YJ, Min TS, Seo KS, Kim SH.(2015) Expression of pref-1/dlk-1 is regulated by microRNA-143 in 3T3-L1 cells. Molecular Biology Reports 42: 617–624.
30. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH. (2009) Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. American Journal of Physiology-Cell Physiology 297: C121-C132.
31. Lee RC, Feinbaum RL, Ambros V. (1993) The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.
32. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. Public Library of Science Biology 3: 672-687.
33. Li M, Li J, Ding X, He M, Cheng SY. (2010) microRNA and cancer. American Association of Pharmaceutical Scientists 12: 309–317.
34. Liao S, Kao YH, Hiipakka RA. (2001) Green tea: biochemical and biological basis for health benefits. Vitamins & Hormones 62:1–94.
35. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773.
36. Lin J, Della-Fera MA, Baile CA. (2005) Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obesity Research 13:982–90.
37. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM.(2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119: 121–135.
38. Liu CW, Yang SY, Lin CK, Liu HS, Ho LT, Wu LY, Lee MJ, Ku HC, Chang HH, Huang RN, Kao YH. (2014) The forkhead transcription factor FOXO1 stimulates the expression. General and Comparative Endocrinology 196: 41-51.
39. Mandrup S & Lane MD.(1997) Regulating adipogenesis. Journal of Biological Chemistry 272: 5367-5370.
40. Markan KR, Boland LK, McAlpin AQK, Claflin KE, Leaman MP, Kemerling MK, Stonewall MM, Amendt BA, Ankrum JA, Potthoff MJ. (2020) Adipose TBX1 regulates β-adrenergic sensitivity in subcutaneous adipose tissue and thermogenic capacity in vivo. Molecular Metabolism 36:100965.
41. McGregor AR, Choi MS. (2011) microRNAs in the Regulation of Adipogenesis and Obesity. Current Molecular Medicine 11:304-316.
42. Mi Y, Liu X, Tian H, Liu H, Li J, Qi G, Liu X. (2018) EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes. Food and Function 9:3374-3386.
43. Nagao T, Komine Y, Soga S, Meguro S, Hase T, Tanaka Y, Tokimitsu I. (2005) Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. The American Journal of Clinical Nutrition 81:122–129.
44. Parra P, Serra F, Palou A.(2010) Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. Public Library of Science One 5:e13005.
45. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.
46. Qi L, Kraft P, Hunter JD, Hu FB. (2008) The common obesity variant near MC4R gene is associated with higher intakes of total energy and dietary fat, weight change and diabetes risk in women. Human Molecular Genetics. 17: 3502–3508.
47. Rains TM, Agarwal S, Maki KC. (2011) Antiobesity effects of green tea catechins: a mechanistic review. The Journal of Nutritional Biochemistry. 22: 1-7.
48. Rasheed Z, Rasheed N, Al-Shaya O. (2018) Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1β-stimulated human osteoarthritis chondrocytes: potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5. European Journal of Nutrition 57: 917–928.
49. Sana J, Hajduch M, Michalek J, Vyzula R, Slaby O. (2011) Micro RNAs and glioblastoma: roles in core signalling pathways and potential clinical implications. Journal of Cellular and Molecular Medicine 15:1636–1644.
50. Sattar N, McInnes IB, McMurray JJV. (2020) Obesity Is a Risk Factor for Severe COVID-19 Infection. Multiple Potential Mechanisms Circulation. 142: 4–6.
51. Slaby O, Lakomy R, Fadrus P, Hrstka R, Kren L, Lzicarova E, Smrcka M, Svoboda M, Dolezalova H, Novakova J, Valik D, Vyzula R, Michalek J. (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57: 264–269.
52. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ. (2009) MicroRNA let-7 Regulates 3T3-L1 Adipogenesis. Molecular Endocrinology 23: 925-931.
53. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelma BM. (2006) Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism 3: 333-341.
54. Unno T, Sugimoto A, Kakuda K. (2005) Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by a hypoxanthine and xanthine oxidase system. Journal of the Science of Food and Agriculture 39:752–761.
55. Vitkeviciene A, Baksiene S, Borutinskaite V, Navakauskiene R. (2018) Epigallocatechin-3-gallate and BIX-01294 have different impact on epigenetics and senescence modulation in acute and chronic myeloid leukemia cells. European Journal of Pharmacology 838: 32-40.
56. Wightman B, Ha I, Ruvkun G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.elegans. Cell 75: 855–862.
57. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150: 366-376
58. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124.
59. Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, Wang H. (2014) Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics 15: S3.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2021-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明