博碩士論文 103283602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.151.141
姓名 阮氏英虹(NGUYEN THI ANH HONG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 芳烴的無金屬直接乙酰氧基化和從(+)−脫氫樅胺全合成17−羥基曼陀羅B
(Metal−Free, Direct Acetoxylation of Arenes and Total synthesis of 17−Hydroxymandarone B from (+)−Dehydroabietylamine)
相關論文
★ 含胺基之二苯乙烯衍生物的分子內光誘導電子轉移之C-N斷鍵反應及激態錯合體之研究★ 新型含1,2,3-三氮唑之雙光子吸收材料的合成及其光學性質探討
★ 紫質衍生物研究:間位苯卟啉分子的鋅離子感測及大環紫質的構型★ Squamocin 之合成研究
★ 發展4,4’-亞甲基對苯胺或聯苯胺為骨架的四氯衍生物作為人類麩胺基硫轉移酶抑制劑的合成及構效關係的探討★ 含有香豆素的石膽酸類似物作為唾液酸轉移酶抑制劑的合成與初步活性測試
★ 石膽酸C4含氟唾液酸轉移酶抑制劑和苯並惡嗪酮相關的螢光探針之合成及生物研究★ 合成和優化2-(1-乙基-3,5-二甲基-1H-吡唑-4-基)乙-1-胺衍生物和其抗三陰性乳腺癌細胞的體外活性研究
★ 以蛋白質體學探討在大腸桿菌中甲醇利用代謝途徑★ Data-independent acquisition mass spectrometry analysis for identification of cerebrospinal fluid biomarker of reversible cerebral vasoconstriction syndrome
★ 從手性N-亞磺醯胺進行非對映選擇性磷酯基化反應建構高度選擇性的α-胺基磷酸酯★ DNA型式碳水化合物抗原之生物偵測器的開發及應用
★ 合成具有分子腳架之多並苯化合物且用於自組裝分子薄膜之研究★ 1,3-偶極環化加成反應在藥物合成與醣晶片上的應用
★ 平面化寡聚萘分子之合成及其光學、電學性 質研究★ 多並苯醚類化合物的合成與多並苯醚類化合 物於自組裝分子薄膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 芳烴的乙酰氧基化是重要的反應,也是化學中未滿足的需求。 我們報告了在三氟乙酸、乙酸和乙酸酐的無水環境下使用硝酸鹽進行的無金屬直接乙酰氧基化反應。 芳烴(31 個實例)的氧化電位(Eox,單位為 V vs SCE)低於苯(2.48 V),以良好的產率和區域選擇性被乙酰氧基化。我們 提出了一種逐步的單電子轉移機制。

樅烷二萜 (±)−17−Hydroxymandarone B (3) 的首次具有生物學意義的合成是從 (+)−脫氫樅胺實現的。 乙酰氧基化是簡單合成單乙酸酯 (7)、二乙酸酯 (4) 和三乙酸酯 (5) 的重要步驟。 這些化合物是 (±)−17−Hydroxymandarone B (3) 合成中的關鍵中間體。 在這個關鍵程序之後,精心控制的最終程序被開發出來,導致天然物的完成。
摘要(英) Acetoxylation of arenes is important reaction and an unmet need in chemistry. We report a metal−free, direct acetoxylation reaction using nitrate under an anhydrous environment of trifluoroacetic acid, acetic acid and acetic anhydride. Arenes (31 examples), with oxidation potentials (Eox, in V vs SCE) lower than benzene (2.48 V), were acetoxylated with good yields and regioselectivity. A stepwise, single electron−transfer mechanism is proposed.

The first biologically significant synthesis of abietane diterpene (±)−17−Hydroxymandarone B (3) was achieved from (+)−Dehydroabietylamine. Acetoxylation is an important step for the simple synthesis of monoacetate (7), diacetate (4), and triacetate (5). These compounds are key intermediates in the synthesis of (±)−17−Hydroxymandarone B (3). Following this critical sequence, a meticulously controlled final sequence of events was developed that led to the completion of the product nature.
關鍵字(中) ★ 直接乙酰氧基化
★ 17−羥基曼陀羅 B
關鍵字(英) ★ Direct Acetoxylation
★ 17−Hydroxymandarone B
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures viii
List of Tables ix
List of Schemes x
Explanation of Symbols xi
Chapter I. Metal−Free, Direct Acetoxylation of Arenes 1
I-1. Introduction 1
I-2. Methodology 1
I-3. Resuts and discussions 3
I-4. Reaction mechanism 9
I-5. Natural compound synthesis application 11
I-6. Conclusion 12
I-7. Experimental Section 12
I.7.1. General information 12
I.7.2. Experimental procedures and data 13
References 27
Appendices 33
1H NMR of compound 2a (300 MHz, CDCl3) 34
13C{1H} NMR of compound 2a (75 MHz, CDCl3) 35
1H NMR of compound 2b (300 MHz, CDCl3) 36
13C{1H} NMR of compound 2b (75 MHz, CDCl3) 37
1H NMR of compound 2c (300 MHz, CDCl3) 38
13C{1H} NMR of compound 2c (75 MHz, CDCl3) 39
1H NMR of compound 2d (300 MHz, CDCl3) 40
13C{1H} NMR of compound 2d (75 MHz, CDCl3) 41
1H NMR of compound 2e (300 MHz, CDCl3) 42
13C{1H} NMR of compound 2e (75 MHz, CDCl3) 43
1H NMR of compound 2f (300 MHz, CDCl3) 44
13C{1H} NMR of compound 2f (75 MHz, CDCl3) 45
1H NMR of compound 2g (300 MHz, CDCl3) 46
13C{1H} NMR of compound 2g (75 MHz, CDCl3) 47
1H NMR of compound 2g’ (300 MHz, CDCl3) 48
13C{1H} NMR of compound 2g’ (75 MHz, CDCl3) 49
1H NMR of compound 2h (300 MHz, CDCl3) 50
13C{1H} NMR of compound 2h (75 MHz, CDCl3) 51
1H NMR of compound 2h’ (300 MHz, CDCl3) 52
13C{1H} NMR of compound 2h’ (75 MHz, CDCl3) 53
13C{1H} NMR of compound 2i (75 MHz, CDCl3) 55
1H NMR of compound 2j (300 MHz, CDCl3) 56
13C{1H} NMR of compound 2j (75 MHz, CDCl3) 57
1H NMR of compound 2k (300 MHz, CDCl3) 58
13C{1H} NMR of compound 2k (75 MHz, CDCl3) 59
1H NMR of compound 2l (300 MHz, CDCl3) 60
13C{1H} NMR of compound 2l (75 MHz, CDCl3) 61
1H NMR of compound 2m (300 MHz, CDCl3) 62
13C{1H} NMR of compound 2m (75 MHz, CDCl3) 63
1H NMR of compound 2n (300 MHz, CDCl3) 64
13C{1H} NMR of compound 2n (75 MHz, CDCl3) 65
1H NMR of compound 2o (300 MHz, CDCl3) 66
13C{1H} NMR of compound 2o (75 MHz, CDCl3) 67
1H NMR of compound 2p (300 MHz, CDCl3) 68
13C{1H} NMR of compound 2p (75 MHz, CDCl3) 69
1H NMR of compound 2q (300 MHz, CDCl3) 70
13C{1H} NMR of compound 2q (75 MHz, CDCl3) 71
1H NMR of compound 2r (300 MHz, CDCl3) 72
13C{1H} NMR of compound 2r (75 MHz, CDCl3) 73
1H NMR of compound 2s (300 MHz, CDCl3) 74
13C{1H} NMR of compound 2s (75 MHz, CDCl3) 75
1H NMR of 2-Chloro-4-methoxyphenol (300 MHz, CDCl3) 76
13C{1H} NMR of 2-Chloro-4-methoxyphenol (75 MHz, CDCl3) 77
1H NMR of compound 2t (300 MHz, CDCl3) 78
13C{1H} NMR of compound 2t (75 MHz, CDCl3) 79
1H NMR of compound 2u (300 MHz, CDCl3) 80
13C{1H} NMR of compound 2u (75 MHz, CDCl3) 81
1H NMR of compound 2v (300 MHz, CDCl3) 82
13C{1H} NMR of compound 2v (75 MHz, CDCl3) 83
1H NMR of compound 2w (300 MHz, CDCl3) 84
13C{1H} NMR of compound 2w (75 MHz, CDCl3) 85
1H NMR of compound 2x (300 MHz, CDCl3) 86
13C{1H} NMR of compound 2x (75 MHz, CDCl3) 87
1H NMR of compound 2y (300 MHz, CDCl3) 88
13C{1H} NMR of compound 2y (75 MHz, CDCl3) 89
1H NMR of compound 2z (300 MHz, CDCl3) 90
13C{1H} NMR of compound 2z (75 MHz, CDCl3) 91
1H NMR of compound 2aa (300 MHz, CDCl3) 92
13C{1H} NMR of compound 2aa (75 MHz, CDCl3) 93
1H NMR of compound 2bb (300 MHz, CDCl3) 94
13C{1H} NMR of compound 2bb (75 MHz, CDCl3) 95
1H NMR of compound 2cc (300 MHz, CDCl3) 96
13C{1H} NMR of compound 2cc (75 MHz, CDCl3) 97
1H NMR of compound 2cd (300 MHz, CDCl3) 98
13C{1H} NMR of compound 2cd (75 MHz, CDCl3) 99
1H NMR of compound 3a (300 MHz, CDCl3) 100
13C{1H} NMR of compound 3a (75 MHz, CDCl3) 101
1H NMR of 4a (300 MHz, CDCl3) 102
13C{1H} NMR of compound 4a (75 MHz, CDCl3) 103
1H NMR of quinone (300 MHz, CDCl3) 104
13C{1H} NMR of quinone (75 MHz, CDCl3) 105
1H NMR of compound 6 (300 MHz, CDCl3) 106
13C{1H} NMR of compound 6 (75 MHz, CDCl3) 107
Chapter II. Total synthesis of 17−Hydroxymandarone B from (+)−Dehydroabietylamine 108
II-1. Introduction 108
II-2. Result And Discussion 109
II-3. Conclusion 115
II-4. Experimental 116
II.4.1. General information 116
II.4.2. Experimental procedures and data 116
References 130
Appendices 132
1H NMR of compound 8 (300 MHz, CDCl3) 133
13C{1H} NMR of compound 8 (75 MHz, CDCl3) 134
1H NMR of compound 9 (300 MHz, CDCl3) 135
13C{1H} NMR of compound 9 (75 MHz, CDCl3) 136
1H NMR of compound 10 (500 MHz, CDCl3) 137
13C{1H} NMR of compound 10 (125 MHz, CDCl3) 138
1H NMR of compound 7 (300 MHz, CDCl3) 139
13C{1H} NMR of compound 7 (75 MHz, CDCl3) 140
1H NMR of compound 11 (300 MHz, CDCl3) 141
13C{1H} NMR of compound 11 (75 MHz, CDCl3) 142
1H NMR of compound 14 (300 MHz, CDCl3) 143
13C{1H} NMR of compound 14 (75 MHz, CDCl3) 144
1H NMR of compound 15 (500 MHz, CDCl3) 145
13C{1H} NMR of compound 15 (125 MHz, CDCl3) 146
1H NMR of compound 16 (500 MHz, CDCl3) 147
13C{1H} NMR of compound 16 (125 MHz, CDCl3) 148
1H NMR of compound 13 (500 MHz, CDCl3) 149
13C{1H} NMR of compound 13 (125 MHz, CDCl3) 150
1H NMR of compound 12 (500 MHz, CDCl3) 151
13C{1H} NMR of compound 12 (125 MHz, CDCl3) 152
1H NMR of compound 17 (500 MHz, CDCl3) 153
13C{1H} NMR of compound 17 (125 MHz, CDCl3) 154
1H NMR of compound 18 (500 MHz, CDCl3) 155
13C{1H} NMR of compound 18 (125 MHz, CDCl3) 156
1H NMR of compound 6 (500 MHz, CDCl3) 157
13C{1H} NMR of compound 6 (125 MHz, CDCl3) 158
1H NMR of compound 4 (500 MHz, CDCl3) 159
13C{1H} NMR of compound 4 (125 MHz, CDCl3) 160
1H NMR of compound 19 (500 MHz, CDCl3) 161
13C{1H} NMR of compound 19 (125 MHz, CDCl3) 162
1H NMR of compound 5 (500 MHz, CDCl3) 163
13C{1H} NMR of compound 5 (125 MHz, CDCl3) 164
1H NMR of compound 21 (500 MHz, CDCl3) 165
13C{1H} NMR of compound 21 (125 MHz, CDCl3) 166
1H NMR of compound 3 (500 MHz, CDCl3) 167
13C{1H} NMR of compound 3 (125 MHz, CDCl3) 168
參考文獻 CHAPTER 1
[1] a) Z. Qiu, C.−J. Li, Chem. Rev. 2020, 120, 10454−10515; b) V. Dimakos, M. S. Taylor, Org. Biomol. Chem. 2021, 19, 514−524; c) D. McGinty, C. S. Letizia, A. M. Api, Food Chem. Toxicol. 2012, 50, S467−470; d) D. McGinty, C. S. Letizia, A. M. Api, Food Chem. Toxicol. 2012, 50, S502−506; e) M. Jacobsson, J. Malmberg, U. Ellervik, Carbohydr. Res. 2006, 341, 1266−1281; f) J. H. P. Tyman, in Synthetic and Natural Phenols, Vol. 52 Elsevier Science, New York, 1996; g) M. Kaftory, in The Chemistry of Phenols, (Ed. Z. Rappoport), John Wiley & Sons, Ltd, 2003.
[2] K. Weissermel, H.−J. Arpe, in Industrial Organic Chemistry, WILEY‐VCH Verlag GmbH & Co. KGaA, Darmstadt, 2003, pp. 337−385.
[3] a) B. Lücke, K. V. Narayana, A. Martin, K. Jähnisch, Adv. Synth. Catal. 2004, 346, 1407−1424; b) J. Börgel, L. Tanwar, F. Berger, T. Ritter, J. Am. Chem. Soc. 2018, 140, 16026−16031; c) D. A. Alonso, C. Nájera, I. M. Pastor, M. Yus, Chem. Eur. J. 2010, 16, 5274−5284; d) M. R. Crampton, in Organic Reaction Mechanisms · 2017, 2020, pp. 213−295.
[4] N. Llopis, A. Baeza, J. Org. Chem. 2020, 85, 6159−6164.
[5] a) M. Teruaki, Y. Tohru, Bull. Chem. Soc. Jpn. 1995, 68, 17−35; b) H. Eiichiro, T. Toshihiro, Y. Tohru, M. Teruaki, Chem. Lett. 1994, 23, 1849−1852; c) C.−C. Zeng, J. Y. Becker, J. Org. Chem. 2004, 69, 1053−1059; d) K. Fujimoto, Y. Tokuda, H. Maekawa, Y. Matsubara, T. Mizuno, I. Nishiguchi, Tetrahedron 1996, 52, 3889−3896; e) B. Lee, H. Naito, T. Hibino, Angew. Chem., Int. Ed. 2012, 51, 440−444.
[6] a) K. Fujimoto, H. Maekawa, Y. Tokuda, Y. Matsubara, T. Mizuno, I. Nishiguchi, Synlett 1995, 1995, 661−662; b) L. Eberson, J. Am. Chem. Soc. 1967, 89, 4669−4677; c) L. Eberson, L. Jönsson, O. Sänneskog, Acta Chem. Scand. 1985, 39B, 113−121.
[7] a) K. Nyberg, L.−G. Wistrand, Acta Chem. Scand. 1975, 29, 629−630; b) O. C. Musgrave, Chem. Rev. 1969, 69, 499−531; c) P. J. Andrulis, M. J. S. Dewar, R. Dietz, R. L. Hunt, J. Am. Chem. Soc. 1966, 88, 5473−5478; d) E. Baciocchi, L. Eberson, C. Rol, J. Org. Chem. 1982, 47, 5106−5110; e) D. R. Harvey, R. O. C. Norman, J. Chem. Soc. 1964, 4860−4868; f) G. W. K. Cavill, D. H. Solomon, J. Chem. Soc. 1955, 1404−1407; g) J. B. Aylward, J. Chem. Soc. B 1967, 1268−1270.
[8] a) M. A. González, D. Pérez−Guaita, Tetrahedron 2012, 68, 9612−9615; b) K. Teranishi, S.−i. Nakatsuka, T. Goto, Synthesis 1994, 1994, 1018−1020; c) H. J. Martin, M. Drescher, H. Kählig, S. Schneider, J. Mulzer, Angew. Chem., Int. Ed. 2001, 40, 3186−3188; d) S.−i. Nakatsuka, O. Asano, K. Ueda, T. Goto, HeteroCycles 1987, 26, 1471−1474; e) H.−J. Knölker, W. Fröhner, Kethiri R. Reddy, Eur. J. Org. Chem. 2003, 2003, 740−746; f) D. L. J. Clive, N. Etkin, T. Joseph, J. W. Lown, J. Org. Chem. 1993, 58, 2442−2445; g) H.−R. Bjørsvik, G. Occhipinti, C. Gambarotti, L. Cerasino, V. R. Jensen, J. Org. Chem. 2005, 70, 7290−7296.
[9] a) Y.−H. Zhang, J.−Q. Yu, J. Am. Chem. Soc. 2009, 131, 14654−14655; b) K. Matsumoto, S. Tachikawa, N. Hashimoto, R. Nakano, M. Yoshida, M. Shindo, J. Org. Chem. 2017, 82, 4305−4316; c) M. Li, M. Shang, H. Xu, X. Wang, H.−X. Dai, J.−Q. Yu, Org. Lett. 2019, 21, 540−544; d) H. Zhang, R.−B. Hu, X.−Y. Zhang, S.−X. Li, S.−D. Yang, Chem. Commun. 2014, 50, 4686−4689; e) T. Okada, K. Nobushige, T. Satoh, M. Miura, Org. Lett. 2016, 18, 1150−1153; f) K. Raghuvanshi, D. Zell, L. Ackermann, Org. Lett. 2017, 19, 1278−1281; g) A. R. Dick, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 2300−2301; h) X. Tan, L. Massignan, X. Hou, J. Frey, J. C. A. Oliveira, M. N. Hussain, L. Ackermann, Angew. Chem., Int. Ed. 2021, 60, 13264−13270; i) T. Yoneyama, R. H. Crabtree, J. Mol. Catal. A 1996, 108, 35−40; j) A. K. Cook, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 3109−3118; k) M. H. Emmert, J. B. Gary, J. M. Villalobos, M. S. Sanford, Angew. Chem., Int. Ed. 2010, 49, 5884−5886; l) Z. Peng, Z. Yu, T. Li, N. Li, Y. Wang, L. Song, C. Jiang, Organometallics 2017, 36, 2826−2831; m) S. P. Desai, M. Mondal, J. Choudhury, Organometallics 2015, 34, 2731−2736; n) F. Tato, A. Garcı́a−Domı́nguez, D. J. Cárdenas, Organometallics 2013, 32, 7487−7494; o) M. H. Emmert, A. K. Cook, Y. J. Xie, M. S. Sanford, Angew. Chem., Int. Ed. 2011, 50, 9409−9412.
[10] a) L. Vilella, A. Conde, D. Balcells, M. M. Díaz−Requejo, A. Lledós, P. J. Pérez, Chem. Sci. 2017, 8, 8373−8383; b) F. Shibahara, S. Kinoshita, K. Nozaki, Org. Lett. 2004, 6, 2437−2439; c) H. Huang, Y. Wu, W. Zhang, C. Feng, B.−Q. Wang, W.−F. Cai, P. Hu, K.−Q. Zhao, S.−K. Xiang, J. Org. Chem. 2017, 82, 3094−3101; d) F. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43, 6906−6919; e) Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu, Y. Zhang, Org. Chem. Front. 2015, 2, 1107−1295; f) N. Kuhl, M. N. Hopkinson, J. Wencel−Delord, F. Glorius, Angew. Chem., Int. Ed. 2012, 51, 10236−10254; g) S. Enthaler, A. Company, Chem. Soc. Rev. 2011, 40, 4912−4924; h) A. Lei, W. Liu, in Comprehensive Organic Synthesis II (Second Edition), (Ed. P. Knochel), Elsevier, Amsterdam, 2014, pp. 313−346; i) K. M. Engle, T.−S. Mei, M. Wasa, J.−Q. Yu, Acc. Chem. Res. 2012, 45, 788−802; j) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147−1169; k) A. C. Lindhorst, S. Haslinger, F. E. Kühn, Chem. Commun. 2015, 51, 17193−17212; l) V. S. Thirunavukkarasu, S. I. Kozhushkov, L. Ackermann, Chem. Commun. 2014, 50, 29−39.
[11] a) A. V. Burasov, V. A. Petrosyan, Mendeleev Commun. 2008, 18, 196−197; b) A. M. Khenkin, M. Somekh, R. Carmieli, R. Neumann, Angew. Chem., Int. Ed. 2018, 57, 5403−5407; c) R. Sang, S. E. Korkis, W. Su, F. Ye, P. S. Engl, F. Berger, T. Ritter, Angew. Chem., Int. Ed. 2019, 58, 16161−16166; d) C. Tian, U. Dhawa, J. Struwe, L. Ackermann, Chin. J. Chem. 2019, 37, 552−556; e) S.−K. Zhang, J. Struwe, L. Hu, L. Ackermann, Angew. Chem., Int. Ed. 2020, 59, 3178−3183.
[12] A. M. Camelio, Y. Liang, A. M. Eliasen, T. C. Johnson, C. Yuan, A. W. Schuppe, K. N. Houk, D. Siegel, J. Org. Chem. 2015, 80, 8084−8095.
[13] a) G. A. Olah, T. Keumi, J. C. Lecoq, A. P. Fung, J. A. Olah, J. Org. Chem. 1991, 56, 6148−6151; b) R. R. González, C. Gambarotti, L. Liguori, H.−R. Bjørsvik, J. Org. Chem. 2006, 71, 1703−1706; c) K. C. Caster, A. S. Rao, H. R. Mohan, N. A. McGrath, M. Brichacek, in Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2012.
[14] a) H.−R. Bjørsvik, B. T. Gjertsen, V. Elumalai, ChemMedChem 2020, 15, 862−870; b) V. Elumalai, C. Gambarotti, H.−R. Bjørsvik, Eur. J. Org. Chem. 2018, 2018, 1984−1992; c) A. J. Davidson, R. O. C. Norman, J. Chem. Soc. 1964, 5404−5416; d) J. D. McClure, P. H. Williams, J. Org. Chem. 1962, 27, 627−628.
[15] a) N. C. Deno, B. A. Greigger, L. A. Messer, M. D. Meyer, S. G. Stroud, Tetrahedron Lett. 1977, 18, 1703−1704; b) R. Liotta, W. S. Hoff, J. Org. Chem. 1980, 45, 2887−2890.
[16] a) S. M. Kher, S. X. Cai, E. Weber, J. F. W. Keana, J. Org. Chem. 1995, 60, 5838−5842; b) J. V. N. Vara Prasad, Org. Lett. 2000, 2, 1069−1072; c) J. V. Crivello, J. Org. Chem. 1981, 46, 3056−3060.
[17] R. L. Halterman, S.−T. Jan, A. H. Abdulwali, D. J. Standlee, Tetrahedron 1997, 53, 11277−11296.
[18] In this article, NaNO2, CF3COOH, AcOH, 23 oC, 24 h, was the reagents and condition for this transformation. However, "NaNO2" should be considered as a typo because that the authors describled it as "according to standard aromatic nitration procedures", Crivello′s work was cited (ref. 16a), and "sodium nitrate" was reported in the Experimental Section.
[19] T. Tajima, T. Fuchigami, Chem. Eur. J. 2005, 11, 6192−6196.
[20] a) K. Matsuzaki, K. Okuyama, E. Tokunaga, N. Saito, M. Shiro, N. Shibata, Org. Lett. 2015, 17, 3038−3041; b) T. Dohi, D. Koseki, K. Sumida, K. Okada, S. Mizuno, A. Kato, K. Morimoto, Y. Kita, Adv. Synth. Catal. 2017, 359, 3503−3508.
[21] P. Luo, E. C. Feinberg, G. Guirado, S. Farid, J. P. Dinnocenzo, J. Org. Chem. 2014, 79, 9297−9304.
[22] T. Fuchigami, M. Atobe, S. Inagi, in Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom, 2014.
[23] K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2, 715−722.
[24] N. Goudarzi, M. Goodarzi, M. M. Hosseini, M. Nekooei, Mol. Phys. 2009, 107, 1739−1744.
[25] P. B. Merkel, P. Luo, J. P. Dinnocenzo, S. Farid, J. Org. Chem. 2009, 74, 5163−5173.
[26] L. L. Miller, G. D. Nordblom, E. A. Mayeda, J. Org. Chem. 1972, 37, 916−918.
[27] T. Tajima, H. Kurihara, A. Nakajima, T. Fuchigami, J. Electroanal. Chem. 2005, 580, 155−160.
[28] C. Toshiro, O. Mitsuhiro, N. Hiroshi, T. Yoshiyuki, Bull. Chem. Soc. Jpn. 1982, 55, 335−336.
[29] T. Kurata, Y. Watanabe, M. Katoh, Y. Sawaki, J. Am. Chem. Soc. 1988, 110, 7472−7478.
[30] a) O. Fukuda, S. Sakaguchi, Y. Ishii, Adv. Synth. Catal. 2001, 343, 809−813; b) J.−B. Xia, K. W. Cormier, C. Chen, Chem. Sci. 2012, 3, 2240−2245.
[31] a) H. Sawada, M. Nakayama, M. Yoshida, T. Yoshida, N. Kamigata, J. Fluorine Chem. 1990, 46, 423−431; b) L. Eberson, in Advances in Physical Organic Chemistry, Vol. 18 (Eds.: V. Gold and D. Bethell), Academic Press, 1982, pp. 79−185.
[32] a) M. Kitadani, A. Yoshikoshi, Y. Kitahara, J. D. P. Campello, J. D. McChesney, D. J. Watts, E. Wendert, Chem. Pharm. Bull. 1970, 18, 402−405; b) R. Zelnik, E. Rabenhorst, A. Haider, J. Lauterwein, H. Wyler, Helv. Chim. Acta 1983, 66, 780−788; c) F. S. Guziec, D. Wei, J. Org. Chem. 1992, 57, 3772−3776.
[33] a) C. Thommen, C. K. Jana, M. Neuburger, K. Gademann, Org. Lett. 2013, 15, 1390−1393; b) D. Monge, J. Chem. Educ. 2015, 92, 1390−1393; c) N. Mori, K. Kuzuya, H. Watanabe, J. Org. Chem. 2016, 81, 11866−11870; d) M. Tada, K. Ishimaru, Chem. Pharm. Bull. 2006, 54, 1412−1417; e) I. Córdova−Guerrero, L. S. Andrés, A. E. Leal−Orozco, J. M. Padrón, J. M. Cornejo−Bravo, F. León, Tetrahedron Lett. 2013, 54, 4479−4482.
[34] a) Y.−i. Matsushita, Y. Iwakiri, S. Yoshida, K. Sugamoto, T. Matsui, Tetrahedron Lett. 2005, 46, 3629−3632; b) J. Geiwiz, E. Haslinger, Helv. Chim. Acta 1995, 78, 818−832; c) F. Olmo, J. J. Guardia, C. Marin, I. Messouri, M. J. Rosales, K. Urbanová, I. Chayboun, R. Chahboun, E. J. Alvarez−Manzaneda, M. Sánchez−Moreno, Eur. J. Med. Chem. 2015, 89, 683−690.
[35] R. J. Highet, P. F. Highet, J. Org. Chem. 1965, 30, 902−906.
[36] U. S. Hiremath, Tetrahedron Lett. 2013, 54, 3419−3423.
[37] D. Qiu, Z. Zheng, F. Mo, Q. Xiao, Y. Tian, Y. Zhang, J. Wang, Org. Lett. 2011, 13, 4988−4991.
[38] C. Ding, Y. Yu, Q. Yu, Z. Xie, Y. Zhou, J. Zhou, G. Liang, Z. Song, ChemCatChem 2018, 10, 5397−5401.
[39] J. Zhang, Q. Ke, F. Tian, B. Jiang, C.−A. Ji, L. Zhang, J. Yu, D. Huang, G. Yan, Synlett 2019, 30, 726−730.
[40] F. Saadati, H. Meftah−Booshehri, Synlett 2013, 24, 1702−1706.
[41] F. D. Ramdayal, D. J. Kiemle, R. T. LaLonde, J. Org. Chem. 1999, 64, 4607−4609.
[42] T. M. Milzarek, T. A. M. Gulder, Org. Lett. 2021, 23, 102−106.
[43] W.−B. Wu, J.−M. Huang, J. Org. Chem. 2014, 79, 10189−10195.
[44] C. L. Coombes, C. J. Moody, J. Org. Chem. 2008, 73, 6758−6762.
[45] J. Zoń, P. Miziak, N. Amrhein, R. Gancarz, Chem. Biodivers. 2005, 2, 1187−1194.
[46] E. Adler, G. Andersson, Justus Liebigs Ann. Chem. 1976, 1435−1447.
[47] V. Diemer, H. Chaumeil, A. Defoin, C. Carré, Tetrahedron 2010, 66, 918−929.
[48] A. O. Termath, J. Velder, R. T. Stemmler, T. Netscher, W. Bonrath, H.−G. Schmalz, Eur. J. Org. Chem. 2014, 2014, 3337−3340.
[49] G. Brǎtulescu, Y. L. E. Bigot, M. Delmas, I. Pogany, Rev. Roum. Chim. 1998, 43, 321−326.
[50] G. Sagrera, A. Bertucci, A. Vazquez, G. Seoane, Bioorg. Med. Chem. 2011, 19, 3060−3073.
[51] G. Cheng, Q. Jun, X. Zhang, D. Verdugo, M. L. Larter, R. Christie, P. Kenney, P. J. Walsh, Tetrahedron 1997, 53, 4145−4158.
[52] S. Protti, M. Fagnoni, A. Albini, Org. Biomol. Chem. 2005, 3, 2868−2871.
[53] N. Bouider, W. Fhayli, Z. Ghandour, M. Boyer, K. Harrouche, X. Florence, B. Pirotte, P. Lebrun, G. Faury, S. Khelili, Bioorg. Med. Chem. 2015, 23, 1735−1746.
[54] L. Zhang, X. Hu, Chem. Sci. 2017, 8, 7009−7013.
[55] Y.−X. Li, R. Iwaki, A. Kato, Y.−M. Jia, G. W. J. Fleet, X. Zhao, M. Xiao, C.−Y. Yu, Eur. J. Org. Chem. 2016, 2016, 1429−1438.
[56] A. A. Thomas, K. W. Hunt, M. Volgraf, R. J. Watts, X. Liu, G. Vigers, D. Smith, D. Sammond, T. P. Tang, S. P. Rhodes, A. T. Metcalf, K. D. Brown, J. N. Otten, M. Burkard, A. A. Cox, M. K. G. Do, D. Dutcher, S. Rana, R. K. DeLisle, K. Regal, A. D. Wright, R. Groneberg, K. Scearce−Levie, M. Siu, H. E. Purkey, J. P. Lyssikatos, I. W. Gunawardana, J. Med. Chem. 2014, 57, 878−902.
[57] J. Vermeulen, J. P. Soumillon, Bull. Soc. Chim. Belg. 1985, 94, 1045−1053.
[58] J. Knuutinen, Finn. Chem. Lett. 1983, 28−30.
[59] A. S. Cantrell, P. Engelhardt, M. Högberg, S. R. Jaskunas, N. G. Johansson, C. L. Jordan, J. Kangasmetsä, M. D. Kinnick, P. Lind, J. M. Morin, M. A. Muesing, R. Noreén, B. Öberg, P. Pranc, C. Sahlberg, R. J. Ternansky, R. T. Vasileff, L. Vrang, S. J. West, H. Zhang, J. Med. Chem. 1996, 39, 4261−4274.
[60] C. Song, X. Dong, Z. Wang, K. Liu, C.−W. Chiang, A. Lei, Angew. Chem., Int. Ed. 2019, 58, 12206−12210.
[61] H. W. Gibbs, R. B. Moodie, K. Schofield, J. Chem. Soc., Perkin Trans. 2 1978, 1145−1157.
[62] A. Stanger, N. Ashkenazi, A. Shachter, D. Bläser, P. Stellberg, R. Boese, J. Org. Chem. 1996, 61, 2549−2552.
[63] Z. Liu, Q. Ma, Y. Liu, Q. Wang, Org. Lett. 2014, 16, 236−239.
[64] G. S. Bapat, A. Fischer, G. N. Henderson, S. Raymahasay, J. Chem. Soc., Chem. Commun. 1983, 119−120.
[65] J. C. Lugo−González, P. Gómez−Tagle, M. Flores−Alamo, A. K. Yatsimirsky, Dalton Trans. 2020, 49, 2452−2467.
[66] G. B. Bajracharya, S. S. Shrestha, Synth. Commun. 2018, 48, 1688−1693.
[67] Z. D. Yang, Z. W. Song, J. Ren, M. J. Yang, S. Li, Phytochem. Anal. 2011, 22, 509−515.
[68] W. Adam, M. Balci, H. Kiliç, J. Org. Chem. 2000, 65, 5926−5931.
[69] P. J. Zeegers, M. J. Thompson, Magn. Reson. Chem. 1992, 30, 497−499.
[70] B. Dinda, U. C. De, B. Achari, S. Arima, N. Sato, Y. Harigaya, Indian Journal of Chemistry −Section B 2003, 42B, 1514−1518.
[71] M. Hashmat Ali, M. Niedbalski, G. Bohnert, D. Bryant, Synth. Commun. 2006, 36, 1751−1759.
[72] Y. Wang, F. S. Guziec, J. Org. Chem. 2001, 66, 8293−8296.
CHAPTER 2
[1] H. J. Hu, Y. Zhou, Z. Z. Han, Y. H. Shi, S. S. Zhang, Z. T. Wang, L. Yang, J. Nat. Prod. 2018, 81, 1508−1516.
[2] C.−Z. Lin, C.−X. Zhang, T.−Q. Xiong, Y.−L. Feng, Z.−X. Zhao, Q.−F. Liao, X.−L. Feng, H.−R. Li, S. Kitanaka, C.−C. Zhu, J. Asian Nat. Prod. Res. 2008, 10, 841−844.
[3] a) R. H. Burnell, A. Andersen, M. Néron−Desbiens, S. Savard, Can. J. Chem. 1981, 59, 2820−2825; b) R. H. Burnell, M. Ringuet, Can. J. Chem. 1978, 56, 517−521; c) R. H. Burnell, M. Néron−Desbiens, S. Savard, Synth. Commun. 1982, 12, 11−14; d) D. Uemura, Y. Hirata, Tetrahedron Lett. 1972, 13, 1387−1390; e) S. Hasegawa, H. Yoshiyuki, Phytochemistry 1982, 21, 643−646; f) G. Beresford, R. Cambie, K. Mathai, Aust. J. Chem. 1973, 26, 1763−1769; g) M. Takashi, T. Hiromitsu, W. Makoto, I. Sachihiko, Bull. Chem. Soc. Jpn. 1991, 64, 2762−2765.
[4] F. S. Guziec, D. Wei, J. Org. Chem. 1992, 57, 3772−3776.
[5] Y. Wang, F. S. Guziec, J. Org. Chem. 2001, 66, 8293−8296.
[6] N. Mori, K. Kuzuya, H. Watanabe, J. Org. Chem. 2016, 81, 11866−11870.
[7] a) R. H. Burnell, M. Jean, S. Marceau, Can. J. Chem. 1988, 66, 227−230; b) W. E. Smith, J. Org. Chem. 1972, 37, 3972−3973; c) J. C. Duff, E. J. Bills, J. Chem. Soc. 1934, 1305−1308; d) L. Zhang, X. Bi, X. Guan, X. Li, Q. Liu, B. D. Barry, P. Liao, Angew. Chem., Int. Ed. 2013, 52, 11303−11307.
[8] F. Aneesa, K. C. Rajanna, Y. Arun Kumar, M. Arifuddin, Org. Chem. Int. 2012, 2012, 1−8.
[9] a) J.−M. Brégeault, F. Launay, A. Atlamsani, C. R. Acad. Sci., Ser. IIc 2001, 4, 11−26; b) C. Jallabert, H. Riviere, Tetrahedron 1980, 36, 1191−1194; c) B. El Ali, J.−M. Brégeault, J. Mercier, J. Martin, C. Martin, O. Convert, J. Chem. Soc., Chem. Commun. 1989, 825−826; d) L. M. Sayre, S. J. Jin, J. Org. Chem. 1984, 49, 3498−3503.
[10] M. Tada, J. Kurabe, T. Yoshida, T. Ohkanda, Y. Matsumoto, Chem. Pharm. Bull. 2010, 58, 818−824.
[11] a) A. S. Aboraia, S. W. Yee, M. S. Gomaa, N. Shah, A. C. Robotham, B. Makowski, D. Prosser, A. Brancale, G. Jones, C. Simons, Bioorg. Med. Chem. 2010, 18, 4939−4946; b) S. Tsuneo, H. Takaaki, S. Takahachi, A. Teishiro, Bull. Chem. Soc. Jpn. 1983, 56, 2762−2767.
[12] a) S. Kaiser, S. P. Smidt, A. Pfaltz, Angew. Chem., Int. Ed. 2006, 45, 5194−5197; b) Y. Ge, Z. Wang, Z. Han, K. Ding, Chem. Eur. J. 2020, 26, 15482−15486; c) D. Paul, B. Beiring, M. Plois, N. Ortega, S. Kock, D. Schlüns, J. Neugebauer, R. Wolf, F. Glorius, Organometallics 2016, 35, 3641−3646; d) N. Ortega, S. Urban, B. Beiring, F. Glorius, Angew. Chem., Int. Ed. 2012, 51, 1710−1713; e) F. Bertolini, M. Pineschi, Org. Prep. Proced. Int. 2009, 41, 385−418; f) S. El Sayed, A. Bordet, C. Weidenthaler, W. Hetaba, K. L. Luska, W. Leitner, ACS Catal. 2020, 10, 2124−2130; g) M. Maris, W. R. Huck, T. Mallat, A. Baiker, J. Catal. 2003, 219, 52−58; h) M. Maris, T. Bürgi, T. Mallát, A. Baiker, J. Catal. 2004, 226, 393−400.
[13] E. Baralt, S. J. Smith, J. Hurwitz, I. T. Horvath, R. H. Fish, J. Am. Chem. Soc. 1992, 114, 5187−5196.
[14] a) R. H. Burnell, A. Andersen, M. Néron, S. Savard, Can. J. Chem. 1985, 63, 2769−2776; b) M. Takashi, I. Sachihiko, Y. Takashi, Bull. Chem. Soc. Jpn. 1987, 60, 2435−2443.
[15] Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai, S. Oka, J. Am. Chem. Soc. 1994, 116, 3684−3691.
[16] Y.−C. Wu, Y. Jhong, H.−J. Lin, S. P. Swain, H.−H. G. Tsai, D.−R. Hou, Adv. Synth. Catal. 2019, 361, 4966−4982.
[17] a) R. M. Irfan, D. Jiang, Z. Sun, L. Zhang, S. Cui, P. Du, J. Catal. 2017, 353; b) C. Thommen, C. K. Jana, M. Neuburger, K. Gademann, Org. Lett. 2013, 15, 1390−1393.
[18] A. Li, X. Peng, P. Bie, T. Wu, X. Pan, T.−K. Yang, J. Chem. Res. Synop. 2001, 2001, 328−329.
[19] M. Takashi, I. Sachihiko, Y. Shuhei, M. Masanori, M. Shigekazu, S. Yasuhiro, Bull. Chem. Soc. Jpn. 1983, 56, 290−294.
[20] R. Alonso, H. Gomis, A. Taddei, C. Sajo, Chem. Nat. Compd. 2005, 41, 315−321.
[21] J. H. Byun, H. Kim, Y. Kim, I. Mook−Jung, D. J. Kim, W. K. Lee, K. H. Yoo, Bioorg. Med. Chem. Lett. 2008, 18, 5591−5593.
[22] J. Pérez−Vázquez, A. X. Veiga, G. Prado, F. J. Sardina, M. R. Paleo, Eur. J. Org. Chem. 2012, 2012, 975−987.
指導教授 侯敦仁(DUEN-REN HOU) 審核日期 2021-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明