博碩士論文 107324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.118.208.97
姓名 傅啟堯(Chi-Yao Fu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以 Eurotium cristatum 發酵轉換清豆漿與 藍莓汁之異黃酮糖苷與葡萄糖苷酶抑制能力
(Evaluation of isoflavone glucosides bioconversion and a-glucosidase inhibition ability in soymilk fermented with Cyanococcus’s juice by Eurotium cristatum)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 富含蛋白質的大豆產品,能提供人體營養所需之胺基酸及礦物質,大豆不僅可以降低血清中總膽固醇(Total Cholesterol)、低密度脂蛋白(Low-density lipoproteins) 以及甘油三酸脂(Triglyceride)的濃度,還能提升高密度脂蛋白(High-density lipoproteins)。此外,發酵後的大豆製品亦被證明可有效減輕糖尿病、血壓、心臟疾病以及和癌症相關的問題。經過發酵後的大豆製品,營養價值比未發酵的大豆還來的高,因此,本論文主要利用金花菌發酵黃豆,並探討其組成以及營養價值。
本實驗以市售之黃豆作為原料,將其浸泡12小時後,榨汁製成清豆漿。利用自茶葉分離出的金花菌株(Eurotium cristatum)接種至清豆漿與豆渣發酵三天,並將溫度控制於25℃、30℃、35℃、40℃,搖瓶轉速設定為125rpm,分析其酵素抑制能力、抗氧化活性、總多酚含量以及異黃酮苷元轉換率。並發現於30℃、35℃下發酵可得最佳酵素抑制能力與產物濃度及最大菌重濃度。
此外,因藍莓含有豐富的抗氧化物、抗癌物質、多酚類,可以降低心血管和中風等疾病。藍莓中所含之花青素能調節胰島素敏感度,以降低血糖水平,有助於預防及改善第2型糖尿病,還有抑制體內發炎的效果。故將添加藍莓之清豆漿做為實驗對照組,比較其酵素抑制之效果。實驗結果發現於35℃下添加10%豆漿的發酵液有最佳酵素抑制能力及抗氧化力。
摘要(英) Soy products are rich in protein and have many health benefits. Some researchers have pointed out that soybeans can reduce the serum concentrations of total cholesterol, low-density lipoproteins, and triglycerides in the serum. In addition, fermented soy products have also been proven to be effective in reducing diabetes mellitus, blood pressure, heart disease, and cancer-related problems. Fermented soybean products have higher nutritional value than unfermented soybeans. Therefore, this work is about using Eurotium cristatum to ferment soymilk, and discusses its composition and nutritional value.
In this study, soybeans was raw materials. It was soaked for 12 hours, and then juiced into clear soy milk. Eurotium cristatum was isolated from tea and inoculated to soy milk and soy residue for three days of fermentation, and the temperature was controlled at 25℃、30℃、35℃、40℃ respectively, the shaker’s speed was set at 125rpm, and the samples’ enzyme inhibition ability, antioxidant activity, total polyphenol content and isoflavone bioconversion rate were analyzed. It was found that the optimal enzyme inhibition ability and product concentration and maximum bacterial weight concentration were obtained from fermentation at 30℃ and 35℃.
In addition, blueberries are rich in antioxidants, anti-cancer elements, polyphenols, which can reduce cardiovascular and stroke and other diseases. The anthocyanins contained in blueberries regulate insulin sensitivity to lower blood sugar levels, help prevent and improve type 2 diabetes, and inhibit inflammation in the body. Therefore, the blueberry was added to clear soy milk as an experimental control group, comparing the effect of its enzyme inhibition. The results showed that the fermentation liquid with 10% soy milk at 35℃ had highest enzyme inhibition and antioxidant ability.
關鍵字(中) ★ 發酵
★ 豆漿
★ 金花菌
★ 藍莓
★ 大豆醣苷
★ 花色素苷
關鍵字(英) ★ fermentation
★ soymilk
★ Eurotium cristatum
★ Cyanococcus
★ isoflavone glucosides
★ anthocyanins
論文目次 目錄
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 黃豆介紹 3
2.1.1 成分組成 4
2.1.2 黃豆功能 10
2.2 藍莓介紹 11
2.2.1 藍莓功能 11
2.3 金花菌介紹(Eurotium cristatum) 12
2.3.1 金花菌功能 13
2.4糖尿病介紹(Diabetes) 14
2.4.1 糖尿病的成因和類別 14
2.4.2第2型糖尿病的治療方法 15
第三章 材料與方法 16
3.1實驗規劃 16
3.2實驗藥品 17
3.3儀器設備 18
3.4實驗方法 19
3.4.1 分離菌種 19
3.4.2 培養基處理 21
3.5分析方法 22
3.5.1 菌重測定 22
3.5.2 異黃酮類分析 22
3.5.3 α-澱粉酶抑制能力測定(α-amylase inhibition ability) 27
3.5.4 α-葡萄糖苷酶抑制能力測定(α-glucosidase activity inhibition ability) 30
3.5.5 DPPH自由基清除能力(DPPH scavenging activity) 31
3.5.6 總多酚類化合物含量測定(Total phenolic compounds) 32
3.5.7 花色素苷含量分析(Total anthocyanins content) 34
3.5.8 黃酮類含量分析(Flavonoids) 35
3.5.9 β-葡萄糖苷酶活性測試(β-Glucosidase activity assay) 36
第四章 結果與討論 37
4.1發酵溫度對發酵液抗氧化活性及總多酚含量的影響 37
4.2不同溫度對以冠突散囊菌生產大豆異黃酮發酵動力曲線之影響 43
4.3不同溫度對豆漿發酵液及豆渣萃取液澱粉酶抑制活性的影響 58
4.4不同溫度對豆漿發酵液及豆渣萃取液葡萄糖苷酶抑制活性的影響 61
4.5 30℃下添加稀釋豆漿對藍莓發酵液的影響 65
4.6 35℃下添加稀釋豆漿對藍莓發酵液的影響 76
第五章 結論 87
第六章 參考資料 88

圖目錄
圖 1、大豆發酵前後異黃酮類HPLC圖 6
圖 2、染料木黃酮和黃豆苷元與17-β-雌二醇之結構相似性 7
圖 3、β-葡萄糖苷酶對異黃酮糖苷的反應機制圖 8
圖 4、實驗流程圖 16
圖 5、Eurotium cristatum 純化後生長於PDA固態盤外觀 20
圖 6、各產物之HPLC圖譜 24
圖 7、染料木苷標準品濃度之檢量線 25
圖 8、大豆醣苷標準品濃度之檢量線 25
圖 9、染料木黃酮標準品濃度之檢量線 26
圖 10、大豆苷元標準品濃度之檢量線 26
圖 11、沒食子酸標準品檢量線 33
圖 12、蘆丁標準品檢量線 35
圖 13、發酵時間對於25℃豆漿發酵液之抗氧化活性變化 38
圖 14、發酵時間對於30℃豆漿發酵液之抗氧化活性變化 39
圖 15、發酵時間對於35℃豆漿發酵液之抗氧化活性變化 39
圖 16、發酵時間對於40℃豆漿發酵液之抗氧化活性變化 40
圖 17、發酵時間對於25℃豆渣萃取液之抗氧化活性變化 40
圖 18、發酵時間對於30℃豆渣萃取液之抗氧化活性變化 41
圖 19、發酵時間對於35℃豆渣萃取液之抗氧化活性變化 41
圖 20、發酵時間對於40℃豆渣萃取液之抗氧化活性變化 42
圖 21、發酵時間對25℃豆漿發酵液PH值與β-葡萄糖苷酶活性變化 43
圖 22、發酵時間對30℃豆漿發酵液PH值與β-葡萄糖苷酶活性變化 43
圖 23、發酵時間對35℃豆漿發酵液PH值與β-葡萄糖苷酶活性變化 44
圖 24、發酵時間對40℃豆漿發酵液PH值與β-葡萄糖苷酶活性變化 44
圖 25、發酵時間對25℃豆渣萃取液PH值與β-葡萄糖苷酶活性變化 45
圖 26、發酵時間對30℃豆渣萃取液PH值與β-葡萄糖苷酶活性變化 45
圖 27、發酵時間對35℃豆渣萃取液PH值與β-葡萄糖苷酶活性變化 46
圖 28、發酵時間對40℃豆渣萃取液PH值與β-葡萄糖苷酶活性變化 46
圖 29、Eurotium cristatum在25℃對豆漿發酵液中大豆苷元之發酵曲線 49
圖 30、Eurotium cristatum在25℃對豆漿發酵液中染料木黃酮之發酵曲線 49
圖 31、Eurotium cristatum在30℃對豆漿發酵液中大豆苷元之發酵曲線 50
圖 32、Eurotium cristatum在30℃對豆漿發酵液中染料木黃酮之發酵曲線 50
圖 33、Eurotium cristatum在35℃對豆漿發酵液中大豆苷元之發酵曲線 51
圖 34、Eurotium cristatum在35℃對豆漿發酵液中染料木黃酮之發酵曲線 51
圖 35、Eurotium cristatum在40℃對豆漿發酵液中大豆苷元之發酵曲線 52
圖 36、 Eurotium cristatum在40℃對豆漿發酵液中染料木黃酮之發酵曲線 52
圖 37、Eurotium cristatum在25℃對豆渣中大豆苷元之發酵曲線 54
圖 38、Eurotium cristatum在25℃對豆渣中染料木黃酮之發酵曲線 54
圖 39、Eurotium cristatum在30℃對豆渣中大豆苷元之發酵曲線 55
圖 40、Eurotium cristatum在30℃對豆渣中染料木黃酮之發酵曲線 55
圖 41、Eurotium cristatum在35℃對豆渣中大豆苷元之發酵曲線 56
圖 42、Eurotium cristatum在35℃對豆渣中染料木黃酮之發酵曲線 56
圖 43、Eurotium cristatum在40℃對豆渣中大豆苷元之發酵曲線 57
圖 44、Eurotium cristatum在40℃對豆渣中染料木黃酮之發酵曲線 57
圖 45、25℃豆漿發酵液及豆渣萃取液澱粉酶抑制活性變化 59
圖 46、30℃豆漿發酵液及豆渣萃取液澱粉酶抑制活性變化 59
圖 47、35℃豆漿發酵液及豆渣萃取液澱粉酶抑制活性變化 60
圖 48、40℃豆漿發酵液及豆渣萃取液澱粉酶抑制活性變化 60
圖 49、25℃豆漿發酵液及豆渣萃取液葡萄糖苷酶抑制活性變化 62
圖 50、30℃豆漿發酵液及豆渣萃取液葡萄糖苷酶抑制活性變化 62
圖 51、35℃豆漿發酵液及豆渣萃取液葡萄糖苷酶抑制活性變化 63
圖 52、40℃豆漿發酵液及豆渣萃取液葡萄糖苷酶抑制活性變化 63
圖 53、30℃不同濃度豆漿的抗氧化活性 66
圖 54、30℃藍莓發酵液添加稀釋豆漿對抗氧化活性變化 66
圖 55、30℃藍莓發酵液添加稀釋豆漿對花色素苷含量變化 67
圖 56、30℃藍莓發酵液添加稀釋豆漿對水溶性黃酮類含量變化 67
圖 58、30℃藍莓發酵液添加稀釋豆漿對葡萄糖苷酶抑制活性變化 69
圖 59、30℃藍莓發酵液添加稀釋豆漿對菌種生長曲線變化 70
圖 60、30℃藍莓發酵液於不同豆漿濃度下對最大菌重圖 70
圖 61、30℃藍莓發酵液之PH值與β-葡萄糖苷酶活性變化 71
圖 62、30℃藍莓發酵液添加5%豆漿之PH值與β-葡萄糖苷酶活性變化 72
圖 63、30℃藍莓發酵液添加10%豆漿PH值與β-葡萄糖苷酶活性變化 72
圖 64、30℃藍莓發酵液添加5%豆漿中大豆苷元之發酵曲線 74
圖 65、30℃藍莓發酵液添加5%豆漿中染料木黃酮之發酵曲線 74
圖 66、30℃藍莓發酵液添加10%豆漿中大豆苷元之發酵曲線 75
圖 67、30℃藍莓發酵液添加10%豆漿中染料木黃酮之發酵曲線 75
圖 68、35℃不同濃度豆漿的抗氧化活性 77
圖 69、35℃藍莓發酵液添加稀釋豆漿對抗氧化活性變化 77
圖 70、35℃藍莓發酵液添加稀釋豆漿對花色素苷含量變化 78
圖 71、35℃藍莓發酵液添加稀釋豆漿對水溶性黃酮類含量變化 78
圖 72、35℃藍莓發酵液添加稀釋豆漿對澱粉酶抑制活性變化 80
圖 73、35℃藍莓發酵液添加稀釋豆漿對葡萄糖苷酶抑制活性變化 80
圖 74、35℃藍莓發酵液添加稀釋豆漿對菌種生長曲線變化 81
圖 75、35℃藍莓發酵液於不同豆漿濃度下對最大菌重圖 81
圖 76、35℃藍莓發酵液之PH值與β-葡萄糖苷酶活性變化 82
圖 77、35℃藍莓發酵液添加5%豆漿之PH值與β-葡萄糖苷酶活性化 83
圖 78、35℃藍莓發酵液添加10%豆漿PH值與β-葡萄糖苷酶活性變化 83
圖 79、35℃藍莓發酵液添加5%豆漿中大豆苷元之發酵曲線 85
圖 80、35℃藍莓發酵液添加5%豆漿中染料木黃酮之發酵曲線 85
圖 81、35℃藍莓發酵液添加10%豆漿中大豆苷元之發酵曲線 86
圖 82、35℃藍莓發酵液添加10%豆漿中染料木黃酮之發酵曲線 86

表目錄
表 1、大豆隨發酵時間的異黃酮類成分變化 7
表 2、藥品清單 17
表 3、實驗設備清單 18
表 4、HPLC移動相設定參數 23
表 5、不同溫度下豆漿搖瓶發酵參數值 48
表 6、不同溫度下豆漿搖瓶發酵參數值(續表5) 48
表 7、不同溫度下豆渣搖瓶發酵參數值 53
表 8、30℃藍莓發酵液添加稀釋豆漿發酵參數 68
表 9、30℃藍莓發酵液添加不同濃度豆漿發酵參數 73
表 10、30℃藍莓發酵液添加不同濃度豆漿發酵參數(續表9) 73
表 11、35℃藍莓發酵液添加稀釋豆漿發酵參數 79
表 12、35℃藍莓發酵液添加不同濃度豆漿發酵參數 84
表 13、35℃藍莓發酵液添加不同濃度豆漿發酵參數(續表12) 84
參考文獻 [1] K. Liu, "Chemistry and nutritional value of soybean components," in Soybeans: Springer, 1997, pp. 25-113.
[2] D. D. Ramdath, E. M. Padhi, S. Sarfaraz, S. Renwick, and A. M. J. N. Duncan, "Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease," vol. 9, no. 4, p. 324, 2017.
[3] T. J. W. j. o. d. Reinehr, "Type 2 diabetes mellitus in children and adolescents," vol. 4, no. 6, p. 270, 2013.
[4] Y. S. Kwon, S. Lee, S. H. Lee, H. J. Kim, and C. H. Lee, "Comparative Evaluation of Six Traditional Fermented Soybean Products in East Asia: A Metabolomics Approach," Metabolites, vol. 9, no. 9.
[5] T. D. Oluwajuyitan and O. S. Ijarotimi, "Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based (Musa AAB) dough meal enriched with tigernut (Cyperus esculentus) and defatted soybean (Glycine max) flour for diabetic patients," Heliyon, vol. 5, no. 4, p. e01504, Apr 2019.
[6] I. M. Chung, S. H. Seo, J. K. Ahn, and S. H. Kim, "Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste," (in eng), Food Chem, vol. 127, no. 3, pp. 960-7, Aug 1 2011.
[7] S. Natarajan, D. Luthria, H. Bae, D. Lakshman, and A. Mitra, "Transgenic soybeans and soybean protein analysis: an overview," J Agric Food Chem, vol. 61, no. 48, pp. 11736-43, Dec 4 2013.
[8] D. Y. Kwon, J. W. Daily, H. J. Kim, and S. Park, "Antidiabetic effects of fermented soybean products on type 2 diabetes," Nutrition Research, vol. 30, no. 1, pp. 1-13, 2010.
[9] Y. Xiao et al., "Enhancement of the antioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1–6," Journal of Functional Foods, vol. 12, pp. 33-44, 2015.
[10] M. J. Spiering, "The discovery of GABA in the brain," The Journal of biological chemistry, vol. 293, no. 49, pp. 19159-19160, 2018.
[11] R. Dhakal, V. K. Bajpai, and K. H. Baek, "Production of gaba (γ - Aminobutyric acid) by microorganisms: a review," Braz J Microbiol, vol. 43, no. 4, pp. 1230-41, Oct 2012.
[12] C. Spagnuolo et al., "Genistein and cancer: current status, challenges, and future directions," Adv Nutr, vol. 6, no. 4, pp. 408-19, Jul 2015.
[13] T. Izumi et al., "Soy Isoflavone Aglycones Are Absorbed Faster and in Higher Amounts than Their Glucosides in Humans," The Journal of nutrition, vol. 130, pp. 1695-9, 07/01 2000.
[14] J. K. Kim, C. H. Cui, Q. Liu, M. H. Yoon, S. C. Kim, and W. T. Im, "Mass production of the ginsenoside Rg3(S) through the combinative use of two glycoside hydrolases," Food Chem, vol. 141, no. 2, pp. 1369-77, Nov 15 2013.
[15] A. Ahmad, K. Ramasamy, A. B. Majeed, and V. Mani, "Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones," Pharm Biol, vol. 53, no. 5, pp. 758-66, May 2015.
[16] Y. Chen et al., "Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity," RSC Advances, vol. 10, no. 29, pp. 16928-16941, 2020.
[17] D. C. Vitale, C. Piazza, B. Melilli, F. Drago, and S. Salomone, "Isoflavones: estrogenic activity, biological effect and bioavailability," Eur J Drug Metab Pharmacokinet, vol. 38, no. 1, pp. 15-25, Mar 2013.
[18] A. DAGDEMIR, J. DURIF, M. NGOLLO, Y.-J. BIGNON, and D. BERNARD-GALLON, "Breast Cancer: Mechanisms Involved in Action of Phytoestrogens and Epigenetic Changes," In Vivo, vol. 27, no. 1, pp. 1-9, 2013.
[19] K.-C. Cheng, J.-Y. Wu, J.-T. Lin, and W.-H. Liu, "Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp," European Food Research and Technology, vol. 236, no. 6, pp. 1107-1113, 2013/06/01 2013.
[20] X. Pei et al., "Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides," Protein Expr Purif, vol. 119, pp. 75-84, Mar 2016.
[21] K. J. Hamilton, S. C. Hewitt, Y. Arao, and K. S. Korach, "Estrogen Hormone Biology," Curr Top Dev Biol, vol. 125, pp. 109-146, 2017.
[22] B. J. Caan et al., "Soy food consumption and breast cancer prognosis," Cancer Epidemiol Biomarkers Prev, vol. 20, no. 5, pp. 854-8, May 2011.
[23] K. C. Chang et al., "Characterization of Emodin as a Therapeutic Agent for Diabetic Cataract," J Nat Prod, vol. 79, no. 5, pp. 1439-44, May 27 2016.
[24] K. Zaheer and M. Humayoun Akhtar, "An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health," Crit Rev Food Sci Nutr, vol. 57, no. 6, pp. 1280-1293, Apr 13 2017.
[25] C. Rípodas, V. Dalla Via, O. M. Aguilar, M. E. Zanetti, and F. A. Blanco, "Knock-down of a member of the isoflavone reductase gene family impairs plant growth and nodulation in Phaseolus vulgaris," Plant physiology and biochemistry, vol. 68, pp. 81-89, 2013.
[26] S. Subramanian, G. Stacey, and O. Yu, "Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum," The Plant Journal, vol. 48, no. 2, pp. 261-273, 2006.
[27] F. Dakora and D. Phillips, "Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins," Physiological and Molecular Plant Pathology, vol. 49, no. 1, pp. 1-20, 1996.
[28] A. Sukumaran, T. McDowell, L. Chen, J. Renaud, and S. Dhaubhadel, "Isoflavonoid‐specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2‐dimethylallyltransferase involved in glyceollin biosynthesis," The Plant Journal, vol. 96, no. 5, pp. 966-981, 2018.
[29] W. Szeja, G. Grynkiewicz, and A. Rusin, "Isoflavones, their Glycosides and Glycoconjugates. Synthesis and Biological Activity," Curr Org Chem, vol. 21, no. 3, pp. 218-235, Jan 2017.
[30] L. Chen, H. Teng, and J. Xiao, "A value-added cooking process to improve the quality of soybean: Protecting its isoflavones and antioxidant activity," Food Science and Human Wellness, vol. 8, no. 2, pp. 195-201, 2019/06/01/ 2019.
[31] H. Zhang and H. Yu, "Enhanced biotransformation of soybean isoflavone from glycosides to aglycones using solid-state fermentation of soybean with effective microorganisms (EM) strains," vol. 43, no. 4, p. e12804, 2019.
[32] D.-Y. Liu et al., "Effect of daidzein on production performance and serum antioxidative function in late lactation cows under heat stress," Livestock science, vol. 152, no. 1, pp. 16-20, 2013.
[33] H. Liu and C. Zhang, "Effects of daidzein on messenger ribonucleic acid expression of gonadotropin receptors in chicken ovarian follicles," Poultry science, vol. 87, no. 3, pp. 541-545, 2008.
[34] J. Guo-zhen and W. Li, "Effect of daidzein on ileum microflora biodiversity in Hy-Line variety brown layers," Journal of Northeast Agricultural University (English Edition), vol. 21, no. 4, pp. 31-36, 2014.
[35] R. Ohnishi et al., "Urinary excretion of anthocyanins in humans after cranberry juice ingestion," vol. 70, no. 7, pp. 1681-1687, 2006.
[36] M. J. F. F. H. Camire, Botanicals and T. L. T. Publishing, "Bilberries and blueberries as functional foods and nutraceuticals," pp. 289-319, 2000.
[37] D. Ghosh and T. J. A. P. j. o. c. n. Konishi, "Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function," vol. 16, no. 2, 2007.
[38] B. C. Blacker, S. M. Snyder, D. L. Eggett, and T. L. Parker, "Consumption of blueberries with a high-carbohydrate, low-fat breakfast decreases postprandial serum markers of oxidation," Br J Nutr, vol. 109, no. 9, pp. 1670-7, May 2013.
[39] A. J. Larson, J. D. Symons, and T. Jalili, "Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms," (in eng), Adv Nutr, vol. 3, no. 1, pp. 39-46, Jan 2012.
[40] L.-S. Wang and G. D. J. C. l. Stoner, "Anthocyanins and their role in cancer prevention," vol. 269, no. 2, pp. 281-290, 2008.
[41] E. Azzini, J. Giacometti, and G. L. Russo, "Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies," Oxidative medicine and cellular longevity, vol. 2017, pp. 2740364-2740364, 2017.
[42] R. A. S. Sancho and G. M. J. F. R. I. Pastore, "Evaluation of the effects of anthocyanins in type 2 diabetes," vol. 46, no. 1, pp. 378-386, 2012.
[43] T. C. J. A. i. n. Wallace, "Anthocyanins in cardiovascular disease," vol. 2, no. 1, pp. 1-7, 2011.
[44] J. K. Aluyen, Q. N. Ton, T. Tran, A. E. Yang, H. B. Gottlieb, and R. A. Bellanger, "Resveratrol: potential as anticancer agent," J Diet Suppl, vol. 9, no. 1, pp. 45-56, Mar 2012.
[45] H. Huang, G. Chen, D. Liao, Y. Zhu, R. Pu, and X. Xue, "The effects of resveratrol intervention on risk markers of cardiovascular health in overweight and obese subjects: a pooled analysis of randomized controlled trials," Obes Rev, vol. 17, no. 12, pp. 1329-1340, Dec 2016.
[46] X. Zhu, C. Wu, S. Qiu, X. Yuan, and L. Li, "Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis," Nutr Metab (Lond), vol. 14, p. 60, 2017.
[47] G. Liu, Z. Duan, P. Wang, D. Fan, and C. Zhu, "Purification, characterization, and hypoglycemic properties of eurocristatine from Eurotium cristatum spores in Fuzhuan brick tea," RSC Advances, vol. 10, no. 37, pp. 22234-22241, 2020.
[48] F. Y. Du, X. M. Li, J. Y. Song, C. S. Li, and B. G. Wang, "ChemInform Abstract: Anthraquinone Derivatives and an Orsellinic Acid Ester from the Marine Alga-Derived Endophytic Fungus Eurotium cristatum EN-220," Helvetica Chimica Acta, vol. 97, 07/01 2014.
[49] A. Salazar et al., "The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites," Journal of natural Pharmaceuticals, vol. 1, 12/01 2010.
[50] Y. Wu, Y. Ding, Y. Tanaka, and W. Zhang, "Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention," Int J Med Sci, vol. 11, no. 11, pp. 1185-200, 2014.
[51] M. Asif, "The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern," J Educ Health Promot, vol. 3, p. 1, 2014.
[52] S. L. Bratton and E. J. Krane, "Diabetic Ketoacidosis: Pathophysiology, Management and Complications," vol. 7, no. 4, pp. 199-211, 1992.
[53] A. B. Olokoba, O. A. Obateru, and L. B. Olokoba, "Type 2 diabetes mellitus: a review of current trends," Oman Med J, vol. 27, no. 4, pp. 269-73, Jul 2012.
[54] H. Kaneto, N. Katakami, M. Matsuhisa, and T. A. Matsuoka, "Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis," Mediators Inflamm, vol. 2010, p. 453892, 2010.
[55] S. Srinivasan, S. W. Yee, and K. M. Giacomini, "Pharmacogenetics of Antidiabetic Drugs," Adv Pharmacol, vol. 83, pp. 361-389, 2018.
[56] S. J. Hossain, I. Tsujiyama, M. Takasugi, M. A. Islam, R. S. Biswas, and H. Aoshima, "Total Phenolic Content, Antioxidative, Anti-amylase, Anti-glucosidase, and Antihistamine Release Activities of Bangladeshi Fruits," Food Science and Technology Research, vol. 14, no. 3, pp. 261-268, 2008.
[57] P. Molyneux, "The use of the stable radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity," vol. 26, 11/30 2003.
[58] V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, " Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent," in Methods in Enzymology, vol. 299: Academic Press, 1999, pp. 152-178.
[59] 陳良宇 et al., "鹼催化對Folin-Ciocalteu試劑檢測總多酚含量的影響," vol. 4, no. 1, pp. 10-19, 2012.
[60] Y. Zhu, J. Jiang, Y. Yue, Z. Feng, J. Chen, and X. J. L. Ye, "Influence of mixed probiotics on the the bioactive composition, antioxidant activity and appearance of fermented red bayberry pomace," vol. 133, p. 110076, 2020.
[61] Q. Gu, G. Duan, and X. Yu, "Bioconversion of Flavonoid Glycosides from Hippophae rhamnoides Leaves into Flavonoid Aglycones by Eurotium amstelodami," Microorganisms, vol. 7, no. 5, p. 122, 2019.
[62] V. A. Q. Santos, C. G. Nascimento, C. A. Schmidt, D. Mantovani, R. F. Dekker, and M. A. A. da Cunha, "Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality," Lwt, vol. 92, pp. 509-515, 2018.
[63] B. P. Singh, S. Vij, and S. Hati, "Functional significance of bioactive peptides derived from soybean," Peptides, vol. 54, pp. 171-9, Apr 2014.
[64] C. Martinez-Villaluenga et al., "Multifunctional Properties of Soy Milk Fermented by Enterococcus faecium Strains Isolated from Raw Soy Milk," Journal of Agricultural and Food Chemistry, vol. 60, no. 41, pp. 10235-10244, 2012/10/17 2012.
[65] Y. Kim et al., "Fermentation of Soy Milk via Lactobacillus plantarum Improves Dysregulated Lipid Metabolism in Rats on a High Cholesterol Diet," PLOS ONE, vol. 9, no. 2, p. e88231, 2014.
[66] T. Y. Tsai, L. H. Chu, C. L. Lee, and T. M. Pan, "Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia," J Agric Food Chem, vol. 57, no. 5, pp. 2065-71, Mar 11 2009.
[67] G. B. Voss, M. J. P. Monteiro, P. Jauregi, L. M. P. Valente, and M. E. Pintado, "Functional characterisation and sensory evaluation of a novel synbiotic okara beverage," Food Chem, vol. 340, p. 127793, Mar 15 2021.
[68] L. Y. Chan et al., "Eurotium cristatum fermented okara as a potential food ingredient to combat diabetes," Scientific reports, vol. 9, no. 1, pp. 1-9, 2019.
[69] X. Du and A. D. Myracle, "Fermentation alters the bioaccessible phenolic compounds and increases the alpha-glucosidase inhibitory effects of aronia juice in a dairy matrix following in vitro digestion," Food & function, vol. 9, no. 5, pp. 2998-3007, 2018.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明