博碩士論文 108324041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.15.34.131
姓名 李文豪(Wen-Hao Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Ni-P共觸媒裝載的鍺摻雜α-Fe2O3光陽極應用於HMF選擇性氧化為FDCA
(Selective Photoelectrochemicl oxidation of 5- Hydroxymethylfurfural to 2,5-Furandicarboxylic acid on Nickel Phosphate decorated Germanium doped hematite photoanode)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-30以後開放)
摘要(中) 利用氧化生物質 (Biomass) 取代光電化學 (Photoelectrochemical, PEC) 系統中光陽極較不符合動力學的產氧反應,生成高經濟價值的生質化學品,代替石化燃料。本實驗選用地表蘊藏豐富、能帶位置合適且能隙狹窄的 Hematite (α-Fe2O3) 作為光觸媒,去選擇性氧化木質纖維衍生物 5- Hydroxymethylfurfural (HMF),生成可聚合成聚2,5-呋喃二甲酸乙二酯 (PEF) 樹脂的 2,5-Furandicarboxylic acid (FDCA)。α-Fe2O3 擁有更穩定的光電化學特性可供長時間使用,適合作為選擇性氧化的光陽極材料。利用水熱法 (Hydrothermal) 製備 α-Fe2O3 光陽極薄膜,並適量摻雜前驅液穩定的鍺 (Ge) 元素來增加 α- Fe2O3 電子的濃度,優化電子的傳輸,提高材料的導電性,減少電子-電洞再結合,提升光電流值約4倍。選定碳酸-碳酸氫鈉緩衝液作為電解液,其能夠維持α-Fe2O3 的光電化學表現且不與 HMF 反應,提供選擇性氧化良好的環境。
為提高 FDCA 的選擇性,在 α-Fe2O3 表面裝載 Ni-P、Co-P 等共觸媒,並在電解液中加入氧化媒介-TEMPO,幫助 HMF 轉化成 FDCA。電沉積 Ni-P 共觸媒30分鐘能讓光電流更穩定,減少衰弱,幫助光電化學的表現。30 min Ni-P / Ge-doped α-Fe2O3 於加入1 mM HMF 與5 mM TEMPO 的碳酸-碳酸氫鈉緩衝電解液擁有最好的結果,經過24小時實驗,裝載 Ni-P 將FDCA 的選擇率從原本的51 %提升至59 %,生成率也從40 %增加到49 %,而第二產物 FFCA 選擇率從32 %降至29 %,HMF 的轉化率更高達83 %,由此可知,α-Fe2O3 適合做為 HMF 選擇性氧化的光電極,而Ni-P 共觸媒能有效幫助 FDCA 的生成,為適性的氧化共觸媒。
摘要(英) Anode oxygen evolution reaction ( OER ) is not kinetically favorable in photoelectrochemical ( PEC ) cell. Therefore, it is feasible to replace OER by producing the value-added biomass chemicals. In this work, we used hematite ( α-Fe2O3 ) modified with germanium ( Ge ) and Nickel Phosphate ( NiP ) cocatalyst as photoanode to oxidize 5- Hydroxymethylfurfural ( HMF ) to 2,5-Furandicarboxylic acid ( FDCA ). First, Ge-doped α-Fe2O3 thin film was synthesized using hydrothermal method with the addition of germanium oxide into iron oxide precursor. Proper amount of Ge doping can increase the charge densities carriers and improve the charge transfer in photoanode. The photocurrent exhibited four times higher than that of the pristine sample ( at 1.23 VRHE in 1 M NaOH ). After that, through the PEC measurement and reaction test in different basic and buffer solutions, we found that carbonate-bicarbonate solution at pH = 10.6 gave a high current and did not react with HMF.
2,2,6,6-Tetramethylpiperidine 1-oxyl ( TEMPO ) as a mediator can facilitate the selective oxidation of HMF. Besides, nickel phosphate ( NiP ) cocatalyst on Ge-doped α-Fe2O3 also improve the selectivity of FDCA. The photocurrent density of modified anode was higher and more stable in the electrolyte composed of HMF and TEMPO. With electrodeposition time of NiP increasing to 30 min, FDCA achieved 48 % yield and a selectivity up to 59 % after 24 hours, which was 16 % higher than that of Ge-doped α-Fe2O3 without cocatalyst. The conversion of HMF was 83 % and secondary derivative FFCA had only 29 % selectivity.
關鍵字(中) ★ 光電化學
★ 氧化鐵
★ 選擇性氧化
★ 光觸媒薄膜
★ 5-羥甲基糠醛
★ 2,5-呋喃二甲酸
關鍵字(英) ★ Photoelectrochemical(PEC)
★ Selective oxidation
★ α-Fe2O3
★ 5-Hydroxymethylfurfural(HMF)
★ 2,5-Furandicarboxylic acid(FDCA)
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xi
第一章、 緒論 1
1-1前言 1
1-2光觸媒發展 3
1-3研究動機 6
第二章、 文獻回顧 8
2-1半導體光觸媒 8
2-1-1半導體 8
2-1-2光觸媒 10
2-1-3 半導體與電解液界面 10
2-2光電化學分解水 13
2-3 Hematite半導體光觸媒 15
2-3-1 Hematite 簡介 15
2-3-2 Hematite 光電化學特性與缺點 16
2-3-3 Hematite改善方法 18
2-3-3-1 型態優化 18
2-3-3-2 元素摻雜 19
2-3-3-3 表面處理 20
2-3-3-4 基板與光觸媒的界面處理 21
2-4 光催生質物與選擇性氧化 24
2-4-1 光催化生質物 24
2-4-2 選擇性氧化 27
第三章、 研究方法 29
3-1 實驗藥品 29
3-2 實驗儀器 32
3-3 實驗步驟 36
3-3-1 光電極製備 36
3-3-1-1 α-Fe2O3 電極 36
3-3-1-2 Ge doped α-Fe2O3電極 37
3-3-1-3 Ni-P 與 Co-P的共觸媒裝載 38
3-3-2 光電化學測量 39
3-3-3選擇性氧化的電解液 40
3-3-4選擇性氧化 40
3-3-4-1 反應系統 40
3-3-4-2 液相層析分析 41
第四章、 結果與討論 42
4-1 α-Fe2O3光電極 42
4-1-1不同製程對α-Fe2O3光電極的影響 42
4-1-2材料性質分析 44
4-2 Ge doped α-Fe2O3光電極 51
4-2-1基本性質分析 51
4-2-2光電化學分析 63
4-3選擇性氧化之最適化電解液 66
4-3-1 HMF反應測試 66
4-3-2光電化學分析 67
4-4選擇性氧化之最適化反應條件 70
4-4-1反應媒介-TEMPO 70
4-4-2最適化反應條件 72
4-5選擇性氧化 74
4-5-1 Co-P 與 Ni-P共觸媒裝載 74
4-5-1-1 光電化學分析 74
4-5-1-2 材料性質分析 78
4-5-2 HMF選擇性氧化 84
4-5-2-1 HMF氧化機制 84
4-5-2-2濃度檢量線 85
4-5-2-3選擇性氧化結果分析 86
第五章、 結論 98
第六章、 未來建議 100
參考文獻 101
附錄 112
參考文獻 1. Halkos, George E.; Gkampoura, Eleni-Christina (2020). Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies, 13(11), 2906.
2. Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748–764.
3. Ahmed, Razin; Sreeram, Victor; Mishra, Yateendra; Arif, Muammer Din (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792.
4. Islam, Md. Rabiul;Rahman, Saifur;Roy, Naruttam Kumar (2018). Renewable Energy and the Environment. Singapore:Springer Nature.
5. Tursi, Antonio (2019). A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal, 22, 962-979.
6. Ahorsu, Richard; Medina, Francesc; Constantí, Magda (2018). Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies, 11(12), 3366.
7. Jesper Tor Jacobsson (2018). Photo Electrochemical Water Splitting: An idea heading towards obsolescence? Energy & Environmental Science, 11(8), 1977-1979.
8. David Tilley (2018). Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Advanced Energy Materials, 9(2), 1802877.
9. Islam, Md. Shofiqul (2017). Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Organic Electronics, 41, 143–156.
10. Prévot, Mathieu S.; Sivula, Kevin (2013). Photoelectrochemical Tandem Cells for Solar Water Splitting. The Journal of Physical Chemistry C, 117(35), 17879–17893.
11. Wu, Yi-Hsuan; Guo, Wei-Ru; Mishra, Mrinalini; Huang, Yen-Chen; Chang, Jeng-Kuei; Lee, Tai-Chou (2018). Combinatorial Studies on Wet-Chemical Synthesized Ti-Doped α-Fe2O3: How Does Ti4+ Improve Photoelectrochemical Activity ? ACS Applied Nano Materials., 1(7), 3145–3154.
12. Cha, Hyun Gil; Choi, Kyoung-Shin (2015). Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nature Chemistry, 7(4), 328–333.
13. Karthikeyan, Chelladurai; Arunachalam, Prabhakarn; Ramachandran, Kaliappan; Al-Mayouf, Abdullah Manar; Karuppuchamy, Subbian (2020). Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 828(5), 154281.
14. Rajeshwar, Krishnan. (2007). Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry. Encyclopedia of Electrochemistry, 6, 1-53.
15. Fujishima, Akira; Honda, Kenichi (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37–38.
16. Tolod, Kristine Rodulfo; Hernández, Simelys; Quadrell, Elsje Alessandra; Russo, Nunzio (2019). Chapter 4 - Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries. Studies in Surface Science and Catalysis, 178, 65-84.
17. 吳季珍 (民104)。擺脫庫倫作用力的光觸媒。科學發展,508,28-33。
18. 蘇建仁 (民93)。功率積體電路之接面隔離研究。碩士論文,國立陽明交通大學。
19. Jiang, Chaoran; Moniz, Savio J. A.; Wang, Aiqin; Zhang, Tao; Tang, Junwang (2017). Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews, 46, 4645.
20. Mun, Seong Jun; Park, Soo-Jin (2019). Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts, 9(10), 805.
21. Sharma, Pankaj; Jang, Ji-Wook; Lee, Jae Sung (2018). Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α-Fe2O3 Photoanode. ChemCatChem, 11, 157–179.
22. Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael (2010). Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 132(21), 7436–7444.
23. Hardee, Kenneth L.; Bard, Allen Joseph (1976). Semiconductor Electrodes: V . The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis. The Electrochemical Society, 123(7), 1024..
24. Dias, Paula; Vilanova, António; Lopes, Tânia; Andrade, Luísa; Mendes, Adélio (2016). Extremely stable bare hematite photoanode for solar water splitting. Nano Energy, 23, 70–79.
25. Yuan, Ding; Zhang, Lin; Lai, Junhui; Xie, Liqiang; Mao, Bingwei; Zhan, Dongping (2016). SECM evaluations of the crystal-facet-correlated photocatalytic activity of hematites for water splitting. Electrochemistry Communications, 73, 29–32.
26. Ahn, Hyo-Jin; Kwak, Myung-Jun; Lee, Jung-Soo; Yoon, Ki-Yong; Jang, Ji-Hyun (2014). Nanoporous hematite structures to overcome short diffusion lengths in water splitting. Journal of Materials Chemistry A, 2(47), 19999–20003.
27. Sivula, Kevin; Le Formal, Florian; Grätzel, Michael (2011). Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem, 4(4), 432–449.
28. Phuan, Yi Wen; Ong, Wee-Jun; Chong, Meng Nan; Ocon, Joey D. (2017). Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 33, 54–82.
29. Jorand Sartoretti, Chantal; Alexander, Bruce D.; Solarska, Renata; Rutkowska, Iwona A.; Augustynski, Jan; Cerny, Radovan (2005). Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes. The Journal of Physical Chemistry B, 109(28), 13685–13692.
30. Sivula, Kevin; Zboril, Radek; Le Formal, Florian; Robert, Rosa; Weidenkaff, Anke; Tucek, Jiri; Frydrych, Jiri; Grätzel, Michael (2010). Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 132(21), 7436–7444.
31. Tamirat, Andebet Gedamu; Rick, John; Dubale, Amare Aregahegn; Su, Wei-Nien; Hwang, Bing-Joe (2016). Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz., 1, 243-267
32. Vincent, Tracey; Gross, Moran; Dotan, Hen; Rothschild, Avner (2012). Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. International Journal of Hydrogen Energy, 37(9), 8102–8109.
33. Li, Linsen; Yu, Yanghai; Meng, Fei; Tan, Yizheng; Hamers, Robert J.; Jin, Song (2012). Facile Solution Synthesis of α-FeF3·3H2O Nanowires and Their Conversion to α-Fe2O3 Nanowires for Photoelectrochemical Application. Nano Letters, 12(2), 724–731.
34. Li, C.; Wang, D.; Gu, J.; Liu,Y.; Zhang, X. (2021). Promoting Photoelectrochemical Water Oxidation on Ti-Doped Fe2O3 Nanowires Photoanode by O2 Plasma Treatment. Catalysts, 11, 8.
35. Ling, Yichuan; Wang, Gongming; Wheeler, Damon A.; Zhang, Jin Z.; Li, Yat (2011). Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Letters, 11(5), 2119–2125.
36. Zhao, Le; Xiao, Jingran; Huang, Huali; Huang, Qiuyang; Zhao, Yicheng; Li, Yongdan (2018). Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge. International Journal of Hydrogen Energy, 43(28), 12646-12652.
37. Bai, Song; Yin, Wenjie; Wang, Lili; Li, Zhengquan; Xiong, Yujie (2016). Surface and interface design of cocatalysts toward photocatalytic water splitting and CO2 reduction. RSC Advances, 6, 57446-57463.
38. Kanan, Matthew W.; Nocera, Daniel George (2008). In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science, 321(5892), 1072–1075..
39. Chadderdon, David J.;Wu, Ling-Pin;McGraw, Zachary A.;Panthani, Matthew;Li, Wenzhen (2019). Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPO‐Mediated Oxidation of 5‐Hydroxymethylfurfural. ChemElectroChem, 6(13), 3387–3392.
40. Chong, Ruifeng; Wang, Baoyun; Li, Deliang; Chang, Zhixian; Zhang, Ling (2017). Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell. Solar Energy Materials and Solar Cells, 160, 287–293.
41. Liu, Guang; Zhao, Yong; Li, Na; Yao, Rui; Wang, Muheng; Wu, Yun; Zhao, Fei; Li, Jinping (2019). Ti-doped hematite photoanode with surface phosphate ions functionalization for synergistic enhanced photoelectrochemical water oxidation. Electrochimica Acta, 307, 197–205..
42. Lan, Huiwen; Xia, Yujian; Feng, Kun; Wei, Aimin; Kang, Zhenhui; Zhong, Jun (2019). Co-doped Carbon Layer to Lower the Onset Potential of Hematite for Solar Water Oxidation. Applied Catalysis B: Environmental, 258, 117962.
43. Han, Hyungkyu; Kment, Stepan; Karlicky, Frantisek; Wang, Lei; Naldoni, Alberto; Schmuki, Patrik; Zboril, Radek (2018). Sb-Doped SnO2 Nanorods Underlayer Effect to the α-Fe2O3 Nanorods Sheathed with TiO2 for Enhanced Photoelectrochemical Water Splitting. Small, 14(19), 1703860
44. Deng, Jiujun; Zhuo, Qiqi; Lv, Xiaoxin (2019). Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 835, 287–292.
45. Ng, Andrew Yun Ru; Boruah, Bhanupriya; Chin, Kek Foo; Modak, Jayant M.; Soo, Han Sen (2019). Photoelectrochemical Cells for Artificial Photosynthesis: Alternatives to Water Oxidation. ChemNanoMat, 6(2), 185-203.
46. Lhermitte, Charles R.; Plainpan, Nukorn; Canjura, Pamela; Boudoirea, Florent; Sivula, Kevin (2021). Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes. RSC Advances, 11, 198-202.
47. Allegri, Alessandro; Maslova, Valeriia; Blosi, Magda; Costa, Anna Luisa; Ortelli, Simona; Basile, Francesco; Albonetti, Stefania (2020). Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO2-Based Materials. Molecules, 25(22), 5225.
48. Ayed, Cyrine; Huang, Wei; Kizilsavas, Gönül; Landfester, Katharina; Zhang, Kai A. I. (2020). Photocatalytic partial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) over a covalent triazine framework in water. ChemPhotoChem, 4, 571–576.
49. Wu, Yi-Hsuan; Kuznetsov, Denis A.; Pflug, Nicholas C.; Fedorov, Alexey; Müller, Christoph R. (2021). Solar-driven valorisation of glycerol on BiVO4 photoanodes: effect of co-catalyst and reaction media on reaction selectivity. Journal of Materials Chemistry A, 9 (10), 6252 – 6260.
50. Liu, Dong; Liu, Jin-Cheng; Cai, Weizheng; Ma, Jun; Yang, Hong Bin; Xiao, Hai; Li, Jun; Xiong, Yujie; Huang, Yanqiang; Liu, Bin (2019). Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nature Communications, 10(1), 1779.
51. Eerhart, Aloysius J.J.E.; Faaij, André P.C.; Pate, Martin Kumar (2012). Replacing fossil based PET with biobased PEF; Process analysis, energy and GHG balance. Energy & Environmental Science, 5(4), 6407-6422.
52. Amarasekara, Ananda S.; H. Nguyen, Loc; Okorie, Nnaemeka C.; M. Jamal, Saad (2017). A two step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from D-fructose and application in polyester synthesis. Green Chemistry, 19(6), 1570–1575.
53. Roman-Leshkov, Yuriy; Chheda, Juben; Dumesic, James A. (2006). Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312(5782), 1933-1937.
54. Shih, Ruey-Fu; Hsu, Hsi-Yen (2012). United States Patent No. 20120016141. United States.
55. Sajid, Muhammad; Zhao, Xuebing; Liu, Dehua (2018). Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethyl furfural (HMF): A recent progress focusing on the chemical-catalytic routes. Green Chemistry, 20(6), 5427-5453.
56. Colmenares, Juan Carlos; Luque, Rafael (2013). Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chemical Society Reviews, 43(3), 765-778.
57. Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun (2012). Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chemical Science, 3(9), 2812-2822.
58. Park, Jin Woo; Subramanian, Arunprabaharan; Mahadik, Mahadeo A.; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk (2018). Insights into enhanced photoelectrochemical performance of hydrothermally controlled Hematite Nanostructures for Proficient Solar Water Oxidation. Dalton Transactions, 47, 4076-4086.
59. Huang, Xiaopeng; Hou, Xiaojing; Zhang, Xin; Rosso, Kevin M.; Zhang, Lizhi (2018). Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environmental Science: Nano, 5, 1790-1806.
60. Wu, Changzheng; Yin, Ping; Zhu, Xi; OuYang, Chuanzi; Xie, Yi (2006). Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. The Journal of Physical Chemistry B, 110(36), 17806-17812.
61. Tauc, Jan; Menth, A. (1972). States in the Gap. Journal of Non-Crystalline Solids, 8(10), 569-585.
62. Fondell, Mattis; Jacobsson, Tor Jesper; Boman, Mats; Edvinsson, Tomas (2014). Optical quantum confinement in low dimensional hematite. Journal of Materials Chemistry A, 2(10), 3352.
63. Garoufalis, Christos S.; Poulopoulos, Panagiotis; Bouropoulos, Nikolaos; Barnasas, Alexandros; Baskoutas, Sotirios (2017). Growth and optical properties of Fe2O3 thin films: A study of quantum confinement effects by experiment and theory. Physica E: Low-dimensional Systems and Nanostructures, 89, 67–71.
64. Park, Geun Chul; Hwang, Soo Min; Choi, Jun Hyuk; Kwon, Yong Hun; Cho, Hyung Koun; Kim, Sang-Woo; Lim, Jun Hyung; Joo, Jinho (2013). Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Physica Status Solidi (A), 210(8), 1552–1556.
65. 謝宗雍、黃郁仁、黃胤諴 (民100)。GeSbTe 薄膜之摻雜、電性質分析及其應用於相變化記憶體 (PRAM) 元件之研究。行政院國家科學委員會補助專題研究計畫成果報告 (編號:NSC 97-2221-E-009-029-MY3),未出版。
66. Zhou, Zhaohui; Huo, Pengju; Guo, Liejin; Prezhdo, Oleg V. (2015). Understanding Hematite Doping with Group IV Elements: A DFT+U Study. The Journal of Physical Chemistry C, 119(47), 26303–26310.
67. Kim, Jae Young; Jang, Ji-Wook; Youn, Duck Hyun; Magesh, Ganesan; Lee, Jae Sung (2014). A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering. Advanced Energy Materials, 4(13), 1400476.
68. Mohan, Chandra (2003). Buffers. A guide for the preparation and use of buffers in biological systems. Germany:CALBIOCHEM.
69. Cardiel, Allison C.; Taitt, Brandon J.; Choi, Kyoung-Shin (2019). Stabilities, Regeneration Pathways, and Electrocatalytic Properties of Nitroxyl Radicals for the Electrochemical Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering, 7 (13), 11138-11149.
70. Zhou, Zhonggao; Liu, Liangxian (2014). TEMPO and its Derivatives: Synthesis and Applications. Current Organic Chemistry, 18(4), 459 – 474.
71. Moulder, John F.; Stickle, William F.; Sobol, Peter E.; Bombenr, Kennetlf D. (1992). Handbook of X-ray Photoelectron Spectroscopy. America:Physical Electronics Division, Perkin-Elmer Corporation.
72. Yao, Ying; Gao, Bin; Chen, Jianjun; Yang, Liuyan (2013). Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environmental Science & Technology, 47(15), 8700–8708.
73. 趙冠傑 (民109)。BiVO4為基底的光陽極應用在選擇性氧化HMF及其衍生物。碩士論文,國立中央大學。
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明