博碩士論文 105324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.189.170.17
姓名 黃國碩(Kuo-Shuo Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 添加錫銀銅銲料之混成銅膠於低溫無壓固態擴散接合研究
(Low-temperature Pressureless Solid-state Interdiffusion Bonding by Cu–SAC Hybrid Paste)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 功率元件具有顯著的能源損耗效率,故在觸及能源轉換與高密度功率相關產業中, 扮演電路控制與能源轉換處理系統中之核心要件,其廣泛應用於車用電子、航太工程與5G通訊等。相較於傳統消費性電子產品,功率元件多處於嚴苛與高溫環境下工作,然而鮮少有接合技術能與其高溫工作環境匹配。為了使功率元件的發展與應用能夠快速擴張,開發一具有高熱穩定性的接合材料與製程以符合功率元件於電子構裝中的需求勢在必行。
本研究添加少量錫銀銅粉於銅膠中,成功開發出一新式銅錫膠。此接合材料能以固 態擴散方式於低溫無壓下達成銅對銅接合。本研究系統性地探討銅錫膠中錫含量與銅顆粒大小對整體銅接合性質之影響與機制。銅錫膠經固態擴散接合後會生成銅相鑲嵌於脆 性銅錫介金屬化合物中之特殊雙相球殼結構。此結構能改善並提升純介金屬化合物接合之機械性質,其機械強度可達19.5 MPa。於GIXRD與EDS分析中可得知,銅錫膠中之 錫已完全反應生成Cu3Sn,故此結構符合高熱穩定性的需求;在TEM的觀察中亦可發 現球殼結構的交界處有一穩定之界面。
本研究證明了除孔洞生成會降低整體銅接合機械強度外,球殼結構中介金屬化合物 其厚度與分佈面積亦會影響接合性質。此外,本研究建立一模型量化銅錫膠反應後介金屬化合物的生長行為,其結果與實驗相符,顯示此模型可用於預測與設計開發銅錫膠系統。
摘要(英) A power device is a promising technology for high energy density applications, including automobile, aerospace, and 5G telecommunication. However, traditional bonding processes cannot meet the requirements of the interconnects for such applications because of the severe working temperature. Consequently, a material that can sustain at high-temperature is essential to address the demands for electronic packaging in power devices for high-end products.
In this study, a pressureless, low-temperature Cu-embedded intermetallic joint for interconnects was achieved using a Cu–SAC305 (Cu–SAC) hybrid paste under solid-state interdiffusion. The effects of the SAC weight fractions and Cu-particle sizes in the Cu–SAC hybrid paste were systematically investigated. The strength of the joint can reach an average of 19.5 MPa, which is high compared with other pressureless solid-state bonding methods. After a solid-state interdiffusion bonding process, the joint composed of an intermetallic compound (IMC) shell and Cu core particles, namely a ductile Cu phase combined with brittle IMC, exhibited exceptional microstructure and enhanced strength. GIXRD and EDS results showed that the SAC completely transforms into thermodynamically stable Cu3Sn. Alternatively, TEM examination indicated a coherent interface between the Cu3Sn/Cu interface. This study validated that void fraction in the joints is not the only factor that affects the joint performance. A mathematical model proved that the IMC thickness and IMC interfacial areas make significant contributions for robust interconnects. The results in this study demonstrate a potential material for interconnects in high-temperature applications.
關鍵字(中) ★ 接合
★ 低溫製程
★ 無壓
★ 介金屬化合物
★ 交互擴散
關鍵字(英) ★ Bonding
★ Low-temperature process
★ Pressureless
★ Intermetallics
★ Interdiffusion
論文目次 摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES ix
EXPLANATION OF SYMBOLS x
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Motivation, Aims and Objectives 3
CHAPTER 2 LITERATURE REVIEW 5
2-1 Lead-free Solders 5
2-2 High-temperature Solders 8
2-2-1 High-lead Solders 8
2-2-2 Au-based Alloys 10
2-2-3 Bi-based Alloys 11
2-2-4 Zn-based Alloys 13
2-3 Cu-to-Cu Direct Bonding 15
2-3-1 Thermal Compression Bonding 15
2-3-2 Passivation Layer for Bonding 17
2-3-3 Surface-activated Bonding 20
2-4 Ag NP Sintering 22
2-5 Cu NP Sintering 24
2-6 Transient Liquid-phase Bonding 26
2-7 Prospects and Challenges in Current Interconnects 30 CHAPTER 3 EXPERIMENTAL PROCEDURE 31
3-1 Preparation of Cu–SAC Hybrid Paste 31
3-2 Pressureless Bonding Process 33
3-3 Analysis of the Cu Joints 35
CHAPTER 4 RESULTS AND DISCUSSION 37
4-1 The Cu–SAC Hybrid Paste 37
4-2 Hybrid Paste of Various SAC Fractions 43
4-2-1 Effect of SAC Fraction on the Microstructure 43
4-2-2 Effect of SAC Fraction on the Mechanical Properties 48 4-2-3 Phase Characterization 51
4-2-4 HRTEM Analysis 53
4-3 Hybrid paste of Various Cu-particle Sizes 57
4-3-1 Effect of Cu-particle Size on the Microstructure 57
4-3-2 Effect of Cu-particle Size on the Mechanical Properties 67
4-4 Quantitative Analysis of the Hybrid Paste 73
4-4-1 Modeling for the Hybrid Paste 73
4-4-2 Effect of Weight Ratio and Cu3Sn Volume Fraction 76
4-4-3 Effect of the Cu-particle Size of the Hybrid Paste 79 CHAPTER 5 CONCLUSION 81
REFERENCE 82
參考文獻 [1] Semiconductor Market Size, Share & COVID-19 Impact Analysis, By Components (Memory Devices, Logic Devices, Analog IC, MPU, Discrete Power Devices, MCU, Sensors and Others), By Application (Networking & Communications, Data Processing, Industrial, Consumer Electronics, Automotive, Government) and Regional Forecast, 2020-2027, 2019. Available: https://www.fortunebusinessinsights.com/semiconductor-market-102365
[2] Compound semi. Quarterly Market Monitor, 2020. Available: http://www.yole.fr/Compound_Semiconductor_Monitor_Q2.aspx
[3] B. Wu and A. Kumar, "Extreme ultraviolet lithography and three dimensional integrated circuit—A review", Applied Physics Reviews, Vol, 1, 2014.
[4] S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, "Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure", Journal of Alloys and Compounds, Vol, 493, pp. 431-437, 2010.
[5] H.K. Kim and K.N. Tu, "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening", Phys Rev B Condens Matter, Vol, 53, pp. 16027-16034, 1996.
[6] F. Wang, X. Ma, and Y. Qian, "Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition", Scripta Materialia, Vol, 53, pp. 699-702, 2005.
[7] J.-W. Yoon, S.-W. Kim, and S.-B. Jung, "Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging", Journal of Alloys and Compounds, Vol, 391, pp. 82-89, 2005.
[8] T.Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, "Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn–3.5Ag, Sn–3.8Ag–0.7Cu and Sn–0.7Cu) on Cu", Journal of Materials Research, Vol, 17, pp. 291-301, 2011.
[9] W.K. Choi and H.M. Lee, "Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate", Journal of Electronic Materials, Vol, 29, pp. 1207-1213, 2000.
[10] M. He, Z. Chen, and G. Qi, "Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization", Acta Materialia, Vol, 52, pp. 2047-2056, 2004.
[11] J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, and D.A. Hutt, "Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects", Acta Materialia, Vol, 54, pp. 2907-2922, 2006.
[12] W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, and A. Garcia, "Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys", Journal of Alloys and Compounds, Vol, 572, pp. 97-106, 2013.
[13] H.-W. Miao and J.-G. Duh, "Microstructure evolution in Sn–Bi and Sn–Bi–Cu solder joints under thermal aging", Materials Chemistry and Physics, Vol, 71, pp. 255-271, 2001.
[14] J.-E. Lee, K.-S. Kim, M. Inoue, J. Jiang, and K. Suganuma, "Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy", Journal of Alloys and Compounds, Vol, 454, pp. 310-320, 2008.
[15] M.N. Islam, Y.C. Chan, M.J. Rizvi, and W. Jillek, "Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder", Journal of Alloys and Compounds, Vol, 400, pp. 136-144, 2005.
[16] K. Suganuma and K.-S. Kim, "Sn–Zn low temperature solder", Journal of Materials Science: Materials in Electronics, Vol, 18, pp. 121-127, 2006.
[17] K.S. Kim, S.H. Huh, and K. Suganuma, "Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints", Journal of Alloys and Compounds, Vol, 352, pp. 226-236, 2003.
[18] C.M. Miller, I.E. Anderson, and J.F. Smith, "A viable tin-lead solder substitute: Sn-Ag-Cu", Journal of Electronic Materials, Vol, 23, pp. 595-601, 1994.
[19] H.-T. Lee, M.-H. Chen, H.-M. Jao, and T.-L. Liao, "Influence of interfacial intermetallic compound on fracture behavior of solder joints", Materials Science and Engineering: A, Vol, 358, pp. 134-141, 2003.
[20] S.M. Hayes, N. Chawla, and D.R. Frear, "Interfacial fracture toughness of Pb-free solders", Microelectronics Reliability, Vol, 49, pp. 269-287, 2009.
[21] K.E. Yazzie, H.E. Fei, H. Jiang, and N. Chawla, "Rate-dependent behavior of Sn alloy–Cu couples: Effects of microstructure and composition on mechanical shock resistance", Acta Materialia, Vol, 60, pp. 4336-4348, 2012.
[22] P.L. Tu, Y.C. Chan, and J.K.L. Lai, "Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, Vol, 20, pp. 87-93, 1997.
[23] Y.-C. Chiou, Y.-M. Jen, and S.-H. Huang, "Finite element based fatigue life estimation of the solder joints with effect of intermetallic compound growth", Microelectronics Reliability, Vol, 51, pp. 2319-2329, 2011.
[24] C. Fa-Xing, J.H.L. Pang, and L.H. Xu, "IMC consideration in FEA simulation for PB-free solder joint reliability," Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006. pp. 1018-1023, 2006.
[25] R. Mahajan and B. Sankman, 3D Packaging Architectures and Assembly Process Design, in: Y. Li, D. Goyal (Eds.), 3D Microelectronic Packaging: From Fundamentals to Applications, Springer International Publishing, Cham, 2017, pp. 17-46.
[26] A. Munding, H. Hübner, A. Kaiser, S. Penka, P. Benkart, and E. Kohn, Cu/Sn Solid–Liquid Interdiffusion Bonding, in: C.S. Tan, R.J. Gutmann, L.R. Reif (Eds.), Wafer Level 3-D ICs Process Technology, Springer US, Boston, MA, 2008, pp. 1-39.
[27] S.F. Choudhury and L. Ladani, "Local shear stress-strain response of Sn-3.5Ag/Cu solder joint with high fraction of intermetallic compounds: Experimental analysis", Journal of Alloys and Compounds, Vol, 680, pp. 665-676, 2016.
[28] C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, and C. Raynaud, "State of the art of high temperature power electronics", Materials Science and Engineering: B, Vol, 176, pp. 283-288, 2011.
[29] Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, and F. Sun, "Stress analysis of pressure-assisted sintering for the double-side assembly of power module", Soldering & Surface Mount Technology, Vol, 31, pp. 20-27, 2019.
[30] X.P. Zhang, C.B. Yu, S. Shrestha, and L. Dorn, "Creep and fatigue behaviors of the lead-free Sn–Ag–Cu–Bi and Sn60Pb40 solder interconnections at elevated temperatures", Journal of Materials Science: Materials in Electronics, Vol, 18, pp. 665-670, 2006.
[31] F. Guo, J. Lee, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, "Creep properties of eutectic Sn-3.5Ag solder joints reinforced with mechanically incorporated Ni particles", Journal of Electronic Materials, Vol, 30, pp. 1222-1227, 2001.
[32] C. Durand, M. Klingler, M. Bigerelle, and D. Coutellier, "Solder fatigue failures in a new designed power module under Power Cycling", Microelectronics Reliability, Vol, 66, pp. 122-133, 2016.
[33] H. Wang, X. Ma, F. Gao, and Y. Qian, "Sn concentration on the reactive wetting of high-Pb solder on Cu substrate", Materials Chemistry and Physics, Vol, 99, pp. 202-205, 2006.
[34] M.H. Tsai, Y.W. Lin, H.Y. Chuang, and C.R. Kao, "Effect of Sn concentration on massive spalling in high-Pb soldering reaction with Cu substrate", Journal of Materials Research, Vol, 24, pp. 3407-3411, 2011.
[35] J.-W. Jang, L.N. Ramanathan, J.-K. Lin, and D.R. Frear, "Spalling of Cu3Sn intermetallics in high-lead 95Pb5Sn solder bumps on Cu under bump metallization during solid-state annealing", Journal of Applied Physics, Vol, 95, pp. 8286-8289, 2004.
[36] G. Zeng, S. McDonald, and K. Nogita, "Development of high-temperature solders: Review", Microelectronics Reliability, Vol, 52, pp. 1306-1322, 2012.
[37] G. Khatibi, A. Betzwar Kotas, and M. Lederer, "Effect of aging on mechanical properties of high temperature Pb-rich solder joints", Microelectronics Reliability, Vol, 85, pp. 1-11, 2018.
[38] H. Schoeller, S. Bansal, A. Knobloch, D. Shaddock, and J. Cho, "Microstructure Evolution and the Constitutive Relations of High-Temperature Solders", Journal of Electronic Materials, Vol, 38, pp. 802-809, 2009.
[39] Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, and X. Li, "Investigation of rare earth-doped BiAg high-temperature solders", Journal of Materials Science: Materials in Electronics, Vol, 21, pp. 875-881, 2009.
[40] V. Chidambaram, J. Hattel, and J. Hald, "Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system", Materials & Design, Vol, 31, pp. 4638-4645, 2010.
[41] V. Chidambaram, J. Hattel, and J. Hald, "High-temperature lead-free solder alternatives", Microelectronic Engineering, Vol, 88, pp. 981-989, 2011.
[42] Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, and C.R. Kao, "Au–Sn bonding material for the assembly of power integrated circuit module", Journal of Alloys and Compounds, Vol, 671, pp. 340-345, 2016.
[43] J.N. Lalena, N.F. Dean, and M.W. Weiser, "Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment", Journal of Electronic Materials, Vol, 31, pp. 1244-1249, 2002.
[44] R.R. Chromik, D.N. Wang, A. Shugar, L. Limata, M.R. Notis, and R.P. Vinci, "Mechanical Properties of Intermetallic Compounds in the Au–Sn System", Journal of Materials Research, Vol, 20, pp. 2161-2172, 2005.
[45] H.S. Chin, K.Y. Cheong, and A.B. Ismail, "A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices", Metallurgical and Materials Transactions B, Vol, 41, pp. 824-832, 2010.
[46] Y.C. Liu, J.W.R. Teo, S.K. Tung, and K.H. Lam, "High-temperature creep and hardness of eutectic 80Au/20Sn solder", Journal of Alloys and Compounds, Vol, 448, pp. 340-343, 2008.
[47] F.P. McCluskey, M. Dash, Z. Wang, and D. Huff, "Reliability of high temperature solder alternatives", Microelectronics Reliability, Vol, 46, pp. 1910-1914, 2006.
[48] H. Zhang, J. Minter, and N.-C. Lee, "A Brief Review on High-Temperature, Pb-Free Die-Attach Materials", Journal of Electronic Materials, Vol, 48, pp. 201-210, 2018.
[49] Y. Takaku, I. Ohnuma, R. Kainuma, Y. Yamada, Y. Yagi, Y. Nishibe, and K. Ishida, "Development of Bi-base high-temperature Pb-free solders with second-phase dispersion: Thermodynamic calculation, microstructure, and interfacial reaction", Journal of Electronic Materials, Vol, 35, pp. 1926-1932, 2006.
[50] M.Y. Shimoda, Tomohiro; Shiokawa, Kunio; Nishikawa, Hiroshi; Takemoto, Tadashi, "Effects of Ag Content on the Mechanical Properties of Bi-Ag Alloys Substitutable for Pb based Solder", Transactions of JWRI, Vol, 41, pp. 51-54, 2012.
[51] M. Rettenmayr, P. Lambracht, B. Kempf, and M. Graff, "High Melting Pb-Free Solder Alloys for Die-Attach Applications", Advanced Engineering Materials, Vol, 7, pp. 965-969, 2005.
[52] J.-M. Song, H.-Y. Chuang, and Z.-M. Wu, "Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates", Journal of Electronic Materials, Vol, 35, pp. 1041-1049, 2006.
[53] J.E. Spinelli, B.L. Silva, and A. Garcia, "Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications", Materials & Design, Vol, 58, pp. 482-490, 2014.
[54] A.S.M. International and C. Handbook, ASM handbook. Volume 3, Volume 3, Materials Park, Ohio: ASM International, 1992.
[55] M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, "Zn-Al based alloys as Pb-free solders for die attach", Journal of Electronic Materials, Vol, 31, pp. 278-285, 2002.
[56] T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, "Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use", Journal of Electronic Materials, Vol, 28, pp. 1172-1175, 1999.
[57] Y. Takaku, L. Felicia, I. Ohnuma, R. Kainuma, and K. Ishida, "Interfacial Reaction Between Cu Substrates and Zn-Al Base High-Temperature Pb-Free Solders", Journal of Electronic Materials, Vol, 37, pp. 314-323, 2007.
[58] T. Yamaguchi, O. Ikeda, Y. Oda, S. Hata, K. Kuroki, H. Kuroda, and A. Hirose, "Three-Layer Zn/Al/Zn Clad Solder for Die Attachment", Journal of Electronic Materials, Vol, 44, pp. 751-760, 2014.
[59] S. Mallick, M.S. Kabir, and A. Sharif, "Study on the properties of Zn–xNi high temperature solder alloys", Journal of Materials Science: Materials in Electronics, Vol, 27, pp. 3608-3618, 2015.
[60] X. Yang, W. Hu, X. Yan, and Y. Lei, "Microstructure and Solderability of Zn-6Al-xSn Solders", Journal of Electronic Materials, Vol, 44, pp. 1128-1133, 2015.
[61] T. Gancarz, J. Pstruś, P. Fima, and S. Mosińska, "Thermal Properties and Wetting Behavior of High Temperature Zn-Al-In Solders", Journal of Materials Engineering and Performance, Vol, 21, pp. 599-605, 2012.
[62] B. Rebhan, S. Tollabimazraehno, G. Hesser, and V. Dragoi, "Analytical methods used for low temperature Cu–Cu wafer bonding process evaluation", Microsystem Technologies, Vol, 21, pp. 1003-1013, 2015.
[63] B. Rebhan, T. Plach, S. Tollabimazraehno, V. Dragoi, and M. Kawano, "Cu-Cu wafer bonding: An enabling technology for three-dimensional integration," 2014 International Conference on Electronics Packaging (ICEP) pp. 475-479, 2014.
[64] C.S. Tan, R. Reif, N.D. Theodore, and S. Pozder, "Observation of interfacial void formation in bonded copper layers", Applied Physics Letters, Vol, 87, 2005.
[65] W. Yang, M. Akaike, M. Fujino, and T. Suga, "A Combined Process of Formic Acid Pretreatment for Low-Temperature Bonding of Copper Electrodes", ECS Journal of Solid State Science and Technology, Vol, 2, pp. P271-P274, 2013.
[66] P.M. Agrawal, B.M. Rice, and D.L. Thompson, "Predicting trends in rate parameters for self-diffusion on FCC metal surfaces", Surface Science, Vol, 515, pp. 21-35, 2002.
[67] C.M. Liu, H.W. Lin, Y.S. Huang, Y.C. Chu, C. Chen, D.R. Lyu, K.N. Chen, and K.N. Tu, "Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu", Sci Rep, Vol, 5, p. 9734, 2015.
[68] D.F. Lim, J. Wei, K.C. Leong, and C.S. Tan, "Cu passivation for enhanced low temperature (⩽300°C) bonding in 3D integration", Microelectronic Engineering, Vol, 106, pp. 144-148, 2013.
[69] C.S. Tan, D.F. Lim, S.G. Singh, S.K. Goulet, and M. Bergkvist, "Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol", Applied Physics Letters, Vol, 95, 2009.
[70] D.F. Lim, S.K. Goulet, M. Bergkvist, J. Wei, K.C. Leong, and C.S. Tan, "Enhancing Cu-Cu Diffusion Bonding at Low Temperature Via Application of Self-assembled Monolayer Passivation", Journal of The Electrochemical Society, Vol, 158, 2011.
[71] C.S. Tan, D.F. Lim, X.F. Ang, J. Wei, and K.C. Leong, "Low temperature CuCu thermo-compression bonding with temporary passivation of self-assembled monolayer and its bond strength enhancement", Microelectronics Reliability, Vol, 52, pp. 321-324, 2012.
[72] D.F. Lim, J. Wei, K.C. Leong, and C.S. Tan, "Surface Passivation of Cu for Low Temperature 3D Wafer Bonding", ECS Solid State Letters, Vol, 1, pp. P11-P14, 2012.
[73] Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, and K.-N. Chen, "Demonstration and Electrical Performance of Cu–Cu Bonding at 150 °C With Pd Passivation", IEEE Transactions on Electron Devices, Vol, 62, pp. 2587-2592, 2015.
[74] D. Liu, P. Chen, Y. Tsai, and K. Chen, "Low Temperature Cu to Cu Direct Bonding below 150 °C with Au Passivation Layer," 2019 International 3D Systems Integration Conference (3DIC) pp. 1-4, 2019.
[75] Y.-P. Huang, Y.-S. Chien, R.-N. Tzeng, M.-S. Shy, T.-H. Lin, K.-H. Chen, C.-T. Chiu, J.-C. Chiou, C.-T. Chuang, W. Hwang, H.-M. Tong, and K.-N. Chen, "Novel Cu-to-Cu Bonding With Ti Passivation at 180$^{circ}{
m C}$ in 3-D Integration", IEEE Electron Device Letters, Vol, 34, pp. 1551-1553, 2013.
[76] A.K. Panigrahi, S. Bonam, T. Ghosh, S.G. Singh, and S.R.K. Vanjari, "Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure", Materials Letters, Vol, 169, pp. 269-272, 2016.
[77] P.C. Lin, H. Chen, H.-C. Hsieh, T.-H. Tseng, H.Y. Lee, and A.T. Wu, "Co-sputtered Cu(Ti) thin alloy film for formation of Cu diffusion and chip-level bonding", Materials Chemistry and Physics, Vol, 211, pp. 17-22, 2018.
[78] S. Hsu, H. Chen, and K. Chen, "Cosputtered Cu/Ti Bonded Interconnects With a Self-Formed Adhesion Layer for Three-Dimensional Integration Applications", IEEE Electron Device Letters, Vol, 33, pp. 1048-1050, 2012.
[79] D. Liu, T.-Y. Kuo, Y.-W. Liu, Z.-J. Hong, Y.-T. Chung, T.-C. Chou, H.-W. Hu, and K.-N. Chen, "Investigation of Low Temperature Cu-Cu Direct Bonding with Pt Passivation Layer in 3D Integration", IEEE Transactions on Components, Packaging and Manufacturing Technology, pp. 1-1, 2021.
[80] J. Utsumi, K. Ide, and Y. Ichiyanagi, "Cu/SiO2 hybrid bonding obtained by surface-activated bonding method at room temperature using Si ultrathin films", Micro and Nano Engineering, Vol, 2, pp. 1-6, 2019.
[81] A. Shigetou, T. Itoh, and T. Suga, "Direct bonding of CMP-Cu films by surface activated bonding (SAB) method", Journal of Materials Science, Vol, 40, pp. 3149-3154, 2005.
[82] T.H. Kim, M.M.R. Howlader, T. Itoh, and T. Suga, "Room temperature Cu–Cu direct bonding using surface activated bonding method", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol, 21, pp. 449-453, 2003.
[83] H. Takagi, K. Kikuchi, R. Maeda, T.R. Chung, and T. Suga, "Surface activated bonding of silicon wafers at room temperature", Applied Physics Letters, Vol, 68, pp. 2222-2224, 1996.
[84] A. Shigetou and T. Suga, "Vapor-Assisted Surface Activation Method for Homo- and Heterogeneous Bonding of Cu, SiO2, and Polyimide at 150°C and Atmospheric Pressure", Journal of Electronic Materials, Vol, 41, pp. 2274-2280, 2012.
[85] R. He, M. Fujino, A. Yamauchi, Y. Wang, and T. Suga, "Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding", ECS Journal of Solid State Science and Technology, Vol, 5, pp. P419-P424, 2016.
[86] E. Roduner, "Size matters: why nanomaterials are different", Chem Soc Rev, Vol, 35, pp. 583-92, 2006.
[87] S.L. Lai, J.Y. Guo, V.V. Petrova, G. Ramanath, and L.H. Allen, "Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements", Phys Rev Lett, Vol, 77, pp. 99-102, 1996.
[88] T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", Journal of Electronic Materials, Vol, 36, pp. 1333-1340, 2007.
[89] E. Ide, S. Angata, A. Hirose, and K. Kobayashi, "Metal?metal bonding process using Ag metallo-organic nanoparticles", Acta Materialia, Vol, 53, pp. 2385-2393, 2005.
[90] D. Wakuda, K. Keun-Soo, and K. Suganuma, "Ag Nanoparticle Paste Synthesis for Room Temperature Bonding", IEEE Transactions on Components and Packaging Technologies, Vol, 33, pp. 437-442, 2010.
[91] M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich, and G.-Q. Lu, "How to determine surface roughness of copper substrate for robust pressureless sintered silver in air", Materials Letters, Vol, 228, pp. 327-330, 2018.
[92] S. Wang, H. Ji, M. Li, and C. Wang, "Fabrication of interconnects using pressureless low temperature sintered Ag nanoparticles", Materials Letters, Vol, 85, pp. 61-63, 2012.
[93] H. Zhang, Y. Gao, J. Jiu, and K. Suganuma, "In situ bridging effect of Ag2O on pressureless and low-temperature sintering of micron-scale silver paste", Journal of Alloys and Compounds, Vol, 696, pp. 123-129, 2017.
[94] M.-H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamada, and M. Saito, "Pressureless Bonding by Micro-Sized Silver Particle Paste for High-Temperature Electronic Packaging", Materials Transactions, Vol, 57, pp. 1209-1214, 2016.
[95] S. Wang, M. Li, H. Ji, and C. Wang, "Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging", Scripta Materialia, Vol, 69, pp. 789-792, 2013.
[96] H. Zhang, S. Nagao, and K. Suganuma, "Addition of SiC Particles to Ag Die-Attach Paste to Improve High-Temperature Stability; Grain Growth Kinetics of Sintered Porous Ag", Journal of Electronic Materials, Vol, 44, pp. 3896-3903, 2015.
[97] M.-H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamada, and M. Saito, "Effect of temperature and substrate on shear strength of the joints formed by sintering of micro-sized Ag particle paste without pressure", Journal of Materials Science: Materials in Electronics, Vol, 28, pp. 7292-7301, 2017.
[98] K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, "Low-temperature low-pressure die attach with hybrid silver particle paste", Microelectronics Reliability, Vol, 52, pp. 375-380, 2012.
[99] A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, "Low temperature sintering of Ag nanoparticles for flexible electronics packaging", Applied Physics Letters, Vol, 97, 2010.
[100] Y. Mou, Y. Peng, Y. Zhang, H. Cheng, and M. Chen, "Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles", Materials Letters, Vol, 227, pp. 179-183, 2018.
[101] Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, and K. Suganuma, "Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres", Journal of Electronic Materials, Vol, 46, pp. 4575-4581, 2017.
[102] R. Gao, S. He, Y.-A. Shen, and H. Nishikawa, "Effect of Substrates on Fracture Mechanism and Process Optimization of Oxidation–Reduction Bonding with Copper Microparticles", Journal of Electronic Materials, Vol, 48, pp. 2263-2271, 2019.
[103] J. Liu, H. Chen, H. Ji, and M. Li, "Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles", ACS Appl Mater Interfaces, Vol, 8, pp. 33289-33298, 2016.
[104] T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, and N. Terada, "Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-Temperature Bonding Using Cu Nanoparticle Paste", Journal of Electronic Materials, Vol, 42, pp. 1260-1267, 2013.
[105] Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, "Metal–metal bonding process using metallic copper nanoparticles prepared in aqueous solution", International Journal of Adhesion and Adhesives, Vol, 33, pp. 50-55, 2012.
[106] Y. Jianfeng, Z. Guisheng, H. Anming, and Y.N. Zhou, "Preparation of PVP coated Cu NPs and the application for low-temperature bonding", Journal of Materials Chemistry, Vol, 21, 2011.
[107] J.J. Li, C.L. Cheng, T.L. Shi, J.H. Fan, X. Yu, S.Y. Cheng, G.L. Liao, and Z.R. Tang, "Surface effect induced Cu-Cu bonding by Cu nanosolder paste", Materials Letters, Vol, 184, pp. 193-196, 2016.
[108] J. Yan, G. Zou, A.-p. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, "Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging", Scripta Materialia, Vol, 66, pp. 582-585, 2012.
[109] J. Li, X. Yu, T. Shi, C. Cheng, J. Fan, S. Cheng, G. Liao, and Z. Tang, "Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste", Nanoscale Res Lett, Vol, 12, p. 255, 2017.
[110] Y. Gao, W. Li, C. Chen, H. Zhang, J. Jiu, C.-F. Li, S. Nagao, and K. Suganuma, "Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere", Materials & Design, Vol, 160, pp. 1265-1272, 2018.
[111] K. Chu, Y. Sohn, and C. Moon, "A comparative study of Cn/Sn/Cu and Ni/Sn/Ni solder joints for low temperature stable transient liquid phase bonding", Scripta Materialia, Vol, 109, pp. 113-117, 2015.
[112] B.-S. Lee, S.-K. Hyun, and J.-W. Yoon, "Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging", Journal of Materials Science: Materials in Electronics, Vol, 28, pp. 7827-7833, 2017.
[113] J.F. Li, P.A. Agyakwa, and C.M. Johnson, "Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process", Acta Materialia, Vol, 59, pp. 1198-1211, 2011.
[114] S. Marauska, M. Claus, T. Lisec, and B. Wagner, "Low temperature transient liquid phase bonding of Au/Sn and Cu/Sn electroplated material systems for MEMS wafer-level packaging", Microsystem Technologies, Vol, 19, pp. 1119-1130, 2012.
[115] N.S. Bosco and F.W. Zok, "Strength of joints produced by transient liquid phase bonding in the Cu–Sn system", Acta Materialia, Vol, 53, pp. 2019-2027, 2005.
[116] Y. Bao, A. Wu, H. Shao, Y. Zhao, and G. Zou, "Effect of powders on microstructures and mechanical properties for Sn–Ag transient liquid phase bonding in air", Journal of Materials Science: Materials in Electronics, Vol, 29, pp. 10246-10257, 2018.
[117] A. Lis and C. Leinenbach, "Effect of Process and Service Conditions on TLP-Bonded Components with (Ag,Ni–)Sn Interlayer Combinations", Journal of Electronic Materials, Vol, 44, pp. 4576-4588, 2015.
[118] H. Shao, A. Wu, Y. Bao, Y. Zhao, L. Liu, and G. Zou, "Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound", Ultrason Sonochem, Vol, 37, pp. 561-570, 2017.
[119] M. Fujino, H. Narusawa, Y. Kuramochi, E. Higurashi, T. Suga, T. Shiratori, and M. Mizukoshi, "Transient liquid-phase sintering using silver and tin powder mixture for die bonding", Japanese Journal of Applied Physics, Vol, 55, 2016.
[120] H.Y. Chuang, J.J. Yu, M.S. Kuo, H.M. Tong, and C.R. Kao, "Elimination of voids in reactions between Ni and Sn: A novel effect of silver", Scripta Materialia, Vol, 66, pp. 171-174, 2012.
[121] H. Ji, M. Li, S. Ma, and M. Li, "Ni 3 Sn 4 -composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging", Materials & Design, Vol, 108, pp. 590-596, 2016.
[122] T.A. Tollefsen, A. Larsson, O.M. Løvvik, and K. Aasmundtveit, "Au-Sn SLID Bonding—Properties and Possibilities", Metallurgical and Materials Transactions B, Vol, 43, pp. 397-405, 2011.
[123] W.P. Lin, C.-H. Sha, and C.C. Lee, "40 $mu{
m m}$ Flip-Chip Process Using Ag–In Transient Liquid Phase Reaction", IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol, 2, pp. 903-908, 2012.
[124] C.A. Yang, S. Yang, X. Liu, H. Nishikawa, and C.R. Kao, "Enhancement of nano-silver chip attachment by using transient liquid phase reaction with indium", Journal of Alloys and Compounds, Vol, 762, pp. 586-597, 2018.
[125] Y.-Y. Wu and C.C. Lee, "The Strength of High-Temperature Ag–In Joints Produced Between Copper by Fluxless Low-Temperature Processes", Journal of Electronic Packaging, Vol, 136, 2014.
[126] B. Gollas, J.H. Albering, K. Schmut, V. Pointner, R. Herber, and J. Etzkorn, "Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering", Intermetallics, Vol, 16, pp. 962-968, 2008.
[127] H. Feng, J. Huang, X. Peng, Z. Lv, Y. Wang, J. Yang, S. Chen, and X. Zhao, "Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging", Journal of Electronic Materials, Vol, 47, pp. 4642-4652, 2018.
[128] F. Lang, H. Yamaguchi, H. Nakagawa, and H. Sato, "Thermally Stable Bonding of SiC Devices with Ceramic Substrates: Transient Liquid Phase Sintering Using Cu/Sn Powders", Journal of The Electrochemical Society, Vol, 160, pp. D315-D319, 2013.
[129] O. Mokhtari and H. Nishikawa, "Transient liquid phase bonding of Sn–Bi solder with added Cu particles", Journal of Materials Science: Materials in Electronics, Vol, 27, pp. 4232-4244, 2016.
[130] C. Flötgen, M. Pawlak, E. Pabo, H.J. van de Wiel, G.R. Hayes, and V. Dragoi, "Wafer bonding using Cu–Sn intermetallic bonding layers", Microsystem Technologies, Vol, 20, pp. 653-662, 2013.
[131] T. An and F. Qin, "Effects of the intermetallic compound microstructure on the tensile behavior of Sn3.0Ag0.5Cu/Cu solder joint under various strain rates", Microelectronics Reliability, Vol, 54, pp. 932-938, 2014.
[132] L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, and A.G. Evans, "On the toughness of brittle materials reinforced with a ductile phase", Acta Metallurgica, Vol, 36, pp. 945-953, 1988.
[133] A. Lis, H. Tatsumi, T. Matsuda, T. Sano, Y. Kashiba, and A. Hirose, "Bonding through novel solder-metallic mesh composite design", Materials & Design, Vol, 160, pp. 475-485, 2018.
[134] H. Chen, T. Hu, M. Li, and Z. Zhao, "Cu@Sn Core–Shell Structure Powder Preform for High-Temperature Applications Based on Transient Liquid Phase Bonding", IEEE Transactions on Power Electronics, Vol, 32, pp. 441-451, 2017.
[135] C. Soonwan, T. Zhenming, and P. Seungbae, "Investigation of phase change of flip chip solders during the second level interconnect reflow," Proceedings Electronic Components and Technology, 2005. ECTC ′05. pp. 894-900 Vol. 1, 2005.
[136] X. Hu, T. Xu, L.M. Keer, Y. Li, and X. Jiang, "Shear strength and fracture behavior of reflowed Sn3.0Ag0.5Cu/Cu solder joints under various strain rates", Journal of Alloys and Compounds, Vol, 690, pp. 720-729, 2017.
[137] C. Suryanarayana, "Mechanical alloying and milling", Progress in Materials Science, Vol, 46, pp. 1-184, 2001.
[138] T. Ishizaki and R. Watanabe, "A new one-pot method for the synthesis of Cu nanoparticles for low temperature bonding", Journal of Materials Chemistry, Vol, 22, 2012.
[139] Z. ruifen, T. Lingling, and D.A.K. Leong, "The Study of Void Formation in Ag Sinter Joint," 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC) pp. 241-245, 2018.
[140] B.-S. Lee and J.-W. Yoon, "Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications", Journal of Electronic Materials, Vol, 47, pp. 430-435, 2017.
[141] H. Tatsumi, A. Lis, H. Yamaguchi, T. Matsuda, T. Sano, Y. Kashiba, and A. Hirose, "Evolution of Transient Liquid-Phase Sintered Cu–Sn Skeleton Microstructure During Thermal Aging", Applied Sciences, Vol, 9, 2019.
[142] L. Liu, Z. Chen, C. Liu, Y. Wu, and B. An, "Micro-mechanical and fracture characteristics of Cu 6 Sn 5 and Cu 3 Sn intermetallic compounds under micro-cantilever bending", Intermetallics, Vol, 76, pp. 10-17, 2016.
[143] K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, and Q.F. Gu, "Kinetics of the η–η′ transformation in Cu6Sn5", Scripta Materialia, Vol, 65, pp. 922-925, 2011.
[144] D. Mu, J. Read, Y. Yang, and K. Nogita, "Thermal expansion of Cu6Sn5 and (Cu,Ni)6Sn5", Journal of Materials Research, Vol, 26, pp. 2660-2664, 2011.
[145] A. Paul, C. Ghosh, and W.J. Boettinger, "Diffusion Parameters and Growth Mechanism of Phases in the Cu-Sn System", Metallurgical and Materials Transactions A, Vol, 42, pp. 952-963, 2011.
[146] S. Kumar, C.A. Handwerker, and M.A. Dayananda, "Intrinsic and Interdiffusion in Cu-Sn System", Journal of Phase Equilibria and Diffusion, Vol, 32, pp. 309-319, 2011.
[147] Y. Yuan, Y. Guan, D. Li, and N. Moelans, "Investigation of diffusion behavior in Cu–Sn solid state diffusion couples", Journal of Alloys and Compounds, Vol, 661, pp. 282-293, 2016.
[148] Y. Yuan, D. Li, Y. Guan, H.J. Seifert, and N. Moelans, "Investigation of the diffusion behavior in Sn-xAg-yCu/Cu solid state diffusion couples", Journal of Alloys and Compounds, Vol, 686, pp. 794-802, 2016.
[149] M. Onishi and H. Fujibuchi, "Reaction-Diffusion in the Cu–Sn System", Transactions of the Japan Institute of Metals, Vol, 16, pp. 539-547, 1975.
[150] X. Liu, S. He, and H. Nishikawa, "Low temperature solid-state bonding using Sn-coated Cu particles for high temperature die attach", Journal of Alloys and Compounds, Vol, 695, pp. 2165-2172, 2017.
[151] O. Mokhtari, "A review: Formation of voids in solder joint during the transient liquid phase bonding process - Causes and solutions", Microelectronics Reliability, Vol, 98, pp. 95-105, 2019.
[152] N.S. Bosco and F.W. Zok, "Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system", Acta Materialia, Vol, 52, pp. 2965-2972, 2004.
[153] T. Davis, D. Healy, A. Bubeck, and R. Walker, "Stress concentrations around voids in three dimensions: The roots of failure", Journal of Structural Geology, Vol, 102, pp. 193-207, 2017.
[154] H.Y. Zhao, J.H. Liu, Z.L. Li, X.G. Song, Y.X. Zhao, H.W. Niu, H. Tian, H.J. Dong, and J.C. Feng, "A Comparative Study on the Microstructure and Mechanical Properties of Cu6Sn5 and Cu3Sn Joints Formed by TLP Soldering With/Without the Assistance of Ultrasonic Waves", Metallurgical and Materials Transactions A, Vol, 49, pp. 2739-2749, 2018.
[155] F. Gao and J. Qu, "Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations", Materials Letters, Vol, 73, pp. 92-94, 2012.
[156] Y. Zuo, J. Shen, H. Xu, and R. Gao, "Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints", Materials Letters, Vol, 199, pp. 13-16, 2017.
[157] M. Kanzaki, Y. Kawaguchi, and H. Kawasaki, "Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air", ACS Appl Mater Interfaces, Vol, 9, pp. 20852-20858, 2017.
[158] E. Ide, A. Hirose, and K.F. Kobayashi, "Influence of Bonding Condition on Bonding Process Using Ag Metallo-Organic Nanoparticles for High Temperature Lead-Free Packaging", Materials Transactions, Vol, 47, pp. 211-217, 2006.
[159] R.-W. Song, C.J. Fleshman, Z.-Y. Wu, S.-Y. Tsai, and J.-G. Duh, "Increasing mechanical strength and refining grains of Cu-core solder joints with pressurized bonding", Journal of Materials Science: Materials in Electronics, Vol, 31, pp. 22966-22972, 2020.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明