博碩士論文 107827012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.221.165.246
姓名 陳俊儒(Chun-Ju Chen)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 研製包覆靛氰綠與喜樹鹼之 HER2 標靶全氟碳雙層奈米乳劑 用於乳癌光/化學治療之研究
(Development of HER2 Target Indocyanine Green- Camptothecin-Encapsulated Perfluorocarbon Double- Nanoagentsfor Photochemotherapy of Breast Cancer)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-13以後開放)
摘要(中) 乳腺癌是女性中發生率最高的癌症。一般而言,由於乳腺癌具有侵襲性強、預後差、復發率高…等特性,早期發現並結合標靶治療以及化療,是可以有效地降低復發的風險,然而抗癌藥物引起的副作用嚴重干擾了患者的生理狀況,甚至可能因此對治療效果產生不利影響。因此我們的目標是通過標靶治療實現對乳腺癌的有效治療,並且可以減少化療藥物的使用。在本次研究中,我們開發了一種包覆靛氰綠(ICG)與喜樹鹼(CPT)之HER2標靶全氟碳雙層奈米乳劑(HER2 target ICG-CPT-encapsulated perfluorocarbon double-nanoagents; HICPDNAs),可以在光照下同時提供化療以及光療。根據奈米粒徑及介面電位量測儀的分析結果,HICPDNAs 的粒徑和表面電位分別為 268.6 ± 20 nm 和 -25.7 ± 5 mV。ICG和CPT的包覆率分別為 97.842 ± 1.540% 和 46.400 ± 5.780%。與游離的ICG水溶液相比,在近紅外光(NIR)照射下(808 nm, 6 W/cm2),HICPDNAs表現出與游離的ICG水溶液相似的熱療效果,但是卻能夠顯著性地增加單態氧的生成量,顯示出HICPDNAs在光熱和光動力治療應用中具有十足的潛力。在體外細胞實驗中,HICPDNAs表現出了與兩種HER2陽性乳癌細胞的專一性(MDA-MB-453以及BT-474),並且在細胞毒性的試驗中,也表現出比游離的CPT溶液更好的毒殺效果。在動物試驗中,包覆ICG與CPT之全氟碳雙層奈米乳劑(ICG- CPT-encapsulated perfluorocarbon double-nanoagents; ICPDNAs)表現出比游離的CPT溶液以及僅包埋ICG之奈米粒子(ICG-encapsulated perfluorocarbon double-nanoagents; IPDNAs)組別更好的腫瘤抑制效果,並且對於其他重要的臟器並沒有造成嚴重之傷害。在本次的研究中,我們證明了ICPDNAs對於乳癌之治療是有效的,並且在動物體中也擁有足夠之安全性,顯示出ICPDNAs有望在未來有更進一步的發展。
摘要(英) Breast cancer is the most diagnosed cancer in women. In general, patients with breast cancer have high aggression, poor prognosis, and high recurrence rate. Based on the previous research efforts, treatment by early detection with target chemotherapy may effectively reduce the risk of recurrence. However, anticancer drug-induced side effects seriously interfere the physiological conditions of the patients and may adversely affect the therapeutic efficacy consequently. Therefore, we aim to achieve effective treatment for breast cancer through a target therapy with reduced the use of chemo-drugs. In this study, we have developed a type of HER2 target indocyanine green (ICG)-camptothecin (CPT)-encapsulated perfluorocarbon double-nanoagents (HICPDNAs) that may provide both chemotherapy and phototherapy upon light illumination. Through DLS analysis, the size and zeta potential of the HICPDNAs is about 2268.6 ± 20 nm and -25.7 ± 5 mV, respectively. The encapsulation efficiency for ICG and CPT is 97.842 ± 1.540% and 46.400 ± 5.780%, respectively. In comparison to freely dissolved ICG, the HICPDNAs with equal dose of ICG under near infrared (NIR) irradiation (808 nm, 6 W/cm2) can generate similar hyperthermia effect but significantly enhanced amount of singlet oxygen, showing a high potential for use in photothermal and photodynamic therapeutic applications. In the in vitro cell experiment, HICPDNAs showed specificity with two HER2-positive breast cancer cells (MDA-MB-453 and BT-474),and in the cytotoxicity test, it also showed a better toxic effect than the free CPT solution. In the animal experiments, ICG-CPT-encapsulated perfluorocarbon double-nanoagents (ICPDNAs) showed better tumor suppression effects than the free CPT solution and ICG particles groups (ICG-encapsulated perfluorocarbon double-nanoagents; IPDNAs). ICPDNAs also didn’t cause serious damage to other important organs in the animal experiments. In this study, we have proved that ICPDNAs are effective in the treatment of breast cancer and have sufficient safety in animals, showing that ICPDNAs is expected to have further development in the future.
關鍵字(中) ★ 乳腺癌
★ HER2
★ 靛氰綠
★ 喜樹鹼
★ 全氟化合物
★ 奈米試劑
★ 光化學療法
關鍵字(英)
論文目次 第一章 緒論...........1
1-1研究背景...........1
1-2研究目的...........3
第二章 文獻探討...........4
2-1乳癌介紹...........4
2-1-1乳癌之分期...........4
2-1-2乳癌之亞型...........6
2-1-3乳癌之治療方式...........8
2-2光療介紹...........11
2-3藥品介紹...........16
2-3-1靛氰綠...........16
2-3-2喜樹鹼...........18
2-3-3全氟化合物...........20
第三章 實驗材料及步驟...........22
3-1實驗藥品及儀器設備...........22
3-1-1實驗藥品...........22
3-1-2儀器設備...........24
3-2實驗流程...........25
3-3全氟碳雙層奈米乳劑之製備...........26
3-3-1 Pluronic F-68 之尾端羧基修飾...........26
3-3-2製備包覆靛青綠(ICG)以及喜樹鹼(CPT)之全氟炭雙層奈米乳劑...........26
3-3-3表面修飾第二型人類表皮生長因子接受體(HER2)單株抗體...........28
3-4 HICPDNAs之基礎物理性質試驗...........30
3-4-1包覆率分析...........30
3-4-2載藥率分析...........30
3-4-3粒徑分析...........31
3-4-4表面電位分析...........31
3-4-5 HICPDNAs表面修飾抗體試驗...........31
3-5 HICPDNAs之光治療效果試驗...........32
3-5-1升溫效果試驗...........32
3-5-2單態氧生成效果試驗...........32
3-6 HICPDNAs之體外細胞試驗...........33
3-6-1細胞培養...........33
3-6-2 HICPDNAs表面修飾抗體之專一性試驗...........33
3-6-3 HICPDNAs之體外細胞毒性試驗...........34
3-7 動物實驗...........35
3-7-1動物實驗流程...........35
3-7-2 ICPDNAs之體內細胞毒性試驗...........36
3-7-3 生化及血球數分析...........37
3-7-4 ICPDNAs之CPT殘藥量試驗...........37
3-7-5 器官之組織學分析...........37
第四章 實驗結果與討論...........39
4-1 HICPDNAs之基礎物理性質試驗...........39
4-1-1 HICPDNAs之外觀觀察...........39
4-1-2 HICPDNAs之包覆率以及載藥率...........40
4-1-3 HICPDNAs之粒徑以及表面電位...........40
4-1-4 HICPDNAs之表面修飾抗體分析...........41
4-2 HICPDNAs之光治療效果試驗...........43
4-2-1 HICPDNAs之升溫效果試驗...........43
4-2-1 HICPDNAs之單態氧生成效果試驗...........45
4-3 HICPDNAs之體外細胞試驗...........46
4-3-1 HICPDNAs表面修飾抗體之專一性試驗...........46
4-3-2 HICPDNAs之體外細胞毒性試驗...........47
4-4 動物實驗...........50
4-4-1 ICPDNAs之體內細胞毒性試驗...........50
4-4-2 生化及血球數分析...........52
4-4-3 ICPDNAs之CPT殘藥量試驗...........55
4-4-4 器官之組織學分析...........56
第五章 結論與未來展望...........57
參考文獻...........59
參考文獻 [1] 衛生福利部國民健康署, 106年癌症發生資料. 2017:P. 9-16
[2] Giuliano, A. E., Edge, S. B., & Hortobagyi, G. N. (2018). of the AJCC cancer staging manual: breast cancer. Annals of surgical oncology, 25(7), 1783-1785.
[3] Stage, I. A., Stage, I. B., Stage, I. I. A., Stage, I. I. B., Stage, I. I. I. A., Stage, I. I. I. B., & Stage, I. V. (2009). Breast cancer staging. American joint committee on cancer.
[4] Yersal, O., & Barutca, S. (2014). Biological subtypes of breast cancer: Prognostic and therapeutic implications. World journal of clinical oncology, 5(3), 412.
[5] Kang, H. J., Yi, Y. W., Hong, Y. B., Kim, H. J., Jang, Y. J., Seong, Y. S., & Bae, I. (2014). HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Scientific reports, 4(1), 1-7.
[6] Kiess, A. P., McArthur, H. L., Mahoney, K., Patil, S., Morris, P. G., Ho, A., ... & McCormick, B. (2012). Adjuvant trastuzumab reduces locoregional recurrence in women who receive breast‐conservation therapy for lymph node‐negative, human epidermal growth factor receptor 2‐positive breast cancer. Cancer, 118(8), 1982-1988.
[7] Ellis, L. M., & Hicklin, D. J. (2008). VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature reviews cancer, 8(8), 579-591.

[8] Komoto, M., Nakata, B., Nishii, T., Kawajiri, H., Shinto, O., Amano, R., ... & Hirakawa, K. (2010). In vitro and in vivo evidence that a combination of lapatinib plus S‐1 is a promising treatment for pancreatic cancer. Cancer science, 101(2), 468-473.
[9] Juranic, Z. D., Neskovic-Konstantinovic, Z., Stanojkovic, T. P., Zizak, Z., Srdic, T., Stanojevic-Bakic, N., ... & Jovanovic, D. (2005). The antitumor immune response in HER-2 positive, metastatic breast cancer patients. Journal of translational medicine, 3(1), 1-7.
[10] Roelandts, R. (2002). The history of phototherapy: something new under the sun?. Journal of the American Academy of Dermatology, 46(6), 926-930.
[11] Bown, S. G. (1983). Phototherapy of tumors. World journal of surgery, 7(6), 700-709.
[12] Hemmer, E., Benayas, A., Légaré, F., & Vetrone, F. (2016). Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons, 1(3), 168-184.
[13] Sibuyi, N. R. S., Moabelo, K. L., Meyer, M., Onani, M. O., Dube, A., & Madiehe, A. M. (2019). Nanotechnology advances towards development of targeted-treatment for obesity. Journal of nanobiotechnology, 17(1), 1-21.
[14] Yuan, H., Khoury, C. G., Wilson, C. M., Grant, G. A., Bennett, A. J., & Vo-Dinh, T. (2012). In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine: Nanotechnology, Biology and Medicine, 8(8), 1355-1363.
[15] Liu, P. Y., Miao, Z. H., Li, K., Yang, H., Zhen, L., & Xu, C. Y. (2018). Biocompatible Fe3+–TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells. Colloids and Surfaces B: Biointerfaces, 167, 183-190.
[16] Jaque, D., Maestro, L. M., Del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., ... & Solé, J. G. (2014). Nanoparticles for photothermal therapies. nanoscale, 6(16), 9494-9530.
[17] Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in medical science, 23(3), 217-228.
[18] Moon, H. K., Lee, S. H., & Choi, H. C. (2009). In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS nano, 3(11), 3707-3713.
[19] Liu, J., Dong, J., Zhang, T., & Peng, Q. (2018). Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. Journal of controlled release, 286, 64-73.
[20] Jung, H. S., Verwilst, P., Sharma, A., Shin, J., Sessler, J. L., & Kim, J. S. (2018). Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chemical Society Reviews, 47(7), 2280-2297.
[21] Tegos, G., Dai, T., Fuchs, B. B., Coleman, J. J., Prates, R. A., Astrakas, C., ... & Hamblin, M. R. (2012). Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Frontiers in microbiology, 3, 120.
[22] Calixto, G. M. F., Bernegossi, J., De Freitas, L. M., Fontana, C. R., & Chorilli, M. (2016). Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules, 21(3), 342.
[23] Bellnier, D. A., Greco, W. R., Loewen, G. M., Nava, H., Oseroff, A. R., & Dougherty, T. J. (2006). Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2‐[1‐hexyloxyethyl]‐2‐devinyl pyropheophorbide‐a (Photochlor) and 5‐ALA‐induced protoporphyrin IX. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 38(5), 439-444.
[24] Wang, K., Tu, Y., Yao, W., Zong, Q., Xiao, X., Yang, R. M., ... & Yuan, Y. (2020). Size-switchable nanoparticles with self-destructive and tumor penetration characteristics for site-specific phototherapy of cancer. ACS applied materials & interfaces, 12(6), 6933-6943.
[25] Goldberg, S. N., Gazelle, G. S., & Mueller, P. R. (2000). Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. American journal of roentgenology, 174(2), 323-331.
[26] Hou, X., Tao, Y., Pang, Y., Li, X., Jiang, G., & Liu, Y. (2018). Nanoparticle‐based photothermal and photodynamic immunotherapy for tumor treatment. International journal of cancer, 143(12), 3050-3060.
[27] Rajian, J. R., Fabiilli, M. L., Fowlkes, J. B., Carson, P. L., & Wang, X. (2011). Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion. Optics express, 19(15), 14335-14347.
[28] Kaplan-Marans, E., Fulla, J., Tomer, N., Bilal, K., & Palese, M. (2019). Indocyanine green (ICG) in urologic surgery. Urology, 132, 10-17.
[29] Alius, C., Oprescu, S., Balalau, C., & Nica, A. E. (2018). Indocyanine green enhanced surgery; principle, clinical applications and future research directions. Journal of Clinical and Investigative Surgery, 3(1), 1-8.
[30] Hill, T. K., & Mohs, A. M. (2016). Image‐guided tumor surgery: will there be a role for fluorescent nanoparticles?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8(4), 498-511.
[31] Desmettre, T., Devoisselle, J. M., & Mordon, S. (2000). Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of ophthalmology, 45(1), 15-27.
[32] Miwa, M. (2010). The principle of ICG fluorescence method. The Open Surgical Oncology Journal, 2(1).
[33] Manchanda, R., Fernandez-Fernandez, A., Nagesetti, A., & McGoron, A. J. (2010). Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloids and Surfaces B: Biointerfaces, 75(1), 260-267.
[34] Kosaka, N., Mitsunaga, M., Longmire, M. R., Choyke, P. L., & Kobayashi, H. (2011). Near infrared fluorescence‐guided real‐time endoscopic detection of peritoneal ovarian cancer nodules using intravenously injected indocyanine green. International journal of cancer, 129(7), 1671-1677.
[35] Shirata, C., Kaneko, J., Inagaki, Y., Kokudo, T., Sato, M., Kiritani, S., ... & Kokudo, N. (2017). Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Scientific reports, 7(1), 1-8.
[36] Riefke, B., Licha, K., Semmler, W., Nolte, D., Ebert, B., & Rinneberg, H. H. (1996, December). In vivo characterization of cyanine dyes as contrast agents for near-infrared imaging. In Optical and Imaging Techniques for Biomonitoring II (Vol. 2927, pp. 199-208). International Society for Optics and Photonics.
[37] Joh, J. H., Park, H. C., Han, S. A., & Ahn, H. J. (2016). Intraoperative indocyanine green angiography for the objective measurement of blood flow. Annals of surgical treatment and research, 90(5), 279-286.
[38] Saxena, V., Sadoqi, M., & Shao, J. (2004). Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. Journal of Photochemistry and Photobiology B: Biology, 74(1), 29-38.
[39] Liu, L. F., Desai, S. D., LI, T. K., Mao, Y., Sun, M. E. I., & SIM, S. P. (2000). Mechanism of action of camptothecin. Annals of the New York Academy of Sciences, 922(1), 1-10.

[40] Wen, Y., Wang, Y., Liu, X., Zhang, W., Xiong, X., Han, Z., & Liang, X. (2017). Camptothecin-based nanodrug delivery systems. Cancer biology & medicine, 14(4), 363.
[41] Liu, Y. Q., Li, W. Q., Morris‐Natschke, S. L., Qian, K., Yang, L., Zhu, G. X., ... & Lee, K. H. (2015). Perspectives on biologically active camptothecin derivatives. Medicinal research reviews, 35(4), 753-789.
[42] Burke, T. G., Mishra, A. K., Wani, M. C., & Wall, M. E. (1993). Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry, 32(20), 5352-5364.
[43] Ci, T., Li, T., Chang, G., Yu, L., & Ding, J. (2013). Simply mixing with poly (ethylene glycol) enhances the fraction of the active chemical form of antitumor drugs of camptothecin family. Journal of Controlled Release, 169(3), 329-335.
[44] Martino, E., Della Volpe, S., Terribile, E., Benetti, E., Sakaj, M., Centamore, A., ... & Collina, S. (2017). The long story of camptothecin: From traditional medicine to drugs. Bioorganic & Medicinal Chemistry Letters, 27(4), 701-707.
[45] Thomas, C. J., Rahier, N. J., & Hecht, S. M. (2004). Camptothecin: current perspectives. Bioorganic & medicinal chemistry, 12(7), 1585-1604.
[46] Mathijssen, R. H., Loos, W. J., Verweij, J., & Sparreboom, A. (2002). Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan. Current cancer drug targets, 2(2), 103-123.
[47] Hu, T., Liu, C., Li, Q., Xiong, J., Ma, Y., Wu, G., & Zhao, Y. (2018). Apatinib+ CPT-11+ S-1 for treatment of refractory brain metastases in patient with triple-negative breast cancer: case report and literature review. Medicine, 97(15).
[48] Riess, J. G. (2005). Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial cells, blood substitutes, and biotechnology, 33(1), 47-63.
[49] Lowe, K. C. (2006). Fluosol®: The first commercial injectable perfluorocarbon oxygen carrier. In Blood substitutes (pp. 276-287). Academic Press.
[50] Jacoby, C., Temme, S., Mayenfels, F., Benoit, N., Krafft, M. P., Schubert, R., ... & Flögel, U. (2014). Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half‐lives and sensitivity. NMR in Biomedicine, 27(3), 261-271.
[51] Al Rifai, N., Desgranges, S., Le Guillou-Buffello, D., Giron, A., Urbach, W., Nassereddine, M., ... & Taulier, N. (2020). Ultrasound-triggered delivery of paclitaxel encapsulated in an emulsion at low acoustic pressures. Journal of Materials Chemistry B, 8(8), 1640-1648.
[52] Li, N., Xu, F., Cheng, J., Zhang, Y., Huang, G., Zhu, J., ... & He, D. (2018). Perfluorocarbon nanocapsules improve hypoxic microenvironment for the tumor ultrasound diagnosis and photodynamic therapy. Journal of biomedical nanotechnology, 14(12), 2162-217.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明