博碩士論文 108223020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.137.198.37
姓名 羅振銘(Zhen-Ming Luo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 應用於高效率體異質介面反式錫鈣鈦礦太陽能電池之離子性富勒烯衍生物
(Ionic Fullerene Derivatives for High Performance Bulk Heterojunction Tin Perovskite Solar Cell)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 錫鈣鈦礦太陽能電池(Tin Perovskite solar cells, TPSC)由於其吸收層的毒性低、能隙小(Eg  1.41 eV)與吸收係數高等優點,且光伏表現佳而受重視。然而,錫鈣鈦礦(Tin Perovskite, T-Psk)層中的Sn2+容易與空氣中的水氣及氧氣反應氧化成Sn4+,且T-Psk膜的結晶速度快,不易形成緻密的膜,導致所組裝之元件的效率及長時間穩定性差。本研究探討於FA0.98EDA0.01SnI3前驅溶液中添加三種弱酸性離子性富勒烯衍生物C60-(RT2+)6(12X-) (X = Cl, Br, I) (簡稱6-X (X = Cl, Br, I))製備體異質介面的T-Psk膜(稱為6-X@FA0.98EDA0.01SnI3膜),其中以6-Br@FA0.98EDA0.01SnI3膜作為吸收層所組裝之元件的光電轉換效率達10.09%比以FA0.98EDA0.01SnI3膜作為吸收層所組裝之元件的光電轉換效率(8.21%)高約20%。在未封裝的條件下,以6-Br@FA0.98EDA0.01SnI3膜作為吸收層的TPSC元件放置在手套箱中2520小時後光電轉換效率仍可維持原來效率的84%;而以FA0.98EDA0.01SnI3膜作為吸收層的TPSC元件之光電轉換效率僅剩原來效率的53%。添加6-Br可填補T-Psk膜的晶界,且有部份的Br-進入T-Psk膜的晶格中調整T-Psk層的前置軌域能階,減少載子傳遞至載子傳遞層所造成的能量損失,使所組裝之元件的Voc值由0.59 V增加至0.62 V。此外,添加6-Br也能延緩T-Psk膜的結晶速度,使所製備之T-Psk膜的顆粒大、平整、緻密且結晶度高。而添加6-Br可增加T-Psk前驅溶液的酸性,因此T-Psk前驅溶液中的Sn2+不易氧化成Sn4+,故6-Br@FA0.98EDA0.01SnI3膜的Sn2+/Sn4+比例比FA0.98EDA0.01SnI3膜高。
摘要(英) Tin Perovskite solar cells (TPSC) are the topic under extensive studies due to the absorber has low toxicity, small energy gap (Eg  1.41 eV) and high absorption coefficient as well as the cell has good photovoltaic performance. However, Sn2+ in the Tin Perovskite (T-Psk) easily reacts with moisture and oxygen in the air to be oxidized to Sn4+ easily as well as the crystallization rate of the T-Psk film is very fast thus it is difficult to form a dense and smooth T-Psk film, resulting in poor efficiency and long-term stability of the device. This study explores the effect of adding three weakly acidic ionic fullerene derivatives C60-(RT2+)6(12X-) (X = Cl, Br, I) (named 6-X (X = Cl, Br, I)) in T-Psk to prepare bulk-heterojunction film (named 6-X@FA0.98EDA0.01SnI3 film). The power conversion efficiency (PCE) of the cell based on 6-Br@FA0.98EDA0.01SnI3 film achieves the highest of 10.09% which is about 20% higher than the that (8.21%) of the device using FA0.98EDA0.01SnI3 film as the absorption layer. Without encapsulation, TPSC with 6-Br@FA0.98EDA0.01SnI3 as the absorber maintains 84% of the initial efficiency when it was placed in the glove box for 2520 hours. While the PCE of the TPSC with FA0.98EDA0.01SnI3 absorber lost 47% of the original efficiency. 6-Br can fill the grain boundaries of the T-Psk film, and some Br- ions can enter the lattice of the T-Psk film to adjust to energy level to reduce the energy loss caused by the transfer of carriers to the carrier transport layer. As a result the Voc of the device increased from 0.59 V to 0.62 V. In addition, the addition of 6-Br can also slow the crystallization of the T-Psk film, so that 6-Br@FA0.98EDA0.01SnI3 film has large grain size, flat, dense and high crystallinity. 6-Br can also increase the acidity of the T-Psk precursor solution to stabilize Sn2+. Therefore, the Sn2+/Sn4+ ratio of the 6-Br@FA0.98EDA0.01SnI3 film is higher than that of FA0.98EDA0.01SnI3 film.
關鍵字(中) ★ 錫鈣鈦礦
★ 太陽能電池
關鍵字(英)
論文目次 摘要 vi
Abstract viii
Graphical Abstract x
謝誌 xi
目錄 xii
圖目錄 xix
表目錄 xxxi
附錄 xxxvii
第一章、緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池(PEROVSKITE SOLAR CELL, PSC) 5
1-2-1. 鈣鈦礦太陽能電池的架構 5
1-2-2. 反式鈣鈦礦太陽能電池的工作原理 6
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 7
1-3、 錫鈣鈦礦太陽能電池之研究歷程 10
1-3-1. 第一個以MASnI3作為吸收層的錫鈣鈦礦太陽能電池研究 10
1-3-2. 第一個以CsSnI3作為吸收層的錫鈣鈦礦太陽能電池研究 12
1-3-3. 第一個以FASnI3作為吸收層並以SnF2作為添加劑的錫鈣鈦礦太陽能電池研究 14
1-3-4. 第一個將EDAI2與GAI應用於FASnI3膜作為吸收層的錫鈣鈦礦太陽能電池研究 16
1-3-5. 現今錫鈣鈦礦太陽能電池的最高光電轉換效率之文獻 19
1-4、 體異質介面鈣鈦礦太陽能電池之研究歷程 22
1-4-1. 第一個反式體異質介面鈣鈦礦太陽能電池的研究 22
1-4-2. 第一個反式體異質介面混鉛錫鈣鈦礦太陽能電池的研究 24
1-4-3. 第一個反式體異質介面錫鈣鈦礦太陽能電池的研究 27
1-5、 製備錫鈣鈦礦膜的方法 30
1-5-1. 以一步合成法製備錫鈣鈦礦膜 30
1-5-2. 以兩步合成法製備錫鈣鈦礦膜 31
1-5-3. 以一步反溶劑法製備錫鈣鈦礦膜 32
1-6、 減少錫鈣鈦礦前驅液與膜中SN4+的方法 33
1-6-1. 添加錫粉使FASnI3前驅溶液中的Sn4+還原成Sn2+ 33
1-6-2. 利用喹啉化合物中的N及O原子與FASnI3膜中的Sn2+配位形成錯合物抑制Sn2+氧化成Sn4+ 37
1-6-3. 在酸性環境下FASnI3前驅溶液中的Sn2+不易氧化成Sn4+ 41
1-7、 增加錫鈣鈦礦膜結晶顆粒大小的方法 43
1-7-1. 添加N2H5Cl藉由氯離子延緩錫鈣鈦礦膜的結晶速度製備顆粒大且無孔洞的錫鈣鈦礦膜 43
1-7-2. 添加PHCl利用PH+使錫鈣鈦礦的晶體結構膨脹而舒張製備結晶度高的錫鈣鈦礦膜 45
1-7-3. 調整FAI與MABr之比例將錫鈣鈦礦前驅溶液的組成改為MA0.25FA0.75SnI2.75Br0.25所製備之膜有高的結晶度 49
1-8、 實驗動機 51
第二章、實驗方法 53
2-1、 實驗藥品與儀器 53
2-1-1. 藥品 53
2-1-2. 儀器設備 54
2-2、 反式錫鈣鈦礦太陽能電池組裝步驟 55
2-2-1. 藥品配製 55
2-2-2. 元件組裝步驟 57
2-3、 儀器原理及樣品製備 61
2-3-1. 太陽光模擬器的原理及光電轉換效率、暗電流與遲滯現象的量測(Solar Simulator, Enlitech SS-F5) 61
2-3-2. 空間電荷限制電流的原理及量測(Space Charge-Limited Current, SCLC) 62
2-3-3. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 64
2-3-4. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 65
2-3-5. 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visible-NIR spectroscopy, HITACHI U-4100) 66
2-3-6. 光致螢光光譜儀(Photoluminescence Spectrometer, Uni think UniRAM) 67
2-3-7. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, NOVA NanoSEM-230) 67
2-3-8. XPS光電子能譜儀(X-ray photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 68
2-3-9. UPS紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 69
2-3-10. 接觸角量測儀(Contact angle, Grandhand Ctag01) 69
2-3-11. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, Jasco 4100) 70
2-3-12. 酸鹼度測定計(pH meter, Jenco 6173) 71
2-3-13. 動態光散射儀(Dynamic light scattering, Microtrac nanotrac wave) 71
第三章、結果與討論 73
3-1、 篩選適合用於錫鈣鈦礦膜中的離子性富勒烯衍生物 73
3-1-1. 添加不同離子性富勒烯衍生物至錫鈣鈦礦前驅溶液製備成膜所組裝之元件的光伏表現 73
3-1-2. 添加不同濃度的6-Br至錫鈣鈦礦前驅溶液製備成膜所組裝之元件的光伏表現 75
3-2、 篩選0.01-6-BR@FA0.98EDA0.01SNI3膜的最佳製備條件 77
3-2-1. 不同濃度之0.01-6-Br@FA0.98EDA0.01SnI3前驅溶液製備成膜所組裝之元件的光伏表現 77
3-2-2. 以不同SnI2:有機鹵化物比例的0.01-6-Br@FA0.98EDA0.01SnI3前驅溶液製備成膜所組裝之元件的光伏表現 78
3-2-3. 以不同加熱方式製備0.01-6-Br@FA0.98EDA0.01SnI3膜所組裝之元件的光伏表現 80
3-2-4. 在添加6-Br下是否添加EDAI2於錫鈣鈦礦前驅溶液製備成膜對所組裝元件的光伏表現之影響 81
3-2-5. 在添加6-Br下是否添加SnF2於錫鈣鈦礦前驅溶液製備成膜對所組裝元件的光伏表現之影響 83
3-2-6. 在添加6-Br下是否添加錫粉於錫鈣鈦礦前驅溶液製備成膜對所組裝元件的光伏表現之影響 85
3-2-7. 在6-Br@FA0.98EDA0.01SnI3膜上有無沉積C60膜作為電子傳遞層對所組裝之元件的光伏表現之影響 87
3-2-8. 以6-Br是否能取代錫粉作為FA0.98EDA0.01SnI3前驅溶液的添加劑製備高效率的錫鈣鈦礦膜 88
3-3、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜所組裝之最高效率元件的IPCE表現 90
3-4、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜所組裝之最高效率元件的遲滯現象 91
3-5、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜的SEM表面形貌、EDS MAPPING及剖面圖 93
3-6、 有無添加6-BR之錫鈣鈦礦膜的AFM表面形貌及相位影像 100
3-7、 6-BR、6-BR@SNI2及6-BR@SNF2之FTIR穿透光譜 101
3-8、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜的XRD繞射圖 103
3-9、 添加不同量的6-BR之錫鈣鈦礦膜的XRD繞射圖 106
3-10、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜的UV-VIS吸收光譜 108
3-11、 添加不同量的6-BR之錫鈣鈦礦膜的UV-VIS吸收光譜 109
3-12、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜的前置軌域能階 111
3-13、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜的PL及TRPL光譜 116
3-14、 添加不同量的6-BR之錫鈣鈦礦膜的PL光譜 125
3-15、 添加不同離子性富勒烯衍生物之錫鈣鈦礦膜的XPS能譜圖 126
3-16、 添加離子性富勒烯衍生物對錫鈣鈦礦膜親疏水性的影響 129
3-17、 添加離子性富勒烯衍生物所配製之錫鈣鈦礦前驅溶液對PEDOT:PSS膜的相容性 130
3-18、 添加離子性富勒烯衍生物對錫鈣鈦礦太陽能電池元件長時間穩定性的影響 131
3-19、 添加離子性富勒烯衍生物對錫鈣鈦礦太陽能電池元件之穩態電流密度及效率輸出的影響 133
3-20、 添加離子性富勒烯衍生物對錫鈣鈦礦太陽能電池元件之暗電流的影響 134
3-21、 添加離子性富勒烯衍生物對錫鈣鈦礦太陽能電池元件之空間電荷限制電流的影響 135
第四章、結論 140
參考文獻 141
附錄 148
附錄1. 添加不同溴化物之錫鈣鈦礦膜所組裝之元件的光伏表現 148
附錄2. C60、PCBM與6-X (X = CL, BR ,I)在DMSO中的平均粒徑及平均粒徑分佈 150
附錄3. 添加離子性富勒烯衍生物對錫鈣鈦礦太陽能電池元件各項光伏參數之長時間穩定性的影響 151
參考文獻 [1] https://www.energytrend.com.tw/research/20181203-14312898.html?fbclid=IwAR0770c5wf_B6Z5ZtkecXNjsSrkyeZwd93lwiEAd_uH4WY3bei7IqWWOjX4
[2] http://en.wikipedia.org/wiki/Gustav_Rose
[3] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng and Jinsong Huang “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv., 2019, 5, 8925-8934.
[4] Weiqiang Liao, Dewei Zhao, Yue Yu, Corey R. Grice, Changlei Wang, Alexander J. Cimaroli, Philip Schulz, Weiwei Meng, Kai Zhu, Ren-Gen Xiong and Yanfa Yan “Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%”, Adv. Mater., 2016, 28, 9333-9340.
[5] Efat Jokar, Cheng-Hsun Chien, Amir Fathi, Mohammad Rameez, Chang-Yu Hao and Eric Wei-Guang Diau “Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells”, Energy Environ. Sci., 2018, 11, 2353-2362.
[6] Zonglong Zhu, Chu-Chen Chueh, Nan Li, Cheng-yi Mao, and Alex K.-Y. Jen “Realizing Efficient Lead-free Formamidium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route”, Adv. Mater., 2017, 30, 1703800.
[7] Efat Jokar, Cheng-Hsun Chien, Cheng-Min Tsai, Amir Fathi, and Eric Wei-Guang Diau “Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%”, Adv. Mater., 2018, 31, 1804835.
[8] Gwisu Kim, Hanul Min, Kyoung Su Lee, Do Yoon Lee, So Me Yoon and Sang Il Seok “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells”, Science, 2020, 6512, 108-112.
[9] Chien-Hung Chiang and Chun-Guey Wu “A method to prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano, 2018, 12, 10355-10364.
[10] Yan Li, Bin Ding, Qian-Qian Chu, Guan-JunYang, Mingkui Wang, Chang-Xin Li and Chang-Jiu Li “Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates”, Sci. Rep., 2017 ,7, 46141-46151.
[11] https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
[12] Cuili Gai, Jigang Wang, Yongsheng Wang and Junming Li “The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance”, Energies, 2020, 13, 2-26.
[13] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis “Lead-free solid-state organic–inorganic halide perovskite solar cells”, Nature Photon., 2014, 8, 489-494.
[14] Mulmudi Hemant Kumar , Sabba Dharani , Wei Lin Leong , Pablo P. Boix , Rajiv Ramanujam Prabhakar , Tom Baikie , Chen Shi , Hong Ding , Ramamoorthy Ramesh , Mark Asta , Michael Gra¨tzel , Subodh G. Mhaisalkar and Nripan Mathews “Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation”, Adv. Mater., 2014, 26, 7122–7127.
[15] Kohei Nishimura, Muhammad Akmal Kamarudin, Daisuke Hirotani, Kengo Hamada, Qing Shen, Satoshi Iikubo, Takashi Minemoto, Kenji Yoshino and Shuzi Hayase “Lead-free tin-halide perovskite solar cells with 13% efficiency”, Nano Energy, 2020, 74, 104858.
[16] Chien-Hung Chiang and Chun-Guey Wu “Bulk heterojunction perovskite–PCBM solar cells with high fill factor”, Nature Photonics, 2016, 10, 196-200.
[17] Chong Liu, Wenzhe Li, Hongliang Li, Cuiling Zhang, Jiandong Fan and Yaohua Mai “C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency”, Nanoscale, 2017, 9, 13967-13975.
[18] Cong Liu, Jin Tu, Xiaotian Hu, Zengqi Huang, Xiangchuan Meng, Jia Yang, Xiaopeng Duan, Licheng Tan, Zhen Li, and Yiwang Chen “Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability”, Adv. Funct. Mater., 2019, 29, 1808059.
[19] Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim, Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo and Sang Il Seok “Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex”, J. Am. Chem. Soc., 2016, 138, 3974-3977.
[20] Feidan Gu, Senyun Ye, Ziran Zhao, Haixia Rao, Zhiwei Liu, Zuqiang Bian and Chunhui Huang “Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification”, Sol. RRL, 2018, 2, 136-145.
[21] Zhuojia Lin, Cong Liu, Gengling Liu, Jia Yang, Xiaopeng Duan, Licheng Tan and Yiwang Chen “Efficient Inverted Tin-based Perovskite Solar Cells via Bidentate Coordination Effect of 8-Hydroxyquinoline”, Chem. Commun., 2020, 56, 4007-4010.
[22] Xiangyue Meng, Tianhao Wu, Xiao Liu, Xin He, Takeshi Noda, Yanbo Wang, Hiroshi Segawa, and Liyuan Han “Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent”, J. Phys. Chem. Lett., 2020, 11, 2965-2971.
[23] Md. Emrul Kayesh, Towhid Hossain Chowdhury, Kiyoto Matsuishi, Ryuji Kaneko, Said Kazaoui, Jae-Joon Lee, Takeshi Noda and Ashraful Islam “Enhanced Photovoltaic Performance of FASnI3 Based Perovskite Solar Cells with Hydrazinium Chloride (N2H5Cl) Co-Additive”, ACS Energy Lett., 2018, 3, 1584-1589.
[24] Chengbo Wang, Feidan Gu, Ziran Zhao, Haixia Rao, Yaming Qiu, Zelun Cai, Ge Zhan, Xiaoyue Li, Boxun Sun, Xiao Yu, Boqin Zhao, Zhiwei Liu, Zuqiang Bian, and Chunhui Huang “Self-Repairing Tin-Based Perovskite Solar Cells with a Breakthrough Efficiency Over 11%”, Adv. Mater., 2020, 32, 1907623.
[25] Bin-Bin Yu, Min Liao, Yudong Zhu, Xusheng Zhang, Zheng Du, Zhixin Jin, Di Liu, Yiyu Wang, Teresa Gatti, Oleg Ageev, and Zhubing He “Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells”, Adv. Funct. Mater., 2020, 30, 2002230.
[26] Jin Huang, Minqiang Wang, Lei Ding, Jianping Deng and Xi Yao “Efficiency enhancement of the MAPbI3-xClx based perovskite solar cell by a two-step annealing procedure”, Semicond. Sci. Technol., 2016, 31, 25009-25015.
[27] Ke Chen, Pan Wu, Wenqiang Yang, Rui Su, Deying Luo, Xiaoyu Yang, Yongguang Tu, Rui Zhu and Qihuang Gong “Low-dimensional Perovskite Interlayer for Highly Efficient Lead-free Formamidinium Tin Iodide Perovskite Solar Cells”, Nano Energy, 2018, 49, 411-418.
[28] Xin He, Tianhao Wu, Xiao Liu, Yanbo Wang, Xiangyue Meng, Jihuai Wu, Takeshi Noda, Xudong Yang, Yutaka Moritomo, Hiroshi Segawa, and Liyuan Han “Highly Efficient Tin Perovskite Solar Cells Achieved Under Wide Oxygen Region”, J. Mater. Chem. A, 2020, 8, 2760-2768.
[29] Ben Ma, Junwen Chen, Minghao Wang, Xin Xu, Jie Qian, Yao Lu, Wenzhu Zhang, Pengfei, Xia, Minchao Qin, Wenjing Zhu, Liuquan Zhang, Shufen Chen, Xinhui Lu, and Wei Huang “Passivating Charged Defects with 1,6-Hexamethylenediamine
to Realize Efficient and Stable Tin-Based Perovskite Solar Cells”, J. Phys. Chem. C, 2020, 124, 16289-16299.
[30] 陳宇豐, “離子性富勒烯衍生物的合成與性質探討”, 國立中央大學, 碩士論文, 2020.
[31] Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis and Khasan S. Karimov “Space Charge–Limited Current Model for Polymers”, Conducting Polymers, 2016, chapter 5, 91-117.
[32] Guiying Xu, Pengqing Bi, Shuhui Wang, Rongming Xue, Jingwen Zhang, Haiyang Chen, Weijie Chen, Xiaotao Hao, Yaowen Li and Yongfang Li “Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells with Low Energy Loss”, Adv. Funct. Mater., 2018, 28, 1804427.
[33] Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang “Electron-hole diffusion lengths > 175 mm in solution-grown CH3NH3PbI3 single crystals”, Science, 2015, 347, 967-970.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明