博碩士論文 108827605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.133.86.172
姓名 曾阮梅貞(Tang Nguyen Mai Trinh)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria
★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制
★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 嚴重特殊傳染性肺炎是一種引起急性呼吸道窘迫症候群 (ARDS) 的病毒,最初在中國武漢首度被發現。目前嚴重特殊傳染性肺炎這種流行病已成為全球大流行的疾病。根據研究顯示,罹患此病的患者會有呼吸系統及合併多器官功能障礙,此之外也會引起細胞激素釋放症候群(CRS) 的發炎細胞因子增加,發炎細胞因子增加可能在COVID-19 中扮演關鍵作用。根據我們的研究,將濃度
50 μg 的 SARS-CoV-2-核衣殼蛋白 (NPP) 接種到小鼠的鼻腔中可在小鼠支氣管肺泡灌洗液 (BALF) 中存在大量 IL-6,在細胞株實驗中菌株 J774A1 巨噬細胞,接種濃度NPP濃度 25 μg 時菌株 J774A1 巨噬細胞的 IL-6 含量,IL-6 濃度為 402,841 ± 16,713 ρg/mL 和 133,136分別為 ± 2,736 ρg/mL。此外將甘油和黃素單核苷酸 (FMN) 在小鼠鼻內接種,從人鼻腔 (S. epidermidis-K) 分離的表皮葡萄球菌預處理 3 天,顯著減少了小鼠體內NPP 誘導的 IL-6 水平。表皮葡萄球菌 K 分泌的電可以通過 FMN 介質降低 SARS-CoV-2-NPP 誘導的 IL-6 表達。
摘要(英) Severe acute respiratory syndrome Coronavirus 2 (SARS-2) is a viral strain that causes acute respiratory distress syndrome (ARDS) and was initially reported in Wuhan, China. This epidemic has been becoming a pandemic worldwide. It has been reported that respiratory syndrome and multi-organ dysfunction in patients, as well as an increase in inflammatory cytokines known as cytokine release syndrome (CRS), may play a crucial role in the detected COVID-19. Our studies have demonstrated that SARS-CoV-2-Nucleocapsid phosphoprotein (NPP) at a concentration of 50 μg was inoculated into the nasal cavity of mice. There was a significant abundance of IL-6 in the bronchoalveolar lavage fluid (BALF) and at a concentration of 25 μg inoculated to increase the IL-6 content of strain J774A1 macrophages, IL-6 concentrations were 402,841 ± 16,713 ρg/mL and 133,136 ± 2,736 ρg/mL, respectively. Furthermore,
the administration of glycerol and flavin mononucleotide (FMN) inoculation to mice infected with Staphylococcus epidermidis isolated from human nasal passages
(S. epidermidis-K) for 3 days significantly reduced the IL-6 levels induced by NPP. The electricity secreted by S. epidermidis K can reduce SARS-CoV-2-NPP-induced IL-6 expression through FMN mediator.
關鍵字(中) ★ SARS-CoV-2-核衣殼磷蛋白
★ 表皮葡萄球菌
★ 黃素單核苷酸
★ 電子
關鍵字(英) ★ SARS-CoV-2-Nuclecapsid phosphoprotein
★ Staphylococcus epidermidis
★ flavin mononucleotide
★ electricity
論文目次 摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENT v
LIST OF FIGURES vii
ABBREVIATIONS LIST viii
CHAPTER 1. INTRODUCTION 1
1.1. SARS-CoV-2 nucleocapsid phosphoprotein induced interleukin-6 (IL-6) 1
1.2. The role of nasal commensal bacteria in viral prevention 1
1.3. Literature review 3
1.3.1. Severe acute respiratory syndrome coronavirus 2 (SARS-2) virus 3
1.3.2. The structure of SARS-CoV-2 Nuclecapsid phosphoprotein (NPP) 4
1.3.3. Staphylococcus epidermidis (S. epidermidis) 4
1.3.4. Extracellular electron transfer (EET) process in gram-positive bacteria 5
1.3.5. Flavin mononucleotide (FMN) 6
1.3.6. FMN synthesis pathway 7
1.3.7. The antibiotic roseoflavin (RoF) 8
CHAPTER 2. RESEARCH OBJECTIVES 10
CHAPTER 3. MATERIALS AND METHODS 11
3.1. Materials 11
3.1.1. Bacteria, Cell, and ICR mice 11
3.1.2. Apparatus and Instruments 11
3.1.3. Reagents 12
3.1.4. Medium preparations 12
A. Tryptic soy broth (TSB) medium (with and without agar) for culture bacteria and MBC assay 12
B. Rich medium for detect electricity 13
C. Medium for cell culture and treatment 13
3.2. Methods 13
3.2.1. Detection of Flavin mononucleotide (FMN) by High-performance liquid chromatography (HPLC) analysis 13
3.2.2. Identification of pdh, rk, menA, and ndh2 genes expression by RT-PCR 14
3.2.3. Minimum bactericidal concentration 14
3.2.4. Electricity detection 15
3.2.5. Detection of IL-6 level in BALF 15
3.2.6. Cell culture 16
3.3. Statistical analysis 17
CHAPTER 4. RESULTS 18
4.1. FMN production by S. epidermidis ATCC 12228 18
4.2. Expression of pdh, menA, ndh2 and rk genes in S. epidermidis 19
4.3. Effect of RoF concentration on S. epidermidis growth 20
4.4. Electrons production by S. epidermidis bacteria 21
4.5. FMN-mediated electron transfer in glycerol fermentation of nasal S. epidermidis reduce SARS-CoV-2-NPP-induced IL-6 expression 23
4.6. SARS-CoV-2-Nucleocapsid phosphoprotein induced IL-6 expression in macrophages cells. 25
CHAPTER 5. DISCUSSION 27
CHAPTER 6. CONCLUSION 31
REFERENCES 32
參考文獻 REFERENCES
1. He, Y., et al., Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus. Journal of clinical microbiology, 2004. 42(11): p. 5309-5314.
2. Che, X.-Y., et al., Nucleocapsid protein as early diagnostic marker for SARS. Emerging infectious diseases, 2004. 10(11): p. 1947.
3. Masters, P.S. and L.S. Sturman, Background paper functions of the coronavirus nucleocapsid protein. Coronaviruses and their Diseases, 1990: p. 235-238.
4. Pan, P., et al., SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nature Communications, 2021. 12(1): p. 1-17.
5. Karwaciak, I., et al., Nucleocapsid and Spike Proteins of the Coronavirus SARS-CoV-2 Induce IL6 in Monocytes and Macrophages—Potential Implications for Cytokine Storm Syndrome. Vaccines, 2021. 9(1): p. 54.
6. Surjit, M. and S.K. Lal, The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infection, genetics and evolution, 2008. 8(4): p. 397-405.
7. Zhang, X., et al., Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virology, 2007. 365(2): p. 324-335.
8. Tong, S., et al., Direct sequencing of SARS-coronavirus S and N genes from clinical specimens shows limited variation. The Journal of infectious diseases, 2004. 190(6): p. 1127-1131.
9. Dutta, N.K., K. Mazumdar, and J.T. Gordy, The nucleocapsid protein of SARS–CoV-2: a target for vaccine development. Journal of virology, 2020. 94(13): p. e00647-20.
10. Okba, N.M., et al., Severe acute respiratory syndrome coronavirus 2− specific antibody responses in coronavirus disease patients. Emerging infectious diseases, 2020. 26(7): p. 1478.
11. Chi, Z., et al., The Cytokine Release Syndrome (CRS) of Severe COVID-19 and Interleukin-6 Receptor (IL-6R) Antagonist Tocilizumab man be the Key to Reduce the Mortality. Int J Antimicrob Agents, 2020.
12. Lu, R., et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 2020. 395(10224): p. 565-574.
13. Vatansever, H.S. and E. Becer, Relationship between IL-6 and COVID-19: to be considered during treatment. Future Virology, 2020. 15(12): p. 817-822.
14. Ulhaq, Z.S. and G.V. Soraya, Interleukin-6 as a potential biomarker of COVID-19 progression. Medecine et maladies infectieuses, 2020. 50(4): p. 382.
15. Spacova, I., et al., Topical Microbial Therapeutics against Respiratory Viral Infections. Trends in Molecular Medicine, 2021.
16. Chen, H.-W., et al., Nasal commensal Staphylococcus epidermidis counteracts influenza virus. Scientific reports, 2016. 6(1): p. 1-12.
17. Ji, J.Y., et al., The Nasal Symbiont Staphylococcus epidermidis Restricts the Transcription of SARS-CoV-2 Entry Factors in Human Nasal Epithelium. Staphylococcus Epidermidis, 2021.
18. Kim, H.J., et al., Nasal commensal Staphylococcus epidermidis enhances interferon-λ-dependent immunity against influenza virus. Microbiome, 2019. 7(1): p. 1-12.
19. Jo, A., et al., Nasal commensal, Staphylococcus epidermidis shapes the mucosal environment to prevent influenza virus invasion through Serpine1 induction. bioRxiv, 2020.
20. Costela-Ruiz, V.J., et al., SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth factor reviews, 2020. 54: p. 62-75.
21. Wu, F., et al., A new coronavirus associated with human respiratory disease in China. Nature, 2020. 579(7798): p. 265-269.
22. Fehr, A.R. and S. Perlman, Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses, 2015: p. 1-23.
23. Chen, Y., et al., Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. PLoS pathogens, 2011. 7(10): p. e1002294.
24. Galanopoulos, M., A. Doukatas, and M. Gazouli, Origin and genomic characteristics of SARS-CoV-2 and its interaction with angiotensin converting enzyme type 2 receptors, focusing on the gastrointestinal tract. World journal of gastroenterology, 2020. 26(41): p. 6335.
25. Cascella, M., et al., Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls, 2021.
26. Chen, Y., Q. Liu, and D. Guo, Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology, 2020. 92(4): p. 418-423.
27. Siu, Y., et al., The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. Journal of virology, 2008. 82(22): p. 11318-11330.
28. Bai, Z., et al., The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation. Viruses, 2021. 13(6): p. 1115.
29. Chang, C.-k., et al., The SARS coronavirus nucleocapsid protein–forms and functions. Antiviral research, 2014. 103: p. 39-50.
30. Peng, T.Y., K.R. Lee, and W.Y. Tarn, Phosphorylation of the arginine/serine dipeptide‐rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. The FEBS journal, 2008. 275(16): p. 4152-4163.
31. Sontheimer, R.D., Skin is not the largest organ. The Journal of investigative dermatology, 2014. 134(2): p. 581.
32. Zhou, H., et al., Applications of Human Skin Microbiota in the Cutaneous Disorders for Ecology-Based Therapy. Frontiers in Cellular and Infection Microbiology, 2020. 10.
33. Belkaid, Y. and J.A. Segre, Dialogue between skin microbiota and immunity. Science, 2014. 346(6212): p. 954-959.
34. Balasubramaniam, A., et al., Skin bacteria mediate glycerol fermentation to produce electricity and resist UV-B. Microorganisms, 2020. 8(7): p. 1092.
35. Brown, M.M. and A.R. Horswill, Staphylococcus epidermidis—Skin friend or foe? PLoS Pathogens, 2020. 16(11): p. e1009026.
36. Pastar, I., et al., Staphylococcus epidermidis boosts innate immune response by activation of Gamma Delta T cells and induction of Perforin-2 in human skin. Frontiers in immunology, 2020. 11: p. 2253.
37. Iwase, T., et al., Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 2010. 465(7296): p. 346-349.
38. Wang, Y., et al., Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology, 2014. 98(1): p. 411-424.
39. Marito, S., et al., Electricity-producing Staphylococcus epidermidis counteracts Cutibacterium acnes. Scientific reports, 2021. 11(1): p. 1-11.
40. Balasubramaniam, A., et al., Repurposing INCI-registered compounds as skin prebiotics for probiotic Staphylococcus epidermidis against UV-B. Scientific reports, 2020. 10(1): p. 1-10.
41. Keshari, S., et al., Butyric acid from probiotic staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor. International journal of molecular sciences, 2019. 20(18): p. 4477.
42. Nakatsuji, T., et al., A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Science Advances, 2018. 4(2): p. eaao4502.
43. Negari, I.P., S. Keshari, and C.-M. Huang, Probiotic activity of Staphylococcus epidermidis induces collagen type I production through FFaR2/p-ERK Signaling. International journal of molecular sciences, 2021. 22(3): p. 1414.
44. Light, S.H., et al., A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 2018. 562(7725): p. 140-144.
45. Vinolo, M.A., et al., Regulation of inflammation by short chain fatty acids. Nutrients, 2011. 3(10): p. 858-876.
46. Uribe-Alvarez, C., et al., Staphylococcus epidermidis: metabolic adaptation and biofilm formation in response to different oxygen concentrations. FEMS Pathogens and Disease, 2016. 74(1): p. ftv111.
47. Light, S.H., et al., Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria. Proceedings of the National Academy of Sciences, 2019. 116(52): p. 26892-26899.
48. Tanaka, K., et al., Extracellular electron transfer via outer membrane cytochromes in a methanotrophic bacterium Methylococcus capsulatus (Bath). Frontiers in microbiology, 2018. 9: p. 2905.
49. Kato, S., Biotechnological aspects of microbial extracellular electron transfer. Microbes and environments, 2015: p. ME15028.
50. Cahoon, L.A. and N.E. Freitag, The electrifying energy of gut microbes. 2018, Nature Publishing Group.
51. Leja, K., K. Czaczyk, and K. Myszka, Biotechnological synthesis of 1, 3-propanediol using Clostridium ssp. African Journal of Biotechnology, 2011. 10(54): p. 11093-11101.
52. Du Toit, A., Exporting electrons. Nature Reviews Microbiology, 2018. 16(11): p. 657-657.
53. Nakatani, Y., et al., Unprecedented properties of phenothiazines unraveled by a NDH-2 bioelectrochemical assay platform. Journal of the American Chemical Society, 2019. 142(3): p. 1311-1320.
54. Hiraishi, A., High‐performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. Journal of applied bacteriology, 1988. 64(2): p. 103-105.
55. Bacher, A., Riboflavin kinase and FAD synthetase, in Chemistry and biochemistry of flavoenzymes. 2018, CRC press. p. 349-370.
56. Averianova, L.A., et al., Production of vitamin B2 (riboflavin) by microorganisms: An overview. Frontiers in Bioengineering and Biotechnology, 2020. 8.
57. Suwannasom, N., et al., Riboflavin: The health benefits of a forgotten natural vitamin. International Journal of Molecular Sciences, 2020. 21(3): p. 950.
58. Liu, S., et al., Production of riboflavin and related cofactors by biotechnological processes. Microbial cell factories, 2020. 19(1): p. 1-16.
59. Vandamme, E.J. and J.L. Revuelta, Industrial biotechnology of vitamins, biopigments, and antioxidants. 2016: John Wiley & Sons.
60. Jaeger, B. and A.M. Bosch, Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience. Journal of inherited metabolic disease, 2016. 39(4): p. 559-564.
61. Litwack, G., Chapter 20-Vitamins and nutrition. Human Biochemistry, 2018: p. 645-680.
62. McDowell, L.R., Vitamins in animal and human nutrition. 2000: John Wiley & Sons.
63. Saedisomeolia, A. and M. Ashoori, Riboflavin in human health: a review of current evidences. Advances in food and nutrition research, 2018. 83: p. 57-81.
64. Mahabadi, N., A. Bhusal, and S.W. Banks, Riboflavin Deficiency. StatPearls [Internet], 2020.
65. Thiamin, R., Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline1. 1998.
66. Ashoori, M. and A. Saedisomeolia, Riboflavin (vitamin B2) and oxidative stress: a review. British journal of nutrition, 2014. 111(11): p. 1985-1991.
67. Mazur-Bialy, A.I., B. Buchala, and B. Plytycz, Riboflavin deprivation inhibits macrophage viability and activity–a study on the RAW 264.7 cell line. British journal of nutrition, 2013. 110(3): p. 509-514.
68. Al-Harbi, N.O., et al., Riboflavin attenuates lipopolysaccharide-induced lung injury in rats. Toxicology mechanisms and methods, 2015. 25(5): p. 417-423.
69. NAKAJIMA, H., Y. ISHIDO, and G. IMOKAWA, Flavin mononucleotide attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. 皮膚の科学, 2010. 9(5): p. 442-451.
70. Lim, S.H., J.S. Choi, and E.Y. Park, Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview. Biotechnology and Bioprocess Engineering, 2001. 6(2): p. 75-88.
71. Mack, M., A.P. van Loon, and H.-P. Hohmann, Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Journal of bacteriology, 1998. 180(4): p. 950-955.
72. You, L.-X., et al., Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry, 2018. 119: p. 196-202.
73. Tian, T., et al., Flavin-mediated extracellular electron transfer in Gram-positive bacteria Bacillus cereus DIF1 and Rhodococcus ruber DIF2. RSC Advances, 2019. 9(70): p. 40903-40909.
74. Sebastián, M., et al., The biosynthesis of flavin cofactors in Listeria monocytogenes. Journal of molecular biology, 2019. 431(15): p. 2762-2776.
75. Liu, S., et al., Modular engineering of the flavin pathway in Escherichia coli for improved flavin mononucleotide and flavin adenine dinucleotide production. Journal of agricultural and food chemistry, 2019. 67(23): p. 6532-6540.
76. Taniguchi, H. and V.F. Wendisch, Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Frontiers in microbiology, 2015. 6: p. 740.
77. Pallotta, M.L., Riboflavin/Vitamin B2 and Lactic Acid Bacteria. EC Microbiology ECO, 2019. 2(2019): p. 03-06.
78. Pedrolli, D.B., et al., A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis. Proceedings of the National Academy of Sciences, 2015. 112(45): p. 14054-14059.
79. Schlüpen, C., et al., Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochemical Journal, 2003. 369(2): p. 263-273.
80. Revuelta, J.L., R. Ledesma-Amaro, and A. Jiménez, Industrial production of vitamin B2 by microbial fermentation. Industrial biotechnology of vitamins, biopigments, and antioxidants, 2016: p. 15-40.
81. Rodionova, I.A., et al., A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea. Nucleic acids research, 2017. 45(7): p. 3785-3799.
82. Pedrolli, D.B., et al., The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochemical pharmacology, 2011. 82(12): p. 1853-1859.
83. Jankowitsch, F., et al., Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin. Journal of bacteriology, 2012. 194(24): p. 6818-6827.
84. Mansjö, M. and J. Johansson, The Riboflavin analog Roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogene s growth, but also stimulates virulence gene-expression and infection. RNA biology, 2011. 8(4): p. 674-680.
85. Otani, S., et al., Roseoflavin, a new antimicrobial pigment from Streptomyces. The Journal of antibiotics, 1974. 27(1): p. 88-89.
86. Pedrolli, D.B., et al., A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic acids research, 2012. 40(17): p. 8662-8673.
87. Grill, S., et al., The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. Journal of bacteriology, 2008. 190(5): p. 1546-1553.
88. Otani, S., S. Kasai, and K. Matsui, [34] Isolation, chemical synthesis, and properties of roseoflavin, in Methods in enzymology. 1980, Elsevier. p. 235-241.
89. Langer, S., et al., Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. Journal of bacteriology, 2013. 195(18): p. 4037-4045.
90. Stepanov, A., et al., Analgos of riboflavin, lumiflavin and alloxazine derivatives. II. Effect of roseoflavin on 6, 7-dimethyl-8-ribityllumazine and riboflavin synthetase synthesis and growth of Bacillus subtilis. Genetika, 1977. 13(3): p. 490-495.
91. Von Canstein, H., et al., Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and environmental microbiology, 2008. 74(3): p. 615-623.
92. Lee, E.R., K.F. Blount, and R.R. Breaker, Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA biology, 2009. 6(2): p. 187-194.
93. Tang, Y., et al., Cytokine storm in COVID-19: the current evidence and treatment strategies. Frontiers in immunology, 2020. 11: p. 1708.
94. Song, P., et al., Cytokine storm induced by SARS-CoV-2. Clinica chimica acta, 2020. 509: p. 280-287.
95. Ley, K., et al., How mouse macrophages sense what is going on. Frontiers in immunology, 2016. 7: p. 204.
96. Wang, J.P., et al., Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. Journal of virology, 2005. 79(20): p. 12658-12666.
97. Zhang, X. and D. Mosser, Macrophage activation by endogenous danger signals. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 2008. 214(2): p. 161-178.
98. Tseng, C.-T.K., et al., Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. The Journal of Immunology, 2005. 174(12): p. 7977-7985.
99. Traisaeng, S., et al., A derivative of butyric acid, the fermentation metabolite of Staphylococcus epidermidis, inhibits the growth of a Staphylococcus aureus strain isolated from atopic dermatitis patients. Toxins, 2019. 11(6): p. 311.
100. Schwechheimer, S.K., et al., Biotechnology of riboflavin. Applied microbiology and biotechnology, 2016. 100(5): p. 2107-2119.
101. Rosenbaum, M., et al., Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresource technology, 2011. 102(1): p. 324-333.
102. Guthrie, J.W., General considerations when dealing with biological fluid samples In Pawliszyn (Ed.), Comprehensive sampling and sample preparation (Vol. 3, pp. 1–19). Cambridge, MA: Academic Press. 2012. doi: 10.1016/B978-0-12-381373-2.00065-X
103. Ravanel, K., et al., Measles virus nucleocapsid protein binds to FcγRII and inhibits human B cell antibody production. The journal of experimental medicine, 1997. 186(2): p. 269-278.
104. Yang, J.J., et al., Production of electricity and reduction of high-fat diet-induced IL-6 by glucose fermentation of Leuconostoc mesenteroides. Biochemical and Biophysical Research Communications,2020. 533(4): p. 651-656.
105. Oschman, J.L., Can electrons act as antioxidants? A review and commentary. The Journal of Alternative and Complementary Medicine, 2007. 13(9): p. 955-967.
106. Lee, A.-J., K.-J. Cho, and J.-H. Kim, MyD88–BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Experimental & molecular medicine, 2015. 47(4): p. e156-e156.
指導教授 黃俊銘(Chun-Ming, Huang) 審核日期 2021-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明