博碩士論文 108223015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.188.66.13
姓名 陳彥霖(Yen-Lin Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 一步驟無反溶劑法在大氣下製備鈣鈦礦膜且開發Cu摻雜ZnCo2O4尖晶石作為電洞傳遞層之研究
(Development of Cu-doped ZnCo2O4 spinel as Hole Transport Layers for Efficient Inverted Perovskite Solar Cells in Ambient Atmosphere)
相關論文
★ 應用於高穩定性反式錫鈣鈦礦太陽能電池之氧化亞錫電洞傳遞材料研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSC)中的鈣鈦礦(Perovskite,簡稱Psk)容易受水氣的影響而分解,大部分研究者都是在手套箱中製備Psk膜,為了降低成本則開始研究如何在大氣下克服水氣的影響來製備高品質Psk膜,而在大氣下製備Psk膜所沉積之載體常用具疏水性的無機材料,因無機材料具有長時間及熱穩定性且材料便宜,但無機材料常需以高溫(300oC以上)製備成膜,製備成本高且用途受限制,因此如何在低溫下製備無機電洞傳遞層(hole transport layer,簡稱HTL)也是重要的研究。本研究利用一步驟無反溶劑法在大氣下(RT:25~30oC;RH:30~40%)製備Psk膜,且以低溫(200oC)經由Sol-Gel製備ZnCo2O4尖晶石膜作為電洞傳遞層,並將Cu摻雜至ZnCo2O4膜來增加其電洞萃取能力及導電度,其中以2 mol%Cu摻雜之ZnCo2O4膜作為電洞傳遞層且使用無反溶劑法在大氣下所製之Psk膜作為吸收層之元件的最高光電轉換效率可達17.22%且幾乎沒有電流遲滯現象。分別以2 mol%(相對於Zn)Cu摻雜之ZnCo2O4膜及PEDOT:PSS膜作為HTL之元件未封裝放置大氣下(RT:25~30oC;RH:30~40%) 1744 hours,光電轉換效率剩下原效率的90%及12%。若元件未封裝在手套箱中以85oC連續加熱125 hours,光電轉換效率則降為原效率的77%及42%。經2 mol%Cu摻雜之ZnCo2O4膜導電度由(0.94×10-3 S/cm)增加至(1.44×10-3 S/cm),由TRPL測得之沉積於HTL的Psk載子生命期分別為(7.12 ns)及(4.58 ns),表示Cu摻雜能加速HTL將Psk受光產生的電洞萃取並傳遞至ITO導電玻璃上,因此所組裝之元件有較高的電流值。ZnCo2O4膜VB能階為-4.63 eV,2 mol%Cu摻雜ZnCo2O4膜的VB能階為-4.82 eV,後者與鈣鈦礦膜的VB能階(-5.44 eV)匹配性較高,因此以後者之HTL所組裝之元件有較高的Voc值。
摘要(英) Perovskite (Psk) used in perovskite solar cells (PSC) is generally prepared in a glove box with one-step anti-solvent dripping method due to the moisture sensitive of perovskite material. To reduce the fabrication costs, preparation of high-quality Psk films in an ambient atmosphere without using an anti-solvent is an important research. Furthermore, inorganic materials with good stability and low-cost are suitable to be used as HTLs in PSC. Nevertheless, inorganic materials need to be prepared at high temperatures (above 300°C) to form dense film with good conductivity, which are costly and have many application limitations. In this study, Psk film is prepared by one-step spin coating without anti-solvent under the ambient atmosphere (RT:25~30oC ; RH: 30~40%) and using ZnCo2O4 spinel HTL prepared via Sol–Gel process at low temperature (200oC). Moreover, Cu2+ was used as an dopant to enhance the hole extraction and transport ability of the ZnCo2O4 base HTLs. The results show PSC based on 2 mol% (vs Zn ) Cu2+ doped ZnCo2O4 HTL exhibit the maximum power conversion efficiency (PCE) of 17.22% and almost no current hysteresis. PSCs based on 2 mol% Cu2+ doped ZnCo2O4 and PEDOT:PSS HTL maintain 90% and 12%, respectively of the original efficiency by standing in air (RT:25~30oC ; RH: 30-40%) for 1744 hours without encapsulation, The cells are maintain 77% and 42%, respectively of their original efficiency by heated at 85oC for 125 hours. The conductivity of the ZnCo2O4 film increased from (0.94×10-3 S/cm) to (1.44×10-3 S/cm) when doped with 2 mol% Cu2+. The excitons lifetimes estimated from TRPL data are (7.12 ns) and (4.58 ns), respectively for Psk deposited on ZnCo2O4 and 2 mol% Cu2+ doped ZnCo2O4 HTLs. The results indicated that Cu2+ doping can enhance the hole extraction and transport ability ofZnCo2O4 based HTL to increase the Jsc of the corresponding cell. The VB energy level of the ZnCo2O4 film is -4.63 eV, and the VB energy level of the 2 mol% Cu2+ doped ZnCo2O4 film is -4.82 eV. The latter shows better energy match with the VB energy level (-5.44 eV) of the perovskite film, reduces the potential loss, therefore PSC based on Cu2+ doped ZnCo2O4 has higher Voc value compared to that based on ZnCo2O4 HTL.
關鍵字(中) ★ 鈣鈦礦
★ 電洞傳遞層
★ 尖晶石
★ 高效率
★ 大面積
關鍵字(英)
論文目次 摘要 VI
Abstract VIII
Graphical Abstract X
謝誌 XI
目錄 XII
圖目錄 XX
表目錄 XXVI
附錄 XXX
第一章、緒論 1
1-1、前言 1
1-2、鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 4
1-2-1. 鈣鈦礦太陽能電池的架構 4
1-2-2. 反式鈣鈦礦太陽能電池的工作原理 5
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 6
1-3、鈣鈦礦太陽能電池之研究歷程 8
1-3-1. 第一個將鈣鈦礦材料應用於太陽能電池的研究 8
1-3-2. 固態電解質應用於鈣鈦礦太陽能電池 11
1-3-3. 第一個反式結構鈣鈦礦太陽能電池的研究 12
1-4、鈣鈦礦活性層在大氣下的製備方法 13
1-4-1. 在大氣下以一步驟反溶劑法製備鈣鈦礦膜 13
1-4-2. 在大氣下以兩步驟合成法法製備鈣鈦礦膜 15
1-4-3. 在大氣下以一步驟無反溶劑法製備鈣鈦礦膜 16
1-5、鈣鈦礦前驅溶液之添加組成 18
1-5-1. MACl添加至鈣鈦礦前驅溶液製備鈣鈦礦膜 18
1-5-2. 鈣鈦礦組成中含有Br,組裝成元件增加Voc值 19
1-5-3. CsI添加至鈣鈦礦前驅溶液製備鈣鈦礦膜 20
1-6、作為PSC之無機電洞傳遞層材料 22
1-6-1. 金屬氧化物 22
1-6-2. 利用Sol-Gel法製備尖晶石氧化物作為PSC之電洞傳遞層 24
1-6-3. ZnCo2O4尖晶石比NiCo2O4尖晶石有較高的oxygen vacancy 28
1-7、金屬離子摻雜無機材料作為電洞傳遞層 30
1-7-1. Cu與Li共摻雜NiCo2O4尖晶石作為電洞傳遞層 30
1-7-2. Mg與Li共摻雜NiOx作為電洞傳遞層 32
1-7-3. Cu摻雜NiOx作為電洞傳遞層 35
1-8 實驗動機 38
第二章、實驗部分 39
2-1、實驗藥品及儀器設備 39
2-1-1. 藥品 39
2-1-2. 儀器設備 40
2-2、甲基胺碘(CH3NH3I)的合成 41
2-3、反式鈣鈦礦太陽能電池組裝步驟 42
2-3-1. 藥品配製 42
2-3-1-1. 鈣鈦礦前驅溶液配製 42
2-3-1-2. 金屬離子M (M = Cu、Mg、Li、Fe)摻雜ZnCo2O4前驅溶液配製 42
2-3-2. 元件組裝步驟如圖2-3 1及2-3-2所示: 43
2-4、儀器原理、樣品製備及量測 46
2-4-1. 熱蒸鍍系統(Thermal evaporation system, SKE103004) 46
2-4-2. 太陽光模擬器及光電轉換效率量測(Solar Simulator, Enlitech SS-F5) 47
2-4-3. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I) 47
2-4-4. 空間電荷限制電流量測 48
2-4-5. 掃描式電子顯微鏡 (Scanning Electron Microscope, Hitachi S-800) 49
2-4-6. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 50
2-4-7. 光激發螢光光譜儀(Photoluminescence Spectrometer, Uni think Uni-RAM) 51
2-4-8. 時間解析光致螢光光譜儀(Time-Resolved Photoluminescence (TRPL), Uni think Uni-RAM) 52
2-4-9. 紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific Sigma Probe) 53
2-4-10. 紫外光/可見光/近紅外光光譜儀(Ultraviolet-visible-NIR spectroscopy, HITACHI U-4100) 53
2-4-11. 接觸角量測儀(Contact angle, Grandhand Ctag01) 54
第三章、結果與討論 55
3-1、NiCo2O4膜或ZnCo2O4膜或金屬離子摻雜ZnCo2O4膜或PEDOT:PSS膜作為電洞傳遞層所組裝之元件的光伏表現 55
3-1-1. NiCo2O4膜、ZnCo2O4膜與PEDOT:PSS膜作為電洞傳遞層之元件的光伏表現 55
3-1-2. 以不同金屬離子M (M = Cu2+、Mg2+、Li1+、Fe2+)摻雜ZnCo2O4或PEDOT:PSS膜作為電洞傳遞層之元件的光伏表現 56
3-1-3. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜或PEDOT:PSS膜作為電洞傳遞層之元件的光伏表現 58
3-2、0/1/2/4 mol% Cu2+ doped ZnCo2O4或PEDOT:PSS作為HTL之最高效率元件的IPCE圖 59
3-3、0/1/2/4 mol% Cu2+ doped ZnCo2O4膜或PEDOT:PSS膜作為HTL之最高效率元件的遲滯現象 61
3-4、Cu2+摻雜ZnCo2O4膜的XRD數據 62
3-5、Cu2+摻雜ZnCo2O4膜的表面形貌 64
3-6、Cu2+摻雜ZnCo2O4膜或PEDOT:PSS膜的UV-Vis穿透/吸收光譜圖及前置軌域能階 66
3-6-1. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜或PEDOT:PSS膜UV-Vis穿透光譜圖 66
3-6-2. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜之前置軌域能階 67
3-7、Cu2+摻雜ZnCo2O4膜的XPS能譜圖 70
3-7-1. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜之Co 2p軌域能譜圖 70
3-7-2. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜之O 1s軌域能譜圖 72
3-8、Cu2+摻雜對ZnCo2O4膜之導電度的影響 74
3-9、Cu2+摻雜對ZnCo2O4膜之電洞遷移率的影響 76
3-10、Cu2+摻雜對ZnCo2O4膜之親疏水性的影響 77
3-11、沉積在Cu2+摻雜ZnCo2O4膜或PEDOT:PSS膜上之鈣鈦礦膜的SEM表面形貌與剖面圖 78
3-12、沉積在Cu2+摻雜ZnCo2O4膜或PEDOT:PSS膜上之鈣鈦礦膜的XRD圖 81
3-13、沉積在Cu2+摻雜ZnCo2O4膜或PEDOT:PSS膜上之鈣鈦礦膜的UV-Vis吸收光譜圖 83
3-14、沉積在Cu2+摻雜ZnCo2O4膜或PEDOT:PSS膜上之鈣鈦礦膜的PL及TRPL圖 84
3-15、0/2 mol% Cu2+ doped ZnCo2O4膜或PEDOT:PSS膜作為HTL之元件的長時間穩定性 86
3-16、篩選沉積在ZnCo2O4上之鈣鈦礦膜的最佳前驅溶液組成 88
3-16-1. 以添加不同濃度之MACl至MAPbI3前驅溶液所製備的鈣鈦礦膜作為吸收層之元件的光伏表現 88
3-16-2. 以添加不同濃度之MABr至含3 mol% MACl之MAPbI3前驅溶液所製備成膜組裝成元件之光伏表現 89
3-16-3. 以添加不同濃度之CsI至含3 mol% MACl + 0.5 mol% MABr之MAPbI3前驅溶液所製備成膜組裝成元件之光伏表現 91
3-17、鈣鈦礦膜的性質量測 93
3-17-1. 不同組成之鈣鈦礦前驅溶液所製備鈣鈦礦膜的表面形貌 93
3-17-2. 不同組成之鈣鈦礦前驅溶液所製備鈣鈦礦膜的光致螢光光譜 94
第四章、結論 95
參考文獻 96
附錄 103
附錄1. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜作為HTL之元件穩態電流密度及光電轉換效率輸出 103
附錄2. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜之XPS全能譜圖 104
附錄3. 0/1/2/4 mol% Cu2+ doped ZnCo2O4膜之Zn 2P軌域能譜圖 105
附錄4. 1/2/4 mol% Cu2+ doped ZnCo2O4膜之Cu 2P軌域能譜圖 106
附錄5. 0/2 mol% Cu2+ doped ZnCo2O4膜或PEDOT:PSS膜作為HTL之元件放置大氣下各光伏參數隨時間的變化 107
附錄6. 0/2 mol% Cu2+ doped ZnCo2O4膜或PEDOT:PSS膜作為HTL之元件置於手套箱加熱光伏參數隨時間的變化 108
附錄7. 由XPS能譜圖所估計出的0/1/2/4 mol% Cu2+ doped ZnCo2O4膜之化學式如附錄表1所示: 109
附錄8. 以2 mol% Cu2+ doped ZnCo2O4為HTL所組裝的大面積微型膜組的I-V曲線如附錄圖7所示 110
參考文獻 [1] https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&id=0000549462_HC15591658U13131URXX0
[2] http://en.wikipedia.org/wiki/Gustav_Rose
[3] Minjin Kim, Gi-Hwan Kim, Tae Kyung Lee, In Woo Choi, Hye Won Choi, Yimhyun Jo, Yung Jin Yoon, Jae Won Kim, Jiyun Lee, Daihong Huh, Heon Lee, Sang Kyu Kwak, Jin Young Kim, and Dong Suk Kim1, “Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells“, Joule, 2019, 3, 2179-2192
[4] Gwisu Kim, Hanul Min, Kyoung Su Lee, Do Yoon Lee, So Me Yoon and Sang Il Seok “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells”, Science, 2020, 6512, 108-112
[5] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng and Jinsong Huang “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv, 2019, 5, 8925-8934
[6] Chien-Hung Chiang and Chun-Guey Wu “A methodto prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano, 2018, 12, 10355-10364
[7] Wen-Shing Sun, Chuen-Lin Tien, Chih-Hsuan Tsuei, and Jui-Wen Pan “Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination”, APPLIED OPTICS, 2014, 53, 186-194
[8] Suhas Mahesh, James M. Ball, Robert D. J. Oliver, David P. McMeekin, Pabitra K. Nayak, Michael B. Johnston and Henry J. Snaith “Revealing the origin of voltage loss in mixed-halide perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4860-4867
[9] Kojima, A.; Teshima, K.; Shirai, Y. and Miyasaka T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 2009, 131, 6050-6051
[10] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Grätzel and Nam-Gyu Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep. 2012, 2, 591-597
[11] Jun-Yuan Jeng, Yi-Fang Chiang, Mu-Huan Lee, Shin-Rung Peng, Tzung-Fang Guo, Peter Chen and Ten-Chin Wen, “CH3NH3PbI3 perovskite/fullerene planar- hetero-junction hybrid solar cell”, Adv. Mater, 2013, 25, 3727–3732
[12] K´ari Sveinbj¨ ornsson, a Kerttu Aitola, Jinbao Zhang, Malin B. Johansson, Xiaoliang Zhang, Juan-Pablo Correa-Baena, Anders Hagfeldt, Gerrit Boschloo and Erik M. J. Johansson “Ambient air-processed mixed-ion perovskites for high-efficiency solar cells”, J. Mater. Chem. A, 2016, 4, 16536–16545
[13] Yuanhang Cheng, Xiuwen Xu, Yuemin Xie, Ho-Wa Li, Jian Qing, Chunqing Ma, Chun-Sing Lee, Franky So, and Sai-Wing Tsang “18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH”, Sol. RRL, 2017, 00, 1700097-1700106
[14] Nakita K. Noel, Severin N. Habisreutinger, Bernard Wenger, Matthew T. Klug, Maximilian T. Ho¨rantner, Michael B. Johnston, Robin J. Nicholas, David T. Moore and Henry J. Snaith “A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films”, Energy Environ. Sci, 2017, 10, 145-152
[15] Lingfeng Chao, Yingdong Xia, Bixin Li, Guichuan Xing, Yonghua Chen and Wei Huang “Room-Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air”, Chem, 2019, 5, 1–12
[16] Byungho Lee, Taehyun Hwang, Sangheon Lee, Byungha shin and Byungwoo park, “Microstructural Evolution of Hybrid Perovskites Promoted by Chlorine and its Impact on the Performanc e of Solar Cell”, Scientific Reports., 2019, 9, 4803
[17] Jun Hong Noh, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal and Sang Il Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic−Organic Hybrid Nanostructured Solar Cells”, Nano Lett.,2013, 13, 1764−1769
[18] Muhammad Jahandar, Nasir Khan, Won Suk Shin, Jong-Cheol Lee, Chang Eun Song and Sang-Jin Moon, “High-Performance CH3NH3PbI3 Inverted Planar Perovskite Solar Cells with Fill Factor Over 83% via Excess Organic/Inorganic Halide”, ACS Appl. Mater. Interfaces, 2017, 9, 35871-35879
[19] Ahmed Esmail Shalan, Tomoya Oshikiri, Sudhakar Narra, Mahmoud M. Elshanawany, Kosei Ueno, Hui-Ping Wu, Keisuke Nakamura†, Xu Shi, Eric Wei-Guang Diau, and Hiroaki Misawa, “Cobalt Oxide (CoOx)asanEfficient Hole-Extracting Layer for HighPerformance Inverted Planar Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2016, 8, 49, 33592–33600
[20] Ju Ho Lee, Young Wook Noh, In Su Jin, Sang Hyun Park and Jae Woong Jung, “Efficient Perovskite Solar Cells with Negligible Hysteresis Enabled by Sol-Gel Driven Spinel Nickel Cobalt Oxide as Hole Transport Layer”, J. Mater. Chem. C, 2019, 7, 7288-7298
[21] Ju Ho Lee, In Su Jin, Young Wook Noh, Sang Hyun Park, and Jae Woong Jung, “A Solution-Processed Spinel CuCo2O4 as an Effective Hole Transport Layer for Efficient Perovskite Solar Cells with Negligible Hysteresis”, ACS Sustainable Chem. Eng., 2019, 7, 21, 17661-17670
[22] Shuo Zhang, Xinbo Zhu, Chenghang Zheng, Daqing Hu, Jian Zhang and Xiang Gao, “Study on Catalytic Soot Oxidation over Spinel Type ACo2O4(A = Co, Ni, Cu, Zn) Catalysts”, Aerosol and Air Quality Research, 2017, 17, 2317–2327
[23] Apostolos Ioakeimidis, Ioannis T. Papadas, Dimitris Tsikritzis, Gerasimos S. Armatas, Stella Kennou and Stelios A. Choulis, “Enhanced photovoltaic performance of perovskite solar cells by Co-doped spinel nickel cobaltite hole transporting layer”, APL Mater., 2019, 7, 021101− 021107
[24] Wei Chen, Yongzhen Wu, Youfeng Yue, Jian Liu, Wenjun Zhang, Xudong Yang, Han Chen, Enbing Bi, Islam Ashraful, Michael Grätzel, Liyuan Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers”, Science, 2015, 350, 944-948
[25] Qiqi He, Kai Yao, Xiaofeng Wang, Xuefeng Xia, Shifeng Leng, and Fan Li, “Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2017, 9, 41887−41897
[26] Kai Zhang, Zheng Wang, Gaopeng Wang, Jian Wang, Yu Li, Wei Qian, Shizhao Zheng, Shuang Xiao and Shihe Yang, “A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity”, Nature Communications, 2020, 11, 1006-1017
[27] Manman Ding, Leijie Sun, Xiayan Chen, Tianyuan Luo, Tian Ye, Chunyan Zhao, Wenfeng Zhang and Haixin Chang, “Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability”, Journal of Materials Science, 2019, 54, 12000–12011
[28] Xiuwen Xu, Chunqing Ma, Yue-Min Xie, Yuanhang Cheng, Yameng Tian, Menglin Li, Yuhui Ma, Chun-Sing Lee and Sai-Wing Tsang, “Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2–CsI–FAI intermediate complex”, J. Mater. Chem. A, 2018, 6, 7731-7740
[29] Wei-Hsiang Chen, Linlin Qiu, Zhishan Zhuang, Lixin Song, Pingfan Du, Frank Ko and Jie Xiong, “Simple fabrication of perovskite solar cells with enhanced efficiency, stability, and flexibility under ambient air”, Journal of Power Sources, 2019, 442, 227216-227224
[30] Guangcheng Wu, Rui Sun, Linqun Hu, Xuting Dong, Guanglei Cui, Min Gu, Tong B. Tang, Zewen Zuo, Yong Liu, “Synergistic Benefits of Cesium-Doped Aqueous Precursor in Air-Processed Inverted Perovskite Solar Cells”, Sol. RRL, 2020, 5, 1900406-1900413
[31] John Ciro, Rafael Betancur, Santiago Mesa and Franklin Jaramillo, “High performance perovskite solar cells fabricated under high relative humidity conditions”, Solar Energy Materials and Solar Cells, 2017, 163, 38-42
[32] K.Ch.Varada Rajulu and B.N Mohanty, “Dielectric and Conductivity Properties of some Wood Composites”, International Journal of Engineering and Technologies, 2016, 5, 51-60
指導教授 吳春桂 江建宏(Chun-Guey Wu Chien-Hung Chiang) 審核日期 2021-9-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明