博碩士論文 108223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:134 、訪客IP:18.227.114.125
姓名 蔡佳樺(Jia-Hua Tsai)  查詢紙本館藏   畢業系所 化學學系
論文名稱 一般式鈣鈦礦太陽能電池的高分子電洞傳遞層與吸收層之界面修飾層研究
(Research on the Modification of Polymer Hole Transporter/Absorber layer Interface of the Regular Perovskite Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦太陽能電池(Perovskite solar cells,簡稱PSC),由於組裝過程簡易且材料價格便宜,因此製作成本低而快速發展。至2021年PSC元件已驗證的光電轉換效率已達25.5%。PSC元件中所使用的電洞傳遞層(hole transporting layer, HTL)材料須具備高電洞萃取效率、快速電洞傳遞及與鈣鈦礦層的valence band (VB)與conduction band (CB)能階匹配等特性。Spiro-OMeTAD、P3HT等是常用的PSC HTL材料。本研究利用本實驗室合成之P12、P15、P16、P17、P18、P19、P20、P21等7個高分子作為PSC元件之HTL材料,利用高分子疏水的特性,增加PSC元件的長時間穩定性。將高分子材料溶於高沸點溶劑中使沉積的膜排列具有較高的規則度,並以4-Iso-propyl-4‘-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate (簡稱DPI-TPFB)作為摻雜劑,並在鈣鈦礦(Psk)膜與高分子HTL之間沉積一層2-Bromo-5-hexylthiophene (簡稱BHT)膜以修飾界面並可階梯式將電洞由鈣鈦礦層傳遞至電洞傳遞層,降低電位損耗,增加PSC元件的光電轉換效率,結果以P15及P18的光伏特性比P3HT好。P15膜沉積在Psk上時又比較不會聚集(相對於P18),可降低電洞在膜上傳遞時發生載子再結合。DPI-TPFB摻雜之P15(DPI-TPFB@P15)的HOMO能階為-5.44 eV與鈣鈦礦膜的VB能階-5.61 eV匹配性比DPI-TPFB@P18更好,因此能更有效率的萃取電洞,以DPI-TPFB@P15膜作為HTL相較於DPI-TPFB@P18膜組裝成元件有更高的Voc值為1.00 V。以DPI-TPFB@P15、DPI-TPFB@P18、及DPI-TPFB@P3HT作為HTLs組裝成元件的光電轉換效率分別為17.08%、11.75、11.63%。若再以BHT作介面修飾,元件的光電轉換效率分別提高至18.17 %、15.03 %、及14.79 %,遲滯因子則分別為9.1 %、6.7 %、13.9 %。
摘要(英) The rapid progress of perovskite solar cell (PSC) is due to it has a simple assembly process, high efficiency and uses few materials, therefore the manufacturing cost is low. The certified power conversion efficiency (PCE) of PSC device has reached 25.5 % in 2021. Hole transporting layer (HTL) used in PSC devices must have high hole extraction efficiency, fast hole transport and the energy level of the frontier orbitals matches with those (valence band (VB) and conduction band (CB)) of the perovskite absorber. Spiro-OMeTAD and P3HT are commonly used HTL materials. In this study, the polymer synthesized by our lab, including P12, P15, P16, P17, P18, P19, P20, and P21, are used as HTL materials for regular PSCs. The hydrophobic properties of polymers film are used to increase the long-term stability of PSC devices. Higher boiling point solvent is used to make the polymer film more ordered, 4-iso-propyl-4′-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate (DPI-TPFB) is used as the dopant, and 2-bromo-5-hexylthiophene (BHT) is used a perovskite/HTL interface passivation agent. P15 film is deposited on the Psk is less aggregated compared to P18 film, which can reduce the recombination of carriers therefore has better photovoltaic performance. The HOMO of DPI-TPFB@P15 is -5.44 eVwhich matches better the VB (-5.61 eV) of perovskite film than those of DPI-TPFB@P3HT and DPI-TPFB@P3HT HTLs. As a result PSC based on DPI-TPFB @P15 HTL has a highest Voc of 1.00 V. The power conversion efficiencies (PCEs) of the PSC based on DPI-TPFB@P15, DPI-TPFB@P18, and DPI-TPFB@P3HT HTLs are 17.08%, 11.75, and 11.63%, respectively. The PCE of the cell based on BHT/DPI-TPFB@P15, BHT/DPI-TPFB@P18, and BHT/DPI-TPFB@P3HT HTLs increase to devices are 18.17%, 15.03%, and 14.79%, respectively. The cell based on BHT/DPI-TPFB@P15 HTL also has the smallest hysteresis index of 6.7% compare to those (9.1% and 14.0%) of the other two cells.
關鍵字(中) ★ 鈣鈦礦
★ 高分子
★ 電洞傳遞層
★ 界面修飾
★ 一般式
關鍵字(英)
論文目次 摘要 vi
Abstract viii
Graphical Abstract xi
目錄 xii
圖目錄 xx
表目錄 xxvi
第一章、 緒論 1
1-1、前言 1
1-2、鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 2
1-2-1. 鈣鈦礦太陽能電池的架構 2
1-2-2.鈣鈦礦太陽能電池的光電轉換效率 4
1-3、電子傳遞層的製備方法 6
1-3-1.低溫製備的TiO2膜 6
1-3-2.SnO2膜比TiO2膜有高的導電度 6
1-3-3.雙層膜作為電子傳遞層 9
1-4、鈣鈦礦活性層的製備方法 10
1-4-1.一步驟合成法製備鈣鈦礦膜 10
1-4-2.兩步驟合成法製備鈣鈦礦膜 11
1-4-3. 一步驟反溶劑法製備鈣鈦礦膜 13
1-5、一般式鈣鈦礦太陽能電池元件中電洞傳遞層的發展 14
1-5-1. 以高分子材料作為鈣鈦礦太陽能電池之電洞傳遞層 15
1-5-2. 以高分子膜相對於小分子膜作為HTL所組裝成元件有較好的長時間穩定性 17
1-5-3. 以含F高分子製備成膜作為HTL組裝成元件有高的Voc值 19
1-6、添加劑或高沸點溶劑提高高分子膜之導電度 20
1-6-1. 添加Li-TFSi至P3HT溶液中提高膜的導電度 20
1-6-2. 以溶劑控制高分子膜之表面形貌 21
1-7、加入摻雜劑提高高分子膜之導電度 23
1-7-1. 以含TPFB之高分子膜為鈣鈦礦太陽能電池之電洞傳遞層 23
1-8、以界面修飾膜來提高所組裝元件之效率與穩定性 25
1-8-1. 在Psk膜與HTL間沉含烷基鏈之分子膜可提高所組裝元件長時間穩定性 25
1-8-2. 在Psk膜與HTL間沉噻吩膜可階梯式的傳遞載子 27
1-8-3. 在Psk膜與HTL間沉積含長烷鏈之鹵化銨基鹽膜可以形成2D/3D鈣鈦礦結構 30
1-9、 研究動機 40
第二章、 實驗部分 43
2-1、實驗藥品及儀器設備 43
2-1-1、藥品 43
2-2-2、儀器設備 45
2-2、 一般式鈣鈦礦太陽能電池之電池組裝步驟 46
2-2.1、 藥品配製 46
A、G-SnO2:TiO2 (2:8)奈米粒子懸浮液的配製(球磨法) 46
B、SnO2奈米粒子懸浮液的配製 46
C、鈣鈦礦前驅溶液的配製 46
D、電洞傳遞層起始溶液配製 47
E、界面修飾層溶液配製 48
2-2-2、元件組裝步驟 49
2-3、儀器原理、樣品製備及量測 53
2-3-1.熱蒸鍍系統(Thermal evaporation system,高敦科技) 53
2-3-2. 太陽光模擬器及光電轉換效率量測(Solar Simulator, DENSO KXL-500F及Keithley 2400 ) 53
2-3-3.空間電荷限制電流量測 54
2-3-4.太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), Enlitech PVCS-I) 55
2-3-5.超高解析場發射掃描式電子顯微鏡 (Ultra-High Resolution FE-SEM,Nova Nano SEM-230) 56
2-3-6. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 57
2-3-7.光激發螢光光譜儀及時間解析光譜(Photoluminescence (PL) and Time–Resolved Photoluminescence (TRPL) Spectrometer, Uni think Uni-RAM) 58
2-3-8.紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific Sigma Probe) 59
2-3-9.紫外光/可見光/近紅外光吸收(穿透)光譜儀(Ultraviolet-visible-NIR spectroscopy, HITACHI U-4100) 60
2-3-10.動態光散射儀(Dynamic light scattering, Microtrac nanotrac wave) 61
2-3-11.接觸角量測儀(Contact angle, Grandhand Ctag01) 61
第三章、 結果與討論 63
3-1、以P3HT、P12、P15、P16、P15、P17、P18、P19、P20、P21高分子材料製備成電洞傳遞層的條件篩選 63
3-1-1、以CB、DCB或TCB溶劑製備高分子膜作為電洞傳遞層組裝成元件的光電轉換效率 63
3-1-2、以不同濃度P15(TCB)製備高分子膜作為電洞傳遞層組裝成元件的光電轉換效率 64
3-1-3、將P15(TCB)以不同轉速製備高分子膜作為電洞傳遞層組裝成元件的光電轉換效率 65
3-1-3、以不同polymer(TCB)高分子膜作為電洞傳遞層組裝成元件的光電轉換效率 66
3-2、以含DPI-TPFB之1.5 wt% P3HT(TCB)、P15(TCB)及P18(TCB)溶液所製之膜作為電洞傳遞層所組裝之元件的光伏表現 69
3-3、在Psk膜上沉積不同界面修飾膜並以DPI-TPFB@P3HT(TCB)、DPI-TPFB@P15(TCB)、及DPI-TPFB@ P18(TCB)膜作為電洞傳遞層所組裝之元件的光伏表現 70
3-4、以DPI-TPFB@P3HT、DPI-TPFB@P15及DPI-TPFB@P18膜作為HTL且以BHT做修飾層所組裝之最高效率元件的IPCE 73
3-5、以Psk/BHT/DPI-TPFB@P3HT、DPI-TPFB@P15及DPI-TPFB@P18膜作為HTL所組裝之最高效率元件的遲滯現象 74
3-6、以DPI-TPFB@P3HT、DPI-TPFB@P15及DPI-TPFB@P18膜作為HTL所組裝之最高效率元件的暗電流 76
3-7、以CB、DCB及TCB作為溶劑或於polymer(TCB)加入DPI-TPFB作為添加劑配製P3HT、P15及P18溶液製備成膜的XRD圖……………………………………………… 78
3-8、DPI-TPFB@P3H、DPI-TPFB@P15、及DPI-TPFB@P18膜的前置軌域能階 80
3-9、 DPI-TPFB的添加對高分子膜導電度的影響 85
3-10、DPI-TPFB的添加對高分子膜電洞遷移率的影響 87
3-11、Psk及Psk/BHT膜表面親疏水性及表面形貌 89
3-12、經BHT膜修飾之鈣鈦礦膜的元素分析 90
3-13、鈣鈦礦膜上沉積BHT膜的鈣鈦礦膜結晶度 92
3-14、DPI-TPFB@P3HT、DPI-TPFB@P15及DPI-TPFB @P18膜表面親疏水性 93
3-15、Psk/BHT/DPI-TPFB@P3HT、Psk/BHT/DPI-TPFB@P15及Psk/BHT/DPI-TPFB@P18膜的光致螢光及時間解析光致螢光光譜 94
3-16、以Spiro-OMeTAD、BHT/DPI-TPFB@P3HT、BHT/ DPI-TPFB@P15及BHT/DPI-TPFB@P18膜作為HTL所組裝之鈣鈦礦太陽能電池元件之長時間穩定性 97
第四章、結論 99
參考文獻 101
附錄 111
附錄1. 以PSK/BHT/ DPI-TPFB@P3HT、DPI-TPFB@P15及DPI-TPFB@P18膜作為HTL所組裝之最高效率元件的穩態電流密度及光電轉換效率輸出 111
附錄2. 不同電洞傳遞層放置在手套箱中長時間各項光伏參數隨時間的變化 112
附錄3. 以慢乾所製備之DPI-TPFB@P15膜作為HTL所組裝之元件的光伏表現 113
附錄4. 以五個不同噻吩衍生物作為界面修飾層所組裝之元件的光電轉換效率 114
附錄5. 將界面修飾劑添加在鈣鈦礦前溶液中所組裝元件的光伏參數 115
參考文獻 [1] https://www.researchgate.net/figure/Perovskite-generic-crystal-structure-The-cubic-crystal-structure-of-3D-perovskite_fig3_ 325218134
[2] Gwisu Kim, Hanul Min, Kyoung Su Lee, Do Yoon Lee, So Me Yoon, Sang Il Seok, “Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells”, Science, 2020, 370, 108-112.
[3] Xiaopeng Zheng, Yi Hou, Chunxiong Bao, Jun Yin , Fanglong Yuan, Ziru Huang , Kepeng Song, Jiakai Liu, Joel Troughton, Nicola Gasparini , Chun Zhou, Yuanbao Lin, Ding-Jiang Xue, Bin Chen, Andrew K. Johnston , Nini Wei, Mohamed Nejib Hedhili, Mingyang Wei , Abdullah Y. Alsalloum , Partha Maity , Bekir Turedi , Chen Yang, Derya Baran , Thomas D. Anthopoulos, Yu Han, Zheng-Hong Lu, Omar F. Mohammed, Feng Gao, Edward H. Sargent  and Osman M. Bakr, “Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells”, Nature Energy, 2020, 5, 131-140.
[4] Mriganka Singh, Chien-Hung Chiang, Karunakara Moorthy Boopathi, Chintam Hanmandlu, Gang Li, Chun-Guey Wu, Hong-Cheu Lin, and Chih-Wei Chu, “A novel ball milling technique for room temperature processing of TiO2 nanoparticles employed as the electron transport layer in perovskite solar cells and modules”, J. Mater. Chem. A, 2018, 6, 7114-7122.
[5] Mr Qingshun Dong, Yantao Shi, Kai Wang, Yu Li, Shufeng Wang, Hong Zhang, Yujin Xing, Yi Du, Xiaogong Bai, and Tingli Ma, “Insight into Perovskite Solar Cells Based on SnO2 Compact ElectronSelective Layer”, J. Phys. Chem. C., 2015, 119, 10212-10217.
[6] Yu Hou, Xiao Chen, Shuang Yang, Chunzhong Li, Huijun Zhao, and Hua Gui Yang, “A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells”, Adv. Funct. Mater., 2017, 1700878.
[7] Chien-Hung Chiang, Chun-Wei Kan, and Chun-Guey Wu, ” Synergistic Engineering of Conduction Band, Conductivity, and Interface of Bilayered Electron Transport Layers with Scalable TiO2 and SnO2 Nanoparticles for High-Efficiency Stable Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2021, 13, 23606-23615.
[8] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522.
[9] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051.
[10] Chien-Hung Chiang, Jun-Wei Lin, and Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[11] Jun‐Yuan Jeng, Yi‐Fang Chiang, Mu‐Huan Lee, Shin‐Rung Peng, Tzung‐Fang Guo, Peter Chen, and Ten‐Chin Wen, “CH3NH3PbI3 perovskite/fullerene planar- hetero-junction hybrid solar cell”, Adv. Mater., 2013, 25, 3727-3732.
[12] Chien-Hung Chiang, Jun-Wei Lin, and Chun-Guey Wu, “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[13] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, and Michael Grätzel, “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316-319.
[14] Chien-Hung Chiang, Zong-Liang Tseng, and Chun-Guey Wu, “Planar hetero-junction perovskite/PC71BM solar cells with efficiency over 16% via (2/1)-step spin-coating process”, J. Mater. Chem. A, 2014, 2, 15897-15903.
[15] Chien-Hung Chiang, Mohammad Khaja Nazeeruddin, Michael Grätzelc, and Chun-Guey Wu, “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[16] Inhwa Lee, Jae Hoon Yun, Hae Jung Son, and Taek-Soo Kim, “Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2017, 9(8), 7029-7035.
[17] Wei Chen, Yongzhen Wu, Youfeng Yue, Jian Liu, Wenjun Zhang, Xudong Yang, Han Chen, Enbing Bi, Islam Ashraful, Michael Grätzel, Liyuan Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers”, Science, 2015, 350(6263), 944-948.
[18] Senyun Ye, Weihai Sun, Yunlong Li, Weibo Yan, Haitao Peng, Zuqiang Bian, Zhiwei Liu and Chunhui Huang, “CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%”, Nano Lett, 2015, 15, 6, 3723–3728.
[19] Jeffrey A. Christians, Raymond C. M. Fung and Prashant V. Kamat, “An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide”, J. Am. Chem. Soc, 2014, 136, 2, 758–764..
[20] Agnese Abrusci, Samuel D. Stranks, Pablo Docampo, Hin-Lap Yip, Alex K.-Y. Jen, and Henry J. Snaith, “High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers”, Nano Lett. 2013, 13, 3124−3128.
[21] Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, Md. K. Nazeeruddin, Michael Gratzel and Sang Il Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors”, Nature Photonics, 2013, 7, 486-491.
[22] Wenxiao Zhang, Li Wan, Xiaodong Li, Yulei Wu, Sheng Fu and Junfeng Fang, “A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells”, J. Mater. Chem. A, 2019, 7, 18898-18905.
[23] Xiangyu Kong , Yue Jiang , Xiayan Wu, Cong Chen, Jiali Guo, Shengjian Liu, Xingsen Gao, Guofu Zhou, Jun-Ming Liu, Krzysztof Kempa and Jinwei Gao, “Dopant-Free F-substituted Benzodithiophene Copolymer Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells”. J. Mater. Chem. A, 2020, 8, 1858-1864.
[24] Peng Zhou, Tongle Bu, Shengwei Shi, Lingfeng Li, Yulong Zhang, Zhiliang Ku, Yong Peng, Jie Zhong, Yi-Bing Cheng and Fuzhi Huang, “Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer”, J. Mater. Chem. C, 2018, 6, 5733-5737.
[25] C. J. Brabec, A. Cravino, D. Meissner et al., "Origin of the open circuit voltage of plastic solar cells", Adv. Funct. Mater., 2001, 11(5), 374-380.
[26] Jui-Fen Chang, Baoquan Sun, Dag W. Breiby, Martin M. Nielsen, Theis I. So¨lling, Mark Giles, Iain McCulloch, and Henning Sirringhaus, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents”, Chem. Mater. 2004, 16, 4772-4776.
[27] Berthold Wegner, Dominique Lungwitz, Ahmed E. Mansour, Claudia E. Tait, Naoki Tanaka, Tianshu Zhai, Steffen Duhm, Michael Forster, Jan Behrends, Yoshiaki Shoji, Andreas Opitz, Ullrich Scherf, Emil J. W. List-Kratochvil, Takanori Fukushima, and Norbert Koch, “An Organic Borate Salt with Superior p-Doping Capability for Organic Semiconductors”, Adv. Sci. 2020, 7, 2001322-2001336.
[28] Shuang Yang, Yun Wang, Porun Liu, Yi-Bing Cheng, Hui Jun Zhao, and Hua Gui Yang, “Functionalization of perovskite thin films with moisture-tolerant molecules”, Nature energy, 2016, 1, 11867-11876.
[29] Tian Yu Wen, Shuang Yang, Peng Fei Liu, Li Juan Tang, Hong Wei Qiao, Xiao Chen, Xiao Hua Yang, Yu Hou, and Hua Gui Yang, “Surface Electronic Modification of Perovskite Thin Film with Water-Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics”, Adv. Energy Mater. 2018, 8, 1703143-1703150.
[30] Albertus A. Sutanto, Pietro Caprioglio, Nikita Drigo, Yvonne J. Hofstetter, Ines Garcia-Benito, Valentin I.E. Queloz,1 Dieter Neher, Mohammad Khaja Nazeeruddin, Martin Stolterfoht, Yana Vaynzof and Giulia Grancini, “2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells”, Chem., 2021, 7, 1903-1916.
[31] Eui Hyuk Jung, Nam Joong Jeon, Eun Young Park, Chan Su Moon, Tae Joo Shin, Tae-Youl Yang, Jun Hong Noh and angwon Seo, “Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)”, Nature, 2018, 567, 511–515.
[32] Wei Luo, Cuncun Wu, Duo Wang, Yuqing Zhang, Zehao Zhang, Xin Qi, Ning Zhu, Xuan Guo, Bo Qu, Lixin Xiao, and Zhijian Chen, “Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification”, ACS Appl. Mater. Interfaces, 2019, 11, 9149-9155.
[33] Shuo Wang, Yu Zhu, Chengyan Wang and Ruixin Ma, “Interface modification by a multifunctional ammonium salt for high performance and stable planar perovskite solar cells”, J. Mater. Chem. A, 2019, 7, 11867–11876.
[34] Hao Zhang, Yongzhen Wu, Chao Shen, Erpeng Li, Chenxu Yan, Weiwei Zhang, He Tian, Liyuan Han, and Wei-Hong Zhu, “Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring”, Adv. Energy Mater., 2019, 1803573-1803584.
[35] Kyung Taek Cho, Yi Zhang, Simonetta Orlandi, Marco Cavazzini, Iwan Zimmermann, Andreas Lesch, Nouar Tabet, Gianluca Pozzi, Giulia Grancini, and Mohammad Khaja Nazeeruddin, “Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells”, Nano Lett., 2018, 18, 5467−5474.
[36] Feng Wang, Wei Geng, Yang Zhou, Hong-Hua Fang, Chuan-Jia Tong, Maria Antonietta Loi, Li-Min Liu, and Ni Zhao, “Phenylalkylamine Passivation of Organolead Halide Perovskites Enabling High-Efficiency and Air-Stable Photovoltaic Cells”, Adv. Energy Mater., 2016, 1803573-1803584.
[37] Qingquan He, Michael Worku, Liangjin Xu, Chenkun Zhou, Haoran Lin, Alex J. Robb, Kenneth Hanson, Yan Xin, and Biwu Ma, “Facile Formation of 2D−3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells”, ACS Appl. Mater. Interfaces, 2020, 12, 1159-1168.
[38] Shenghe Zhao, Jiangsheng Xie, Guanghui Cheng, Yuren Xiang, Houyu Zhu, Wenyue Guo, Han Wang, Minchao Qin, Xinhui Lu, Junle Qu, Jiannong Wang, Jianbin Xu, and Keyou Yan, “General Nondestructive Passivation by 4-Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability”, Small, 2018, 1803350-1803360.
[39] Yanping Lv, Xuedan Song, Yanfeng Yin, Yulin Feng, Hongru Ma, Ce Hao, Shengye Jin, and Yantao Shi, “Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 2020, 12, 698-705.
[40] Shenghe Zhao, Minchao Qin, Han Wang, Jiangsheng Xie, Fangyan Xie, Jian Chen, Xinhui Lu, Keyou Yan and Jianbin Xu, “Cascade Type-II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency”, Sol. RRL., 2020, 2000282-2000290.
[41] Matheus S. de Holanda, Rodrigo Szostak, Paulo E. Marchezi, Luís G. T. A. Duarte, José C. Germino, Teresa D. Z. Atvars, and Ana F. Nogueira, “In Situ 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells”, Sol. RRL. 2019, 1900199-1900208.
[42] Qi Jiang, Yang Zhao, Xingwang Zhang , Xiaolei Yang, Yong Chen, Zema Chu, Qiufeng Ye, Xingxing Li, Zhigang Yin and Jingbi You, “Surface passivation of perovskite film for efficient solar cells”, Nature Photonics, 2019, 13, 460-466.
[43] Jingjing Xue, Rui Wang, Xihan Chen, Canglang Yao, Xiaoyun Jin, Kai-Li Wang, Wenchao Huang, Tianyi Huang, Yepin Zhao, Yaxin Zhai, Dong Meng, Shaun Tan, Ruzhang Liu, Zhao-Kui Wang, Chenhui Zhu, Kai Zhu, Matthew C. Beard, Yanfa Yan, Yang Yang, “Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations”, Science, 2021, 371, 636–640.
[44] Jinbiao Jia, Jia Dong, Beibei Shi, Jihuai Wu, Yangqing Wu, and Bingqiang Cao, “Postpassivation of Cs0.05(FA0.83MA0.17)0.95Pb (I0.83Br0.17)3 Perovskite Films with Tris(pentafluorophenyl)borane”, ACS Appl. Mater. Interfaces, 2021, 13, 2472-2482.
[45] Jason J. Yoo, Sarah Wieghold, Melany C. Sponseller, Matthew R. Chua, Sophie N. Bertram, Noor Titan Putri Hartono, Jason S. Tresback, Eric C. Hansen, Juan-Pablo Correa-Baena, Vladimir Bulovic´, Tonio Buonassisi, Seong Sik Shin and Moungi G. Bawendi, “An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss”, ACS Appl. Mater. Interfaces, Energy Environ. Sci., 2019, 12, 2192-2199.
指導教授 吳春桂 審核日期 2021-9-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明