博碩士論文 108324039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.119.135.231
姓名 洪靖雅(Ching-Ya Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用磷酸根甲基化去氧核醣核酸引子以提升檢測單一核酸變異和微核醣核酸專一性之研究
(Studies of improving detection specificity of single nucleotide variation and microRNAs by phosphate-methylated DNA primers)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的進步,基因檢測已被廣泛用來協助醫生進行臨床疾病的篩檢及診斷,並對患者建立個人化治療。聚合酶鏈反應(PCR)具有的檢測靈敏度和精確性,在臨床醫療上作為基因診斷的標準檢測工具。在PCR檢測中遇到單核苷酸多態性(SNP)、單核苷酸變異(SNV)或是具有序列高度相似性的微小RNA (microRNA)時,容易因為分辨效果不佳而造成錯誤的診斷,影響治療成效。因此,有許多研究將DNA和RNA核酸類似物改質到檢測目標序列的引子上,以提升PCR檢測的精準性。
磷酸根甲基化DNA (nDNA)是由本實驗室所發展的一種核酸類似物,因為磷酸骨架被修飾上甲基基團,使nDNA單體成為電中性。將nDNA修飾在引子序列上可降低引子與欲檢測的核酸模板上雙股間的靜電排斥力,增加雙股的穩定性,但同時也因為甲基基團在雙股形成時也會產生立體障礙,降低雙股結構的穩定性。本研究藉由調控引子上nDNA的改質位置及數量,期望獲得檢測專一性最佳的nDNA修飾引子。
本研究中使用部分修飾nDNA的引子,藉由調控nDNA於引子上的位置,以提升即時聚合酶鏈鎖反應(qPCR)及反轉錄即時聚合酶鏈鎖反應(RT-qPCR)對DNA及miRNA的檢測專一性。在檢測具有SNV的qPCR實驗中,使用KRAS基因作為本研究之目標序列,並透過調整不同nDNA的修飾位置,來增加nDNA修飾引子對SNV的辨識能力。而在RT-qPCR實驗中,使用僅有單鹼基差異的let-7a及let-7c作為目標miRNA,並透過將nDNA修飾在stem-loop反轉錄引子上不同的位置,分辨高度序列相似的miRNA。
由實驗結果證實,在區分SNV的qPCR實驗中,藉由調控nDNA修飾位置以及引子與模板在qPCR操作時的黏合溫度(退火溫度),可以讓nDNA修飾引子的辨識能力明顯優於未修飾nDNA的引子。從擴增動力學方面來看,nDNA修飾引子與wild-type(WT)模板的擴增效率與未修飾nDNA的引子相似,但相較未修飾nDNA的引子能更有效抑制SNV序列的擴增。最後RT-qPCR的實驗結果顯示,nDNA修飾之反轉錄引子在辨識高度序列相似性miRNA的能力明顯優於未修飾nDNA的反轉錄引子,並可藉著調控nDNA的修飾位置影響反轉錄引子的結構及反轉錄酶的活性,得到檢測專一性最佳之反轉錄引子。
本研究已成功將nDNA的修飾序列應用於qPCR以及RT-qPCR中,並可藉由引子上nDNA的設計及操作條件提升PCR檢測的專一性。期望未來通過合適的序列設計及nDNA修飾位置,將nDNA修飾序列應用在各種核酸檢測平台,以提供醫療上更精準的診斷及治療。
摘要(英) With advanced technologies, genetic testing has been widely used to assist clinicans in diseases screening and diagnosis as well as establishing personalized treatment for patients. Polymerase chain reaction (PCR) with high sensitivity and accuracy is considered a standard method for detection and diagnosis of genetic abnormalities in clinical medicine. However, encountering single nucleotide polymorphism (SNP), single nucleotide variation (SNV) or microRNAs (miRNA) with high sequence similarity easily falsify PCR results, affecting diagnosis and treatment efficacy. Therefore, many studies have used nucleic acids analogues or derivatives to be target sequence primers to improve the accuracy of PCR detection.
Phosphate-methylated DNA (designated as neutralized DNA or nDNA) is a nucleic acid analog created by modifying the phosphate backbone with methyl groups to electrically neutralize the DNA monomer. Modifying the nDNA on the primer therefore can reduce the electrostatic repulsion between the primer and the aimed template of the double strands, increasing the stability of the double strands. However, these methyl groups also cause electrosteric effects on the formation of double strands, destabilizing the duplex. In this study, by modifing the positions and quantity of nDNA on the primer, we are expect to obtain the nDNA modified primer with the wishes detection specificity.
In this study, partially nDNA-modified primers were used. By adjusting the modified positions of nDNA on the primers, both specificity in DNA detection by real-time Polymerase chain reaction (qPCR) and miRNA detection by Reverse transcription real-time polymerase chain reaction (RT-qPCR) were improved. In the qPCR detection for SNV, the KRAS gene was need as the target sequence, and the ability of nDNA-modified primers to recognize SNV was enhanced by varied the nDNA-modified sites. Additionally, in determining miRNAs by RT-qPCR, let-7a and let-7c with only one single base difference served as target miRNAs, and reverse transcription primers with diversified nDNA-modified locations were used to discriminate these highly similar sequence miRNAs.
The experimental results confirmed that in distinguishing SNV by qPCR, adjusting the nDNA-modified position and the binding temperature (annealing temperature) of the primer and template significantly increased its identification compared to that of unmodified primer. From the perspective of amplification kinetics, compare with unmodified primer, the modified nDNA primer achieved similar PCR amplification with the perfect match template but more effectively inhibit the amplification of SNV sequence. Finally, the experimental results of RT-qPCR showed that the ability of the nDNA modified reverse transcription primer to discriminate miRNAs with high sequence similarities was significantly better than that of the unmodified one. Additonally, manipulating the modified position of the nDNA can affect the primer structure and the activity of reverse transcription enzyme, therefore optimizing detection specificity of the reverse transcription primer.
At present, the nDNA designed sequence has been successfully applied to qPCR and RT-qPCR primer modification. Moreover, appropriate primer design and operating conditions can improve the qPCR and RT-qPCR specificity. Hopefully in the future, through proper sequence design and nDNA modification positions, nDNA-modified sequences can be applied to various nucleic acid detection platforms to provide more accurate medical diagnosis and treatment.
關鍵字(中) ★ 磷酸根甲基化去氧核醣核酸
★ 聚合酶鏈鎖反應
★ 引子設計
★ 微核醣核酸
★ 單一核酸變異
★ 核酸類似物
關鍵字(英) ★ neutralized DNA
★ phosphate-methylated DNA
★ single nucleotide variants
★ microRNA
★ Polymerase chain reaction
★ primer design
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 viii
圖目錄 xi
表目錄 xv
一、 緒論 1
二、 文獻回顧 3
2.1 核酸介紹 3
2.1.1 核酸分子 3
2.1.2 去氧核醣核酸 4
2.1.4 核醣核酸 7
2.1.5 微小核醣核酸 8
2.2 核酸類似物 12
2.2.1 肽核酸 12
2.2.3 鎖核酸 14
2.2.4 磷酸根甲基化去氧核醣核酸 16
2.3 基因檢測 22
2.3.1 單一核苷酸多型性 23
2.3.2 KRAS基因變異 25
2.4 分子生物檢測平台 27
2.4.1 聚合酶鏈鎖反應 27
2.4.2 即時定量聚合酶鏈鎖反應 30
2.4.3 反轉錄聚合酶鏈鎖反應 33
三、 實驗藥品、儀器及方法 35
3.1 實驗藥品 35
3.2 儀器設備 40
3.3 實驗方法 41
3.3.1 瓊脂膠電泳 41
3.3.2 SYBR Green 螢光熔點量測 42
3.3.3 即時聚合酶鏈鎖反應 43
3.3.4 擴增動力學之實驗 44
3.3.5 反轉錄即時聚合酶鏈鎖反應 45
四、 結果與討論 49
4.1 nDNA修飾引子應用於KRAS基因檢測專一性之探討 49
4.1.1 nDNA修飾數目 52
4.1.2 nDNA修飾間距 56
4.1.3 聚合酶作用對修飾引子檢測專一性之影響 64
4.1.4 修飾引子對不同模板比例樣品的檢測專一性之探討 68
4.1.5 修飾引子對KRAS基因的SNV檢測專一性之探討 72
4.2 nDNA修飾引子於PCR擴增動力學之研究 78
4.3 nDNA反轉錄引子應用於miRNA檢測專一性之探討 83
4.3.1 修飾nDNA是否影響反轉錄酶作用之探討 84
4.3.2 nDNA反轉錄引子對let-7 miRNA檢測專一性之探討 89
五、 結論 93
六、 參考文獻 95
附錄 103
參考文獻 [1] R. Dahm, "Friedrich Miescher and the discovery of DNA," Developmental biology, vol. 278, no. 2, pp. 274-288, 2005.
[2] J. D. Watson and F. H. Crick, "Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid," Nature, vol. 171, no. 4356, pp. 737-738, 1953.
[3] J. Kypr, I. Kejnovská, D. Renčiuk, and M. Vorlíčková, "Circular dichroism and conformational polymorphism of DNA," Nucleic acids research, vol. 37, no. 6, pp. 1713-1725, 2009.
[4] A. Rich, A. Nordheim, and A. H.-J. Wang, "The chemistry and biology of left-handed Z-DNA," Annual review of biochemistry, vol. 53, no. 1, pp. 791-846, 1984.
[5] A. H.-J. Wang et al., "Molecular structure of a left-handed double helical DNA fragment at atomic resolution," Nature, vol. 282, no. 5740, pp. 680-686, 1979.
[6] B. Feng et al., "Hydrophobic catalysis and a potential biological role of DNA unstacking induced by environment effects," Proceedings of the National Academy of Sciences, vol. 116, no. 35, pp. 17169-17174, 2019.
[7] P. Ponnuswamy and M. M. Gromiha, "On the conformational stability of oligonucleotide duplexes and tRNA molecules," Journal of theoretical biology, vol. 169, no. 4, pp. 419-432, 1994.
[8] L. Pray, "Discovery of DNA structure and function: Watson and Crick," Nature Education, vol. 1, no. 1, 2008.
[9] K. Kawai and T. Majima, "Effect of hydrogen bonding on the photo-oxidation of DNA," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 3, no. 1, pp. 53-66, 2002.
[10] P. G. Higgs, "RNA secondary structure: physical and computational aspects," Quarterly reviews of biophysics, vol. 33, no. 3, pp. 199-253, 2000.
[11] R. C. Lee, R. L. Feinbaum, and V. Ambros, "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14," Cell, vol. 75, no. 5, pp. 843-854, 1993/12/03/ 1993, doi: https://doi.org/10.1016/0092-8674(93)90529-Y.
[12] B. J. Reinhart et al., "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans," Nature, vol. 403, no. 6772, pp. 901-906, 2000/02/01 2000, doi: 10.1038/35002607.
[13] A. E. Pasquinelli et al., "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA," Nature, vol. 408, no. 6808, pp. 86-89, 2000/11/01 2000, doi: 10.1038/35040556.
[14] N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel, "An Abundant Class of Tiny RNAs with Probable Regulatory Roles in <em>Caenorhabditis elegans</em>," Science, vol. 294, no. 5543, p. 858, 2001, doi: 10.1126/science.1065062.
[15] D. S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, and P. D. Zamore, "Asymmetry in the assembly of the RNAi enzyme complex," Cell, vol. 115, no. 2, pp. 199-208, 2003.
[16] J. Krol, I. Loedige, and W. Filipowicz, "The widespread regulation of microRNA biogenesis, function and decay," Nature Reviews Genetics, vol. 11, no. 9, pp. 597-610, 2010/09/01 2010, doi: 10.1038/nrg2843.
[17] D. Sayed and M. Abdellatif, "MicroRNAs in Development and Disease," Physiological Reviews, vol. 91, no. 3, pp. 827-887, 2011/07/01 2011, doi: 10.1152/physrev.00006.2010.
[18] S. Vasudevan, Y. Tong, and J. A. Steitz, "Switching from repression to activation: microRNAs can up-regulate translation," Science, vol. 318, no. 5858, pp. 1931-1934, 2007.
[19] F. Magri, F. Vanoli, and S. Corti, "mi RNA in spinal muscular atrophy pathogenesis and therapy," Journal of cellular and molecular medicine, vol. 22, no. 2, pp. 755-767, 2018.
[20] F. Meng et al., "Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines," Gastroenterology, vol. 130, no. 7, pp. 2113-2129, 2006.
[21] U. A. Ørom, S. Kauppinen, and A. H. Lund, "LNA-modified oligonucleotides mediate specific inhibition of microRNA function," Gene, vol. 372, pp. 137-141, 2006.
[22] J. Weiler, J. Hunziker, and J. Hall, "Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease?," Gene therapy, vol. 13, no. 6, pp. 496-502, 2006.
[23] Y. Peng and C. M. Croce, "The role of MicroRNAs in human cancer," Signal Transduction and Targeted Therapy, vol. 1, no. 1, p. 15004, 2016/01/28 2016, doi: 10.1038/sigtrans.2015.4.
[24] J. Takamizawa et al., "Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival," Cancer research, vol. 64, no. 11, pp. 3753-3756, 2004.
[25] X.-y. He, J.-x. Chen, Z. Zhang, C.-l. Li, and H.-m. Peng, "The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice," Journal of cancer research and clinical oncology, vol. 136, no. 7, pp. 1023-1028, 2010.
[26] B. Zhao et al., "MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3," Cancer letters, vol. 342, no. 1, pp. 43-51, 2014.
[27] H. Lee, S. Han, C. S. Kwon, and D. Lee, "Biogenesis and regulation of the let-7 miRNAs and their functional implications," Protein & cell, vol. 7, no. 2, pp. 100-113, 2016.
[28] E. Chirshev, K. C. Oberg, Y. J. Ioffe, and J. J. Unternaehrer, "Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer," Clinical and translational medicine, vol. 8, no. 1, pp. 1-14, 2019.
[29] P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide," Science, vol. 254, no. 5037, pp. 1497-1500, 1991.
[30] S. Tomac et al., "Ionic effects on the stability and conformation of peptide nucleic acid complexes," Journal of the American Chemical Society, vol. 118, no. 24, pp. 5544-5552, 1996.
[31] M. Egholm et al., "PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules," Nature, vol. 365, no. 6446, pp. 566-568, 1993.
[32] K. K. Jensen, H. Ørum, P. E. Nielsen, and B. Nordén, "Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique," Biochemistry, vol. 36, no. 16, pp. 5072-5077, 1997.
[33] J. Wang et al., "Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance," Analytical chemistry, vol. 69, no. 24, pp. 5200-5202, 1997.
[34] A. Gupta, A. Mishra, and N. Puri, "Peptide nucleic acids: Advanced tools for biomedical applications," Journal of biotechnology, vol. 259, pp. 148-159, 2017.
[35] F. Bonvicini et al., "Peptide Nucleic Acid–Based In Situ Hybridization Assay for Detection of Parvovirus B19 Nucleic Acids," Clinical chemistry, vol. 52, no. 6, pp. 973-978, 2006.
[36] P. E. Nielsen, "Peptide nucleic acids as therapeutic agents," Current opinion in structural biology, vol. 9, no. 3, pp. 353-357, 1999.
[37] S. Obika et al., "Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C3,-endo sugar puckering," Tetrahedron Letters, vol. 38, no. 50, pp. 8735-8738, 1997.
[38] H. Kaur, J. Wengel, and S. Maiti, "Thermodynamics of DNA− RNA heteroduplex formation: effects of locked nucleic acid nucleotides incorporated into the DNA strand," Biochemistry, vol. 47, no. 4, pp. 1218-1227, 2008.
[39] D. Latorra, K. Arar, and J. M. Hurley, "Design considerations and effects of LNA in PCR primers," Molecular and cellular probes, vol. 17, no. 5, pp. 253-259, 2003.
[40] J. D. Levin, D. Fiala, M. F. Samala, J. D. Kahn, and R. J. Peterson, "Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers," Nucleic acids research, vol. 34, no. 20, pp. e142-e142, 2006.
[41] K. Ballantyne, R. Van Oorschot, and R. Mitchell, "Locked nucleic acids in PCR primers increase sensitivity and performance," Genomics, vol. 91, no. 3, pp. 301-305, 2008.
[42] D. Latorra, K. Campbell, A. Wolter, and J. M. Hurley, "Enhanced allele‐specific PCR discrimination in SNP genotyping using 3′ locked nucleic acid (LNA) primers," Human mutation, vol. 22, no. 1, pp. 79-85, 2003.
[43] D. Latorra, D. Hopkins, K. Campbell, and J. M. Hurley, "Multiplex allele-specific PCR with optimized locked nucleic acid primers," Biotechniques, vol. 34, no. 6, pp. 1150-1158, 2003.
[44] K. Fluiter et al., "In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides," Nucleic Acids Research, vol. 31, no. 3, pp. 953-962, 2003.
[45] P. H. Hagedorn et al., "Locked nucleic acid: modality, diversity, and drug discovery," Drug discovery today, vol. 23, no. 1, pp. 101-114, 2018.
[46] B. H. Diplas et al., "Sensitive and rapid detection of TERT promoter and IDH mutations in diffuse gliomas," Neuro-oncology, vol. 21, no. 4, pp. 440-450, 2019.
[47] M. P. Johnson, L. M. Haupt, and L. R. Griffiths, "Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real‐time PCR," Nucleic acids research, vol. 32, no. 6, pp. e55-e55, 2004.
[48] E. Várallyay, J. Burgyán, and Z. Havelda, "Detection of microRNAs by Northern blot analyses using LNA probes," Methods, vol. 43, no. 2, pp. 140-145, 2007.
[49] T. Ishige, S. Itoga, and K. Matsushita, "Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer," Advances in clinical chemistry, vol. 83, pp. 53-72, 2018.
[50] V. K. Sharma, P. Rungta, V. K. Maikhuri, and A. K. Prasad, "An astute synthesis of locked nucleic acid monomers," Sustainable Chemical Processes, vol. 3, no. 1, pp. 1-6, 2015.
[51] L. H. Koole et al., "Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group," The Journal of Organic Chemistry, vol. 54, no. 7, pp. 1657-1664, 1989.
[52] W. Kuijpers, J. Huskens, L. Koole, and C. Van Boeckel, "Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent," Nucleic acids research, vol. 18, no. 17, pp. 5197-5205, 1990.
[53] M. H. van Genderen, L. H. Koole, and H. M. Buck, "Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization," Recueil des Travaux Chimiques des Pays‐Bas, vol. 108, no. 1, pp. 28-35, 1989.
[54] A. Cattani-Scholz et al., "Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection," ACS nano, vol. 2, no. 8, pp. 1653-1660, 2008.
[55] F. Yang and G.-J. Zhang, "Silicon nanowire-transistor biosensor for study of molecule-molecule interactions," Reviews in Analytical Chemistry, vol. 33, no. 2, pp. 95-110, 2014.
[56] W.-P. Hu, C.-C. Tsai, Y.-S. Yang, H. W.-H. Chan, and W.-Y. Chen, "Synergetic improvements of sensitivity and specificity of nanowire field effect transistor gene chip by designing neutralized DNA as probe," Scientific reports, vol. 8, no. 1, pp. 1-8, 2018.
[57] Y. Chen, "Studies of thermodynamic and mechanism for neutralized DNA (nDNA)/DNA and DNA/DNA duplex formation," Department of chemical engineering and materials engineering. Taiwan: National Central University, 2016.
[58] T.-L. Li et al., "Designed phosphate-methylated oligonucleotides as PCR primers for SNP discrimination," Analytical and bioanalytical chemistry, vol. 411, no. 17, pp. 3871-3880, 2019.
[59] L. H. Koole, M. H. Van Genderen, and H. M. Buck, "A parallel right-handed duplex of the hexamer d (TpTpTpTpTpT) with phosphate triester linkages," Journal of the American Chemical Society, vol. 109, no. 13, pp. 3916-3921, 1987.
[60] P. J. Quaedflieg, N. L. Broeders, L. H. Koole, M. H. Van Genderen, and H. M. Buck, "Conformation of the phosphate-methylated DNA dinucleotides d (CpC) and d (TpC). Formation of a parallel miniduplex exclusively for the S configuration at phosphorus," The Journal of Organic Chemistry, vol. 55, no. 1, pp. 122-127, 1990.
[61] H. M. Moody, M. H. van Genderen, L. H. Koole, H. J. Kocken, E. M. Meijer, and H. M. Buck, "Regiospecific inhibition of DNA duplication by antisense phosphate-methylated oligodeoxynucleotides," Nucleic acids research, vol. 17, no. 12, pp. 4769-4782, 1989.
[62] B. Ramakrishnan and M. Viswamitra, "Crystal and molecular structure of the ammonium salt of the dinucleoside monophosphate d (CpG)," Journal of Biomolecular Structure and Dynamics, vol. 6, no. 3, pp. 511-523, 1988.
[63] H. M. Buck, "A conformational BZ DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy) methylcytosine," 2013.
[64] M. H. Caruthers, "Gene synthesis machines: DNA chemistry and its uses," Science, vol. 230, no. 4723, pp. 281-285, 1985.
[65] S. Wu, S. Powers, W. Zhu, and Y. A. Hannun, "Substantial contribution of extrinsic risk factors to cancer development," Nature, vol. 529, no. 7584, pp. 43-47, 2016.
[66] M. Stoneking, "From the evolutionary past," Nature, vol. 409, no. 6822, pp. 821-822, 2001.
[67] C. J. Der and G. M. Cooper, "Altered gene products are associated with activation of cellular rasK genes in human lung and colon carcinomas," Cell, vol. 32, no. 1, pp. 201-208, 1983.
[68] S. Jančík, J. Drábek, D. Radzioch, and M. Hajdúch, "Clinical relevance of KRAS in human cancers," Journal of Biomedicine and Biotechnology, vol. 2010, 2010.
[69] 林育麟, "KRAS 基因突變增加 oxaliplatin 化學治療藥物敏感性對轉移性結腸直腸癌的生物意義與臨床影響," 臺灣大學臨床醫學研究所學位論文, pp. 1-139, 2014.
[70] A. PDK, "Mutations in a signalling pathway," Nature, vol. 436, p. 11, 2005.
[71] A. D. Siddiqui and B. Piperdi, "KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy," Annals of surgical oncology, vol. 17, no. 4, pp. 1168-1176, 2010.
[72] A. Bardelli and S. Siena, "Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer," Journal of clinical oncology, vol. 28, no. 7, pp. 1254-1261, 2010.
[73] W. Pao et al., "KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib," PLoS medicine, vol. 2, no. 1, p. e17, 2005.
[74] R. K. Saiki et al., "Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia," Science, vol. 230, no. 4732, pp. 1350-1354, 1985.
[75] R. K. Saiki et al., "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase," Science, vol. 239, no. 4839, pp. 487-491, 1988.
[76] N. S. Templeton, "The Polymerase Chain Reaction History Methods, and Applications," Diagnostic Molecular Pathology, vol. 1, no. 1, 1992. [Online]. Available: https://journals.lww.com/molecularpathology/Fulltext/1992/03000/The_Polymerase_Chain_Reaction_History_Methods,_and.8.aspx.
[77] T. M. Powledge, "The polymerase chain reaction," Advances in Physiology Education, vol. 28, no. 2, pp. 44-50, 2004/06/01 2004, doi: 10.1152/advan.00002.2004.
[78] T. A. Steitz, "A mechanism for all polymerases," Nature, vol. 391, no. 6664, pp. 231-232, 1998.
[79] S. Wilkening and A. Bader, "Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model," (in eng), J Biomol Tech, vol. 15, no. 2, pp. 107-111, 2004. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/15190083
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291683/.
[80] C. T. Wittwer, M. G. Herrmann, A. A. Moss, and R. P. Rasmussen, "Continuous fluorescence monitoring of rapid cycle DNA amplification," Biotechniques, vol. 22, no. 1, pp. 130-138, 1997.
[81] C. J. Smith and A. M. Osborn, "Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology," FEMS Microbiology Ecology, vol. 67, no. 1, pp. 6-20, 2009, doi: 10.1111/j.1574-6941.2008.00629.x.
[82] K. J. Livak, S. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," Genome Research, vol. 4, no. 6, pp. 357-362, 1995.
[83] H. M. Temin and S. Mizutani, "RNA-dependent DNA polymerase in virions of Rous sarcoma virus," A CENTURY OF, p. 181, 1970.
[84] D. Baltimore, "Viral RNA-dependent DNA polymerase: RNA-dependent DNA polymerase in virions of RNA tumour viruses," Nature, vol. 226, no. 5252, pp. 1209-1211, 1970.
[85] A. M. Wang, M. V. Doyle, and D. F. Mark, "Quantitation of mRNA by the polymerase chain reaction," Proceedings of the National Academy of Sciences, vol. 86, no. 24, pp. 9717-9721, 1989.
[86] Y. Wang et al., "Quantification of distinct let-7 microRNA family members by a modified stem-loop RT-qPCR," Molecular medicine reports, vol. 17, no. 3, pp. 3690-3696, 2018.
[87] D. A. Forero, Y. González-Giraldo, L. J. Castro-Vega, and G. E. Barreto, "qPCR-based methods for expression analysis of miRNAs," BioTechniques, vol. 67, no. 4, pp. 192-199, 2019/10/01 2019, doi: 10.2144/btn-2019-0065.
[88] C. Chen et al., "Real-time quantification of microRNAs by stem–loop RT–PCR," Nucleic acids research, vol. 33, no. 20, pp. e179-e179, 2005.
[89] Y. Chen, J. A. Gelfond, L. M. McManus, and P. K. Shireman, "Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis," BMC genomics, vol. 10, no. 1, pp. 1-10, 2009.
[90] E. van Rooij, "The Art of MicroRNA Research," Circulation Research, vol. 108, no. 2, pp. 219-234, 2011/01/21 2011, doi: 10.1161/CIRCRESAHA.110.227496.
[91] E. Varkonyi-Gasic, R. Wu, M. Wood, E. F. Walton, and R. P. Hellens, "Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs," Plant methods, vol. 3, no. 1, pp. 1-12, 2007.
[92] T. Huang, J. Zhuge, and W. W. Zhang, "Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR," Biomarker research, vol. 1, no. 1, pp. 1-6, 2013.
[93] G.-T. Lin et al., "Combinational polymorphisms of seven CXCL12-related genes are protective against breast cancer in Taiwan," OMICS A Journal of Integrative Biology, vol. 13, no. 2, pp. 165-172, 2009.
[94] K. Petersen et al., "Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms," Molecular and cellular probes, vol. 18, no. 2, pp. 117-122, 2004.
[95] M.-W. Wu, " The thermodynamic aspects of the Na+ and the mismatch discrimination on the formation of double stranded DNA containing site-specific methyl phosphotriester linkages," National Central University, 2018.
[96] S. Kwok et al., "Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies," Nucleic acids research, vol. 18, no. 4, pp. 999-1005, 1990.
[97] A. R. Davis and B. M. Znosko, "Positional and neighboring base pair effects on the thermodynamic stability of RNA single mismatches," Biochemistry, vol. 49, no. 40, pp. 8669-8679, 2010.
[98] H.-L. Yang et al., "High fidelity PCR with an off/on switch mediated by proofreading polymerases combining with phosphorothioate-modified primer," Biochemical and biophysical research communications, vol. 328, no. 1, pp. 265-272, 2005.
[99] O. Vinogradova and D. Pyshnyi, "Selectivity of enzymatic conversion of oligonucleotide probes during nucleotide polymorphism analysis of dna," Acta Naturae (англоязычная версия), vol. 2, no. 1 (4), 2010.
[100] J. Neumann, E. Zeindl-Eberhart, T. Kirchner, and A. Jung, "Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer," Pathology-Research and Practice, vol. 205, no. 12, pp. 858-862, 2009.
[101] E. S. Wright, L. S. Yilmaz, S. Ram, J. M. Gasser, G. W. Harrington, and D. R. Noguera, "Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates," Environmental microbiology, vol. 16, no. 5, pp. 1354-1365, 2014.
[102] B. Hu et al., "Specificity Enhancement of Deoxyribonucleic Acid Polymerization for Sensitive Nucleic Acid Detection," Analytical Chemistry, vol. 92, no. 24, pp. 15872-15879, 2020.
[103] G. A. Calin et al., "Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia," Proceedings of the national academy of sciences, vol. 99, no. 24, pp. 15524-15529, 2002.
[104] M. V. Iorio and C. M. Croce, "MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review," EMBO molecular medicine, vol. 4, no. 3, pp. 143-159, 2012.
[105] E. Navarro, G. Serrano-Heras, M. Castaño, and J. Solera, "Real-time PCR detection chemistry," Clinica chimica acta, vol. 439, pp. 231-250, 2015.
[106] C. S. Burbano, B. Reinhold‐Hurek, and T. Hurek, "LNA‐substituted degenerate primers improve detection of nitrogenase gene transcription in environmental samples," Environmental microbiology reports, vol. 2, no. 2, pp. 251-257, 2010.
[107] F. Haddad and K. M. Baldwin, "Reverse transcription of the ribonucleic acid: the first step in RT-PCR assay," in RT-PCR Protocols: Springer, 2010, pp. 261-270.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2021-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明