以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:41 、訪客IP:18.224.44.233
姓名 徐少澤(Shao-Tse Hsu) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
(Study on flexible thermoelectric device of poly(3,4-ethylenedioxythiophene): polystyrene sulfonic acid: regulated microstructures for enhancing thermoelectric properties.)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本研究的目的為探討添加鋰鹽(LiTFSI)的聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS:LiTFSI)並分別經過去摻雜劑(二甲基亞碸)和還原劑(L-抗壞血酸)處理後,其微結構上的變化為何,與其是否影響熱電效率。我們利用小角度和廣角度X光繞射與散射、拉曼光譜和X光電子能譜進行量化分析,探討此系統微結構與其熱電性質的關聯性。藉由5 vol%二甲基亞碸摻雜劑添加可有效提高PEDOT:PSS:LiTFSI薄膜賽貝克係數。此結果可歸因於鋰離子與二甲基亞碸形成複合物時,會降低鋰離子與PSS的吸引力,造成 PEDOT晶粒尺寸變小與層間距變大(d(100)PEDOT)。再利用1wt% L-抗壞血酸作為還原劑,調控PEDOT:PSS的載子濃度對其進行還原反應,製備出在室溫下功率因子為24.6 μW m-1K-2的熱電薄膜。我們開發的熱電薄膜最大的特色在於可在人體有效溫差區間展現出12mV電壓並可應用於可撓式熱電元件。 摘要(英) The purpose of this study is investigation on thin-film microstructure of poly(3,4-ethylenedioxythiophene): polystyrene sulfonic acid: lithium salt (PEDOT:PSS:LiTFSI) affected its thermoelectric efficiency via Dimethyl sulfoxide (DMSO) de-doping and L-ascorbic acid treatment. We utilized small-angle and wide-angle X-ray diffraction and scattering, Raman spectroscopy and X-ray photoelectron spectroscopy for quantitative analysis, and explored the correlation between the microstructure of PEDOT:PSS:LiTFSI and its thermoelectric properties. The Seebeck coefficient of PEDOT:PSS:LiTFSI thin film can be effectively improved by adding 5 vol% DMSO de-dopant. This result can be attributed to that as lithium ions and dimethyl sulfide form a complex, the attraction between Li+ ions and PSS is reduced, resulting in a smaller PEDOT grain size and a larger interlayer spacing (d(100)PEDOT). We also used 1wt% L-ascorbic acid as a reducing agent to control the carrier concentration of PEDOT:PSS. After this treatment, high thermoelectric film with a power factor of 24.6 μW m-1K-2 at room temperature was performed. This designed PEDOT:PSS:LiTFSI thermoelectric film can exhibit a voltage of 12mV in the effective temperature range of the human body to be applied to flexible thermoelectric elements in the future. 關鍵字(中) ★ 導電高分子
★ 熱電
★ 可撓式
★ 熱電裝置關鍵字(英) ★ PEDOT:PSS
★ Thermoelectric
★ flexible
★ Thermoelectric device論文目次 摘要 ........................................................... i
Abstract ....................................................... ii
致謝 .......................................................... iii
目錄 .......................................................... iv
圖目錄 ....................................................... vii
表目錄 ......................................................... x
第一章 緒論 .................................................... 1
第二章 簡介 .................................................... 3
2.1熱電效應 .................................................. 3
2.1.1 Seebeck 效應 ........................................... 3
2.1.2 Peltier 效應 ............................................. 4
2.1.3 Thomson 效應 .......................................... 5
2.1.4 熱電效率 ............................................... 6 2.2 聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) ................................ 8
2.2.1 歷史發展 ............................................................................................... 8
2.2.2 PEDOT:PSS 結構 ............................................................................... 10
2.2.3 PEDOT:PSS應用 ....................................... 13
v
2.3 文獻綜述 ................................................. 15
2.3.1二次摻雜(Secondary doping) .............................. 16
2.3.2 化學還原法/化學去摻雜(Chemical dedoping) ................ 17
2.3.3不同程序處理(Sequential treatment) ........................ 17
2.3.4表面能量過濾/異質結構(Energy filtering/Heterostructure) ...... 18
2.4 研究動機 ................................................. 20
第三章 材料與實驗儀器 ......................................... 20
3.1熱電測量 ................................................. 20
3.1.1 賽貝克測量 ............................................ 20 3.1.2 四點探針薄膜測量(Four point probe method) ................. 25
3.2光譜測量 ................................................. 26
3.2.1紫外光-可見光光譜儀 (Ultraviolet/Visible Spectrophotometer) .. 26 3.2.2拉曼光譜儀(Raman Spectroscopy) .......................... 27
3.3同步輻射光源應用 ......................................... 28
3.3.1小角度X-ray散射(Small Angle X-ray Scattering ,SAXS) ........ 28
3.3.2廣角度X 光繞射儀 (X-ray Diffraction, XRD) ................ 29
3.3.3 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) ..... 29
3.3.4 擬合軟體 ............................................. 30
3.4 實驗藥品及步驟 ........................................... 31
3.4.1實驗藥品 .............................................. 31
vi
3.5 實驗流程圖 ............................................... 33
第四章 結果與討論 ............................................. 34
4.1 摻雜LiTFSI對PEDOT:PSS熱電性質與結構影響 ............... 34
4.2 二元摻雜DMSO對PEDOT:PSS:LiTFSI熱電性質與結構的影響 ... 42
4.3 L-抗壞血酸後處理對二元混摻PEDOT:PSS熱電性質與結構的影響 49
4.4 多重摻雜效應對PEDOT:PSS的影響:光電子能譜分析 ........... 53
4.5 混摻及後處理的PEDOT:PSS薄膜熱電元件 .................... 58
第五章 結論 ................................................... 60
參考文獻 ...................................................... 61
圖1. (a)實驗電路周圍的磁場變化 (b) p型半導體中電荷載流子移動發向。 4
圖2. 珀耳帖效應施加電流後兩者金屬節點上水的變化。 5
圖3. 電流通過導體溫度差造成的放熱吸熱。 6
圖4. 熱電材料之塞貝克係數(S)、電導率(σ)、載流子濃度n和功率因子(S2σ)之關係。 7
圖5. (a) 3,4-ethylene dioxythiophene (EDOT) (b) poly(3,4-ethylenedioxythiophene) PEDOT (c) Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)。 9
圖6. PEDOT (a) 醌型構象(Quinoid) (b) 苯型構象(Benzoid)。 10
圖7. PEDOT:Tos 分子間電子傳遞方式。 11
圖8. PEDOT:PSS 晶粒尺寸 (a) 原始PEDOT:PSS (b) PEDOT:PSS添加DMSO。 11
圖9. PEDOT:PSS經過不同摻雜/處理後的晶粒的形態。 12
圖10. 電荷傳輸機模型 (a)可變動距離跳躍 (VRH) (b) 隧道效應 (tunneling effect)。 13
圖11. PEDOT:PSS與LiTFSI關係圖。 16
圖12. 經由DMSO摻雜後使用聯氨(HZ)進行去摻雜。 17
圖13. 經由退火控制PEDOT:PSS結晶度與溶劑後處理適意圖。 18
圖14. 羅丹明101 (Rhodamine 101)。 19
圖15. (a)奈米碳管與PEDOT:PSS 造成的節點(b)MoS2 與PEDOT:PSS自組裝的異質結構。 19
圖16. 奈米伏特計(型號:Keithey 2182a)。 23
圖17. 樣品測量示意圖。 24
圖18. 四點探針原理示意圖。 25
圖19. 實驗步驟圖。 32
圖20. 實驗過程過程簡圖。 33
圖21. (a) 不同濃度的鋰鹽摻雜於PEDOT:PSS薄膜的UV-vis-NIR吸收圖譜 (b) 50 wt % LiTFSI的Tauc作圖(c) 不同濃度的LiTFSI摻雜於PEDOT:PSS薄膜能隙與導電度關係圖。 35
圖22. 溶液態下純PEDOT:PSS以及PEDOT:PSS:LiTFSI的SAXS圖與其擬合結果。 37
圖23. 原始PEDOT:PSS與PEDOT:PSS:LiTFSI後XRD圖。 39
圖24. 原始PEDOT:PSS與PEDOT:PSS:LiTFSI拉曼光譜。 40
圖25. 純PEDOT:PSS與PEDOT:PSS:LiTFSI的S(2p) XPS圖譜。 41
圖26. 原始PEDOT:PSS以及二元混摻後的熱電性質,導電度(黑色)、賽貝克係數(紅色)、功率因子(藍色)。 42
圖27. (a)二元混摻後SAXS 擬合結果(b)PEDOT:PSS 微胞Rg值與DMSO濃度關係圖。 43
圖28. PEDOT:PSS二元混摻後XRD 圖。 45
圖29. (a)晶粒尺寸(b)層狀周期大小d(100)PEDOT對導電度、賽貝克係數和功率因子作圖。 46
圖30. (a)二元混摻PEDOT:PSS薄膜拉曼光譜 (b)在不同二元混摻條件下的導電度以及拉曼偏移。 48
圖31. L-抗壞血酸氧化還原機理。 49
圖32. 1wt% 的L-抗壞血酸處理前(實心圓)後(空心圓)的二元混摻PEDOT:PSS薄膜的熱電性質 (a) 導電度 (b) 賽貝克係數 (c) 功率因子。 51
圖33. 原始PEDOT:PSS以及PEDOT:PSS:LiTFSI、PEDOT:PSS:LiTFSI/DMSO和PEDOT:PSS:LiTFSI/DMSO/AA的 XPS 硫S(2p) 光譜。 55
圖34. PEDOT:PSS二元混摻薄膜在L-抗壞血酸處前後PSS與PEDOT 面積比。 55
圖35. PEDOT 鏈的 (I)中性(Neutral)、(II)極化子(Polaron)和(III)雙極化子(Bipolaron)。 57
圖36. PEDOT:PSS二元混摻薄膜經由L-抗壞血酸處理後的UV-vis-NIR吸收光譜。 57
圖37. 隨著時間上升PEDOT:PSS熱電薄膜電阻率變化。 59
圖38. 五個單元串聯在不同溫差下與電壓測試。 59
表1.奈米伏特計 Channel 標示 21
表2.溫差對應電源供應器電流控制 22
表3.純PEDOT:PSS與PEDOT:PSS:LiTFSI熱電效率 36
表4 .PEDOT:PSS 繞射峰值與晶格間距 38
表5.隨DMSO濃度增加晶格參數變化 44
表6.在室溫下PEDOT:PSS熱電性質比較 52參考文獻 [1] Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu and N. I. Rabiah, Sci. Adv., 2017, 3, e1602076.
[2] L. Wang, K. Uosaki and H. Noguchi, J. Phys. Chem. C, 2020, 124, 12381-12389
[3] T. J. Seebeck, Magnetische polarisation der metalle und erze durch temperatur-differenz, W. Engelmann, 1895.
[4] L. Chen, R. Liu and X. Shi, 2020, Thermoelectric materials and devices
[5] U. Ken-ichi, M. Masayuki, M. Asuka, I. Ryo, Phys.Rev. Lett, 2020, 125. 10 ,106601
[6] Thermoelectric Properties of Materials , Thermoelectrics , Available: http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/index.html
[7] G. Heywang, F. Jonas, Adv. Mater.,1992, 4, 116-118.
[8] F. Jonas, L. Schrader, Synth. Met.,1991, 41, 831-836.
[9] AI. Hofmann, D. Katsigiannopoulos, M. Mumtaz, I. Petsagkourakis, G. Pecastaings, G. Fleury, C. Schatz, E. Pavlopoulou, C. Brochon, G. Hadziioannou, E. Cloutet, , Macromolecules, 2017, 50, 1959-1969.
[10] E. Bae, J. Kang, Y. H. Jang, K. S. Cho, S. Y, Sci Rep, 2016, 6, 18805
[11] A. MacDiarmid, AJ. Epstein, Synth. Met., 1994, 65, 103-116.
[12] J. K. Park, , T. G. Kang, B. H. Kim, H. J. Lee, H. H. Choi, J. G. Yook, Sci. Rep., 2018, 8(1), 1-8.
[13] K. E .Aasmundtveit, E. J. Samuelsen, L. A. A. Pettersson, Ingans, T. O. Johansson, R. Feidenhans’l, Synth. Met., 1999, 101, 561–564.
[14] N. Kim, B. H. Lee, D. Choi, G. Kim, H. Kim, J. Kim, J.Lee, Y. H. Kahng, K. Lee , Phys. Rev. Lett., 2012, 109.10: 106405.
[15] E. Hosseini, V.O. Kollath, K. Karan. J. Mater. Chem. C, 2020, 8: 3982-3990.
[16] N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman , Adv. Mater., 2009, 21: 2741–61.
[17] NF. Mott, Philos Mag, 1969, 19:835–52.
[18] N. Gueye Magatte, C. Alexandre, J. Faure-Vincent, R. Demadrille, S. Jean-Pierre, Prog. Mater. Sci., 2020, 108: 100616.
[19] H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Nat. Commun. 2015, 6,6503.
[20] J. Tong, S. Xiong, Y. Zhou, L. Mao, X. Min, Z. Li, F. Jiang, W. Meng,F. Qin, T. Liu, R. Ge, C. Fuentes-Hernandez, B. Kippelenb, Y. Zhou, Mater Horiz. 2016, 3, 452.
[21] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science,2015, 348, 1234.
[22] L. Zhou, M. Yu, X. Chen, S. Nie, L. Wen-Yong,W. Su,Z. Cui,W. Huang, Adv. Funct. Mater., 2018, 28. 11: 1705955.
[23] D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y. Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, Xu. Jian-Bin , X. Wang, Nat. Commun, 2014, 5: 1-7.
[24] C. Wang, K. Sun, J. Fu, R. Chen, M. Li,Z. Zang,X. Liu,B. Li,H. Gong, J. Ouyang, Adv. Sustain. Syst., 2018, 2: 1800085.
[25] I. Agua,D. Mantione,U. Ismailov,A. Sanchez-Sanchez,N. Aramburu, G. G. Malliaras, D. Mecerreyes, E. Ismailova, Adv. Mater. Technol., 2018, 3: 1700322.
[26] R. Chen, K. Sun,Q. Zhang,Y. Zhou, M. Li, Y. Sun, Z. Wu, Y. Wu, X. Li, J. Xi, C. Ma, Y. Zhang, J. Ouyang , Iscience,2019, 12: 66-75.
[27] L. V. Kayser, J. L. Darren, Adv. Mater., 2019, 31: 1806133.
[28] X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R. Wen, L. Ma, F. Yan, Y. Xia, Adv. Sci., 2019, 6: 1900813.
[29] Q. Li, M. Deng, S. Zhang, D. Zhao, Q. Jiang, C. Guo, Q. Zhou and W. Liu, J. Mater. Chem. C, 2019,7(15), 4374-4381.
[30] X. Li, Z. Liu, Z. Zhou, H. Gao, G. Liang, D. Rauber, Christopher W. M. Kay, and P. Zhang, ACS Appl. Polym. Mater., 2021, 3, 98-103.
[31] T. Park, C. Park, B. Kim, H. Shin, E. Kim,Energy Environ. Sci.,2013, 6: 788–792.
[32] H. Park, S. Hwan Lee, F. Sunjoo Kim, H. Hee Choi, I. Woo Cheong and J. Hyun Kim , J. Mater. Chem. A, 2014,2: 6532-6539.
[33] T. C. Tsai, H. C. Chang, C. H. Chen, Y. C. Huang, W. T. Whang, Org. Electron.,2014,15: 641-645.
[34] Z. Fan, P. Li, D. Du, J. Ouyang, Adv. Energy Mater.,2017, 7: 1602116.
[35] S. Xu, M. Hong, X. L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou, and Z. G. Chen, Chem. Mater.,2019, 31: 5238-5244.
[36] X. Huang, L. Deng, F. Liu, Z. Liu, G. Chen, Chem. Eng. J.,2021, 417: 129230.
[37] X. Guan, E. Yildirim, Z. Fan, W. Lu, B. Li, K. Zeng, S. W. Yang, J. Ouyang, J. Mater. Chem. A, 2020, 8: 13600-13609.
[38] S. Panigrahy, B. Kandasubramanian, Eur. Polym. J,2020, 132: 109726.
[39] X. Wang, F. Meng, Q. Jiang, W. Zhou, F. Jiang, T. Wang, X. Li, S. Li, Y. Lin, and J. Xu, ACS Appl. Energy Mater.,2018, 1: 3123-3133.
[40] C. Wang, F. Chen, K. Sun, R. Chen, M. Li, X. Zhou, Y. Sun, D. Chen, and G. Wang, Rev. Sci. Instrum.,2018, 89: 101501.
[41] W. Deng, L. Deng, Z. Li, Y. Zhang, and G. Chen, ACS Appl. Mater. Interfaces, 2021, 13: 12131-12140.
[42] H. Wang, U. Ail, R. Gabrielsson, M. Berggren, X. Crispin, Adv. Energy Mater.,2015, 5: 1500044.
[43] N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, Bo. J. Kim, K. Lee, Adv. Mater., 2014, 26: 2268-2272.
[44] M. V. Fabretto, D. R. Evans, M. Mueller, K. Zuber, P. Hojati-Talemi, R. D. Short, G. G. Wallace, and P. J. Murphy, Chem. Mater.,2012, 24: 3998-4003.
[45] T. G. Novak, K. Kim and S. Jeon, Nanoscale, 2019, 11(42): 19684-19699.
[46] N. Massonnet , A. Carella, A. de Geyer, J. Faure-Vincent and J. P. Simonato, Chem. Sci., 2015, 6: 412-417.
[47] J. Dong, G. Portale, Adv. Mater. Interfaces, 2020, 7(18): 2000641.
[48] D. A. Mengistie, C. H. Chen, K. M. Boopathi, F. W. Pranoto, L. J. Li, and C. W. Chu, ACS Appl. Mater. Interfaces, 2015, 7: 94-100.
[49] L. Ouyang, C. Musumeci, M. J. Jafari, T. Ederth, and O. Inganas, ACS Appl. Mater. Interfaces, 2015, 7(35): 19764-19773.
[50] H. Song, K. Cai, Energy, 2017,125: 519-525.
[51] Y. Liu, P. Liu, Q. Jiang, F. Jiang, J. Liu, G. Liu, C. Liu, Y. Du, J. Xu, Chem. Eng. Sci., 2021, 405: 126510.
[52] F. P. Du1, N. N. Cao1, Y. F. Zhang1, P. Fu1, Y. G. Wu1, Z. D. Lin1, R. Shi2, A. Amini, and C. Cheng, Sci. Rep, 2018, 8: 1-12.
[53] X. Zhoua, A. Lianga , C. Pana, and L. Wang, Org. Electron., 2017, 52: 281-287.
[54] Z. H. Ge, Y. Chang, F. Li, J. Luoa and P. Fana, Chem. Commun., 2018, 54, 2429
[55] T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Wang, J. Song, W. S. Chin and J. Xu, Adv. Mater., 2020, 1: 3233-3242.
[56] D. J. Yun, J. Jung, K. H. Kim, H, Ra, J. M. Kim, B. S.Choi, J. Jang, M. Seol, Y. J. Jeong, Appl. Surf. Sci., 2021, 553, 149584.
[57] L. Peng , and Z. Liu, J. Mater. Chem. C , 2019, 7: 6120-6128.
[58] Li, Qikai, et al. "Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films." Journal of Materials Chemistry C 7.15 (2019): 4374-4381.
[59] T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Wang, J. Song,W. S. Chin, J. Xu, Org. Electron., 2020, 81: 105682.指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2021-9-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare