博碩士論文 108324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.148.115.43
姓名 詹子賢(ZIH-SIAN JHAN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鎳矽化物奈米管結構陣列之製備及性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們報導一種在室溫下透過聚苯乙烯奈米球微影術結合金屬輔助催化 蝕刻法與電化學蝕刻法的新穎製程技術,成功在(001)矽單晶基材上以一步驟、安全以及 低成本的方式製備出大面積規則準直之矽單晶奈米管陣列結構,透過調控聚苯乙烯奈米 球之尺寸與電化學蝕刻時間可以分別控制矽單晶奈米管的外徑以及長度,此外,藉由調 控不同氫氟酸濃度及電流密度大小,可進一步控制矽單晶奈米管的內徑大小。接著,利 用濺鍍沉積與高溫熱處理製備矽化物奈米管結構。經由 SEM、TEM 影像圖與其相對應之 電子選區繞射圖譜鑑定分析可得知所製備出之矽單晶奈米管及 NiSi2 奈米管結構具有高 度準直性且為單晶結構。
由於 NiSi2 奈米管的有序排列、中空結構、單晶結構及低有效功函數,具有低啟動 電場的優異電子場發射特性。實驗結果呈現出令人興奮的前景,可以發現其有效功函數 從 5 eV 大幅下降至 2.64 eV,啟動電場從 2.35 V μm-1 大幅提前至 1.15 V μm-1,大幅提 升場發射的效應。
摘要(英) In this work, one-dimensional silicon nanotubes are successfully fabricated on (001) silicon substrate through an innovative method combining polystyrene nanosphere lithography, anisotropic wet etching and metal assisted anodic etching processes. The novel approach demonstrates a cost-effective and simple method to fabricate the silicon nanotubes which can also be employed for broadband photodetector, solar energy and optoelectronic nanodevices.
After successfully fabricating the silicon nanotube, we deposited the Ni film on silicon nanotubes by sputtering process combining with the annealing treatment to obtain Nickel silicide nanotubes. TEM and SAED analyses indicated that all the NiSi2 nanotubes were single crystalline and their axial orientations were parallel to the [100] direction. The field emission measurement results show that Nickel silicide nanotubes have lower turn-on field of 1.15 V/μm compared to silicon nanotubes in the same height and diameter due to its lower effective work function.
關鍵字(中) ★ 鎳矽化物
★ 矽晶奈米管
★ 電子場發射
★ 電化學蝕刻
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽晶奈米結構 2
1-2-1 一維矽晶奈米線製備及應用 2
1-2-2 一維矽晶奈米管製備及應用 4
1-3 電化學蝕刻法製備一維矽晶奈米結構 6
1-3-1 準直型矽晶奈米孔洞陣列製備 6
1-3-2 規則有序之準直型一維矽晶奈米孔洞陣列製備 7
1-3-3電化學金屬催化蝕刻法製備一維矽晶奈米線陣列 8
1-4 水接觸角相關理論 9
1-5 場發射電子元件 10
1-5-1 電子場發射相關理論 10
1-5-2 一維矽晶奈米結構於電子場發射之研究 12
1-6 鎳金屬矽化物奈米結構 12
1-6-1 金屬矽化物之製程與應用 12
1-6-2 鎳金屬矽化物奈米線之製備及電子場發射應用 14
1-7 研究動機及目標 15
第二章 實驗步驟及實驗設備 16
2-1 規則有序且準直排列之一維矽晶奈米線結構 16
2-1-1 矽晶基材使用前處理 16
2-1-2 奈米球陣列模板製備 17
2-1-3 蒸鍍純金薄膜 17
2-2 規則有序且尺寸可調控之矽單晶奈米尖孔洞陣列結構 17
2-3 電化學蝕刻法製備高長寬比矽單晶奈米孔洞通道陣列結構 18
2-4 規則有序且準直排列之一維矽晶奈米管結構 18
2-5 規則有序排列且準直之鎳金屬矽化物奈米管陣列結構 18
2-6 試片分析 19
2-6-1 掃描式電子顯微鏡 19
2-6-2 穿透式電子顯微鏡 19
2-6-3 影像式水滴接觸角量測儀 20
2-6-4 真空電子場發射性質量測系統 20
第三章 結果與討論 22
3-1 單層自組裝奈米球模板陣列製備 22

3-2 奈米球微影術結合金屬輔助電化學蝕刻法製備矽單晶奈米線陣列 23
3-3 奈米球微影術結合濕式化學蝕刻法製備矽單晶奈米孔洞陣列 24
3-4 電化學蝕刻法製備矽單晶奈米孔洞通道陣列 25
3-5 奈米球微影術結合金屬輔助電化學蝕刻法製備矽單晶奈米管陣列 27
3-6 鎳矽化物奈米管陣列結構製備 31
3-7 水滴接觸角量測分析 33
3-7-1 矽單晶奈米線及奈米管陣列 33
3-7-2 矽化鎳奈米線及奈米管陣列 34
3-8 電子場發射性質量測分析 35
第四章 結論與未來展望 38
參考文獻 39
表目錄 49
圖目錄 50
參考文獻 [1] D.M. Newman, M.L. Wears, M. Jollie, D. Choo, "Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording," Nanotechnology, 18 (2007) 205301.
[2] K.Q. Peng, X. Wang, X. Wu, S. Lee, Tong, "Fabrication and photovoltaic property of ordered macroporous silicon," Applied Physics Letters, 95 (2009) 143119.
[3] T. Søndergaard, S.I. Bozhevolnyi, "Metal nano-strip optical resonators," Optics Express, 15 (2007) 4198.
[4] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati, T. Som, "Surfing silicon nanofacets for cold cathode electron emission sites," ACS Applied Materials & Interfaces, 9 (2017) 38931.
[5] P. Bhattacharya, S. Gohil, J. Mazher, S. Ghosh, P. Ayyub, "Universal, geometry-driven hydrophobic behaviour of bare metal nanowire clusters," Nanotechnology, 19 (2008) 075709.
[6] K. Wang, H. Hu, S. Lu, M. Jin, Y. Wang, T. He, "Visible and near-infrared dual-band photodetector based on gold–silicon metamaterial," Applied Physics Letters, 116 (2020) 203107.
[7] D. Liu, L. Lin, Q. Chen, H. Zhou, J. Wu, "Low power consumption gas sensor created from silicon nanowires/TiO2 core-shell heterojunctions," ACS Sensors, 2 (2017) 1491.
[8] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, L. Hu, "Fabrication and photoelectrochemical properties of ordered Si nanohole arrays," Applied Surface Science, 292 (2014) 86.
[9] R. Khare, M.A. More, D. Chakravarty, "Transformation of ZnO nanorods into nanotubes and their field emission studies," Modern Physics Letters B, 29 (2015) 1540044.
[10] K.S. Hazra, T. Gigras, D.S. Misra, "Tailoring the electrostatic screening effect during field emission from hollow multiwalled carbon nanotube pillars," Applied Physics Letters, 98 (2011) 123116.
[11] R. Kumar, R.P. Chauhan, R. Kumar, S.K. Chakarvarti, "Preparation and field emission study of low-dimensional ZnS arrays and tubules," Journal of Experimental Nanoscience, 10 (2013) 126.
[12] S. Lv, Z. Li, J. Liao, Z. Zhang, W. Miao, "Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33 (2015) 02B101.
[13] S.S. Choi, M.Y. Jung, M.S. Joo, D.W. Kim, M.J. Park, S.B. Kim, H.T. Jeon, "Field emission study of titanium silicide array," Surface and Interface Analysis, 36 (2004) 435.
[14] C.F. Chuang, S.L. Cheng, "Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures," Nano Research, 7 (2014) 1592.
[15] F.J. Harding, S. Surdo, B. Delalat, C. Cozzi, R. Elnathan, S. Gronthos, N.H. Voelcker, G. Barillaro, "Ordered silicon pillar arrays prepared by electrochemical micromachining: substrates for high-efficiency cell transfection," ACS Applied Materials & Interfaces, 8 (2016) 29197.
[16] K.A. Gonchar, S.N. Agafilushkina, D.V. Moiseev, I.V. Bozhev, A.A. Manykin, E.A. Kropotkina, A.S. Gambaryan, L.A. Osminkina, "H1N1 influenza virus interaction with a porous layer of silicon nanowires," Materials Research Express, 7 (2020) 035002.
[17] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, F. Patolsky, "Supersensitive detection of explosives by silicon nanowire arrays," Angewandte Chemie International Edition, 49 (2010) 6830.
[18] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, S.T. Lee, "Silicon nanowires as chemical sensors," Chemical Physics Letters, 369 (2003) 220.
[19] J.F. Hsu, B.R. Huang, C.S. Huang, H.L. Chen, "Silicon Nanowires as pH sensor," Japanese Journal of Applied Physics, 44 (2005) 2626.
[20] L. Baba Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, T. Hadjersi, "H2 sensing properties of modified silicon nanowires," Progress in Natural Science: Materials International, 25 (2015) 101.
[21] C. Samanta, A. Ghatak, A.K. Raychaudhuri, B. Ghosh, "ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb," Nanotechnology, 30 (2019) 305501.
[22] J.H. Bang, M.S. Choi, A. Mirzaei, S. Han, H.Y. Lee, S.W. Choi, S.S. Kim, H.W. Kim, "Hybridization of silicon nanowires with TeO2 branch structures and Pt nanoparticles for highly sensitive and selective toluene sensing," Applied Surface Science, 525 (2020) 146620.
[23] S. Bansal, K. Prakash, K. Sharma, N. Sardana, S. Kumar, N. Gupta, A.K. Singh, "A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response," Nanotechnology, 31 (2020) 405205.
[24] A. Ghadakchi, Y. Abdi, "Reduced graphene oxide/silicon nanowire heterojunction for high sensitivity and broadband photodetector," IEEE Sensors Letters, 3 (2019) 1.
[25] H.D. Um, A. Solanki, A. Jayaraman, R.G. Gordon, F. Habbal, "Electrostatically doped silicon nanowire arrays for multispectral photodetectors," ACS Nano, 13 (2019) 11717.
[26] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li, Y.H. Tsang, "Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction," Solar Energy Materials and Solar Cells, 182 (2018) 272.
[27] G. Ma, R. Du, Y.-n. Cai, C. Shen, X. Gao, Y. Zhang, F. Liu, W. Shi, W. Du, Y. Zhang, "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides," Solar Energy Materials and Solar Cells, 193 (2019) 163.
[28] S. Kato, Y. Kurokawa, K. Gotoh, T. Soga, "Silicon nanowire heterojunction solar cells with an Al2O3 passivation film fabricated by atomic layer deposition," Nanoscale research letters, 14 (2019) 99.
[29] D. Yu, C. Lee, I. Bello, X. Sun, Y. Tang, G. Zhou, Z. Bai, Z. Zhang, S. Feng, "Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature," Solid State Communications, 105 (1998) 403.
[30] R.A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, S. Scalese, D. Spucches, A. La Magna, "Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm," ACS Omega, 4 (2019) 17967.
[31] M.Y. Tabassi, R.B. Zaghouani, M. Khelil, K. Khirouni, W. Dimassi, "Study of indium catalyst thickness effect on PECVD-grown silicon nanowires properties," Journal of Materials Science: Materials in Electronics, 28 (2017) 9717.
[32] M. Hývl, M. Müller, J. Stuchlík, M. Šilhavík, J. Kočka, A. Fejfar, J. Červenka, "Nucleation and growth of metal-catalyzed silicon nanowires under plasma," Nanotechnology, 31 (2020) 225601.
[33] Y. Li, J. Dykes, T. Gilliam, N. Chopra, "A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles," Nanoscale, 9 (2017) 5263.
[34] S.L. Cheng, C.H. Chung, H.C. Lee, "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates," Journal of The Electrochemical Society, 155 (2008) D711.
[35] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, Y. Shi, "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration," Nanoscale Research Letters, 7 (2012) 1.
[36] M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaibi, "Highly efficient silicon nanowire surface passivation by bismuth nano-coating for multifunctional Bi@SiNWs heterostructures," Nanomaterials (Basel), 10 (2020) 1434.
[37] L.U. Vinzons, L. Shu, S. Yip, C.Y. Wong, L.L.H. Chan, J.C. Ho, "Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching," Nanoscale research letters, 12 (2017) 385.
[38] S.M. Thalluri, J. Borme, D. Xiong, J. Xu, W. Li, I. Amorim, P. Alpuim, J. Gaspar, H. Fonseca, L. Qiao, L. Liu, "Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing," Sustainable Energy & Fuels, 2 (2018) 978.
[39] Y. Zhang, Z. Fan, W. Zhang, Q. Ma, Z. Jiang, D. Ma, "High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles," AIP Advances, 8 (2018) 055309.
[40] S. Merzsch, F. Steib, H.S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, A. Waag, "Production of vertical nanowire resonators by cryogenic-ICP–DRIE," Microsystem Technologies, 20 (2013) 759.
[41] B.D. Choudhury, R. Casquel, M.J. Bañuls, F.J. Sanza, M.F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C.A. Barrios, S. Anand, "Silicon nanopillar arrays with SiO2 overlayer for biosensing application," Optical Materials Express, 4 (2014) 1345.
[42] X. Leng, C. Wang, Z. Yuan, "Progress in metal-assisted chemical etching of silicon nanostructures," Procedia CIRP, 89 (2020) 26.
[43] B. Zhou, X. Li, T. Shi, G. Liu, H. Cao, Y. Wang, "Synthesis and morphology control of diluted Si nanowire arrays by metal-assisted chemical etching and thermal oxidation based on nanosphere lithography," Journal of Materials Science, 52 (2017) 6449.
[44] B. Li, G. Niu, L. Sun, L. Yao, C. Wang, Y. Zhang, "Design optimization and antireflection of silicon nanowire arrays fabricated by Au-assisted chemical etching," Materials Science in Semiconductor Processing, 82 (2018) 1.
[45] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, K.J. Ziegler, "Controlling the geometries of Si nanowires through tunable nanosphere lithography," ACS Applied Materials & Interfaces, 9 (2017) 7368.
[46] W.P.R. Liyanage, M. Nath, "CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion," Journal of Materials Chemistry A, 4 (2016) 14637.
[47] S. Chatterjee, E. Shkondin, O. Takayama, A. Fisher, A. Fraiwan, U.A. Gurkan, A.V. Lavrinenko, G. Strangi, "Hydrogen gas sensing using aluminum doped ZnO metasurfaces," Nanoscale Advances, 2 (2020) 3452.
[48] S. Chen, W. Yang, J. Zhu, L. Fu, D. Li, L. Zhou, "Preparation of highly-ordered lanthanum hexaboride nanotube arrays and optimizing its field emission property by ion bombardment post-treatment," Journal of Materials Science: Materials in Electronics, 29 (2018) 10008.
[49] Z. Zhang, L. Liu, T. Shimizu, S. Senz, U. Gosele, "Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template," Nanotechnology, 21 (2010) 055603.
[50] A. Convertino, M. Cuscuna, F. Martelli, "Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers," Nanotechnology, 23 (2012) 305602.
[51] R. Epur, P.J. Hanumantha, M.K. Datta, D. Hong, B. Gattu, P.N. Kumta, "A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity," Journal of Materials Chemistry A, 3 (2015) 11117.
[52] J. Rong, X. Fang, M. Ge, H. Chen, J. Xu, C. Zhou, "Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes," Nano Research, 6 (2013) 182.
[53] C. Wang, J. Wen, F. Luo, B. Quan, H. Li, Y. Wei, C. Gu, J. Li, "Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation," Journal of Materials Chemistry A, 7 (2019) 15113.
[54] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, H. Duan, "Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching," Nanotechnology, 27 (2016) 365302.
[55] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Duan, T. Yang, X. Zhang, C. Zheng, X. Zhang, "Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application," Applied Physics Letters, 102 (2013) 163906.
[56] Y.Y. Kim, H.J. Kim, J.H. Jeong, J. Lee, J.H. Choi, J.Y. Jung, J.H. Lee, H. Cheng, K.W. Lee, D.G. Choi, "Facile fabrication of silicon nanotube arrays and their application in lithium-ion batteries " Advanced Engineering Materials, 18 (2016) 1349.
[57] Y.M. Tseng, R.Y. Gu, S.L. Cheng, "Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties," Applied Surface Science, 508 (2020) 145223.
[58] A.B. Dheyab, L.A. Wali, A.M. Alwan, I.A. Naseef, "Perfect incorporation of AuNPs on the p-n+ porous silicon for highly-efficient solar cells," Optik, 198 (2019) 163317.
[59] A.M. Alwan, A.B. Dheyab, "Room temperature CO2 gas sensors of AuNPs/mesoPSi hybrid structures," Applied Nanoscience, 7 (2017) 335.
[60] M. Skrabic, M. Kosovic, M. Gotic, L. Mikac, M. Ivanda, O. Gamulin, "Near-infrared surface-enhanced raman scattering on silver-coated porous silicon photonic crystals," Nanomaterials (Basel), 9 (2019) 421.
[61] H.A. Hadi, R.A. Ismail, N.J. Almashhadani, "Preparation and characteristics study of polystyrene/porous silicon photodetector prepared by electrochemical etching," Journal of Inorganic and Organometallic Polymers and Materials, 29 (2019) 1100.
[62] S. Thiyagu, H.J. Syu, C.C. Hsueh, C.T. Liu, T.C. Lin, C.F. Lin, "Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells," RSC Advances, 5 (2015) 13224.
[63] A.S. Islam, M.A. Sobhan, A.B.M. Ismail, "Performance enhancement of bulk heterojunction hybrid solar cell using macroporous silicon," Rajshahi University Journal of Science and Engineering, 43 (2015) 11.
[64] G. Barillaro, A. Nannini, M. Piotto, "Electrochemical etching in HF solution for silicon micromachining," Sensors and Actuators A: Physical, 102 (2002) 195.
[65] F.A. Harraz, "Porous silicon chemical sensors and biosensors: a review," Sensors and Actuators B: Chemical, 202 (2014) 897.
[66] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle, U. König, "Random and ordered macropore formation in p-type silicon," Journal of the Electrochemical Society, 149 (2001) G70.
[67] H. Okayama, K. Fukami, R. Plugaru, T. Sakka, Y.H. Ogata, "Ordering and disordering of macropores formed in prepatterned p-type silicon," Journal of the Electrochemical Society, 157 (2009) D54.
[68] V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon," Journal of the Electrochemical Society, 137 (1990) 653.
[69] H. Lu, H. Zhang, M. Jin, T. He, G. Zhou, L. Shui, "Two-layer microstructures fabricated by one-step anisotropic wet etching of Si in KOH solution," Micromachines, 7 (2016) 19.
[70] C. Cozzi, G. Polito, L.M. Strambini, G. Barillaro, "Electrochemical preparation of In-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary In-plane pores through controlled inhibition of breakdown effects," Electrochimica Acta, 187 (2016) 552.
[71] C.M. Zhou, D. Gall, "Surface patterning by nanosphere lithography for layer growth with ordered pores," Thin Solid Films, 516 (2007) 433.
[72] H. Asoh, K. Uchibori, S. Ono, "Anisotropic chemical etching of silicon through anodic oxide films formed on silicon coated with microspheres," Semiconductor Science and Technology, 26 (2011) 102001.
[73] S.L. Cheng, Y.H. Lin, S.W. Lee, T. Lee, H. Chen, J.C. Hu, L.T. Chen, "Fabrication of size-tunable, periodic Si nanohole arrays by plasma modified nanosphere lithography and anisotropic wet etching," Applied Surface Science, 263 (2012) 430.
[74] C.W. Roske, E.J. Popczun, B. Seger, C.G. Read, T. Pedersen, O. Hansen, P.C. Vesborg, B.S. Brunschwig, R.E. Schaak, I. Chorkendorff, H.B. Gray, N.S. Lewis, "Comparison of the performance of CoP-coated and Pt-coated radial junction n+p-silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g)," The Journal of Physical Chemistry Letters, 6 (2015) 1679.
[75] D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, X. Zheng, "Hybrid Si microwire and planar solar cells: passivation and characterization," Nano Letters, 11 (2011) 2704.
[76] K. Seo, Y.J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, K.B. Crozier, "Si microwire solar cells: improved efficiency with a conformal SiO2 layer," ACS Nano, 7 (2013) 5539.
[77] L. Li, C.P. Wong, 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), (2016) 1746.
[78] Y. Li, W. Shi, A. Gupta, N. Chopra, "Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics," RSC Advances, 5 (2015) 49708.
[79] Y. Wang, V. Schmidt, S. Senz, U. Gosele, "Epitaxial growth of silicon nanowires using an aluminium catalyst," Nature Nanotechnology, 1 (2006) 186.
[80] Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gosele, "Metal-assisted chemical etching of silicon: a review," Advanced Materials, 23 (2011) 285.
[81] H.D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y.J. Yu, P. Duane, M. Wober, K. Seo, "Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications," Scientific Reports, 5 (2015) 11277.
[82] F. Sun, Z. Tan, Z. Hu, J. Chen, J. Luo, X. Wu, G. Cheng, R. Zheng, "Ultrathin silicon nanowires produced by a Bi-metal-assisted chemical etching method for highly stable lithium-ion battery anodes," Nano, 15 (2020) 2050076.
[83] J. Kim, H. Rhu, W. Lee, "A continuous process for Si nanowires with prescribed lengths," Journal of Materials Chemistry, 21 (2011) 15889.
[84] P.J. Chien, T.C. Wei, C.Y. Chen, "High-speed and direction-controlled formation of silicon nanowire arrays assisted by electric field," Nanoscale Research Letters, 15 (2020) 25.
[85] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, X. Shi, T.M. Gill, X. Zheng, "On-demand production of hydrogen by reacting porous silicon nanowires with water," Nano Research, 13 (2020) 1459.
[86] N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, "Wettability switching techniques on superhydrophobic surfaces," Nanoscale Research Letters, 2 (2007) 577.
[87] M. Callies, D. Quéré, "On water repellency," Soft Matter, 1 (2005) 55.
[88] K. Ma, T.S. Chung, R.J. Good, "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide," Journal of Polymer Science Part B: Polymer Physics, 36 (1998) 2327.
[89] R.H. Fowler, L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119 (1928) 173.
[90] C.H. Kuo, J.M. Wu, S.J. Lin, "Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics," Nanoscale research letters, 8 (2013) 1.
[91] F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban, "Field emission from carbon nanostructures," Applied Sciences, 8 (2018) 526.
[92] Y. Shen, N. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She, S. Deng, "An analytical modeling of field electron emission for a vertical wedged ordered nanostructure," Advanced Electronic Materials, 3 (2017) 1700295.
[93] H.C. Wu, H.Y. Tsai, H.T. Chiu, C.Y. Lee, "Silicon rice-straw array emitters and their superior electron field emission," ACS Applied Materials & Interfaces, 2 (2010) 3285.
[94] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, 76 (2000) 2071.
[95] U. Ray, D. Banerjee, B. Das, N.S. Das, S.K. Sinha, K.K. Chattopadhyay, "Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires," Materials Research Bulletin, 97 (2018) 232.
[96] Z. Qian, X. Liu, Y. Yang, Q. Yin, "Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization," Journal of Nanoscience and Nanotechnology, 14 (2014) 6209.
[97] S.L. Cheng, H.C. Lin, Y.H. Huang, S.C. Yang, "Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics," RSC Advances, 7 (2017) 23935.
[98] S. Maity, N.S. Das, K.K. Chattopadhyay, "Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission," Physica Status Solidi (B), 250 (2013) 1919.
[99] S.G. Jang, H.K. Yu, D.G. Choi, S.M. Yang, "Controlled fabrication of hollow metal pillar arrays using colloidal masks," Chemistry of Materials, 18 (2006) 6103.
[100] Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V.N. Singh, R.K. Gupta, B.K. Gupta, "High-performance stable field emission with ultralow turn on voltage from rGO conformal coated TiO2 nanotubes 3D arrays," Scientific Reports, 5 (2015) 11612.
[101] S.C. Hung, Y.J. Chen, "Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays," Materials Research Bulletin, 79 (2016) 115.
[102] W.D. Zhu, C.W. Wang, J.B. Chen, Y. Li, J. Wang, "Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process," Applied Surface Science, 301 (2014) 525.
[103] X.P. Shen, A.H. Yuan, Y.M. Hu, Y. Jiang, Z. Xu, Z. Hu, "Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays," Nanotechnology, 16 (2005) 2039.
[104] J. Yuan, H. Li, Q. Wang, X. Zhang, S. Cheng, H. Yu, X. Zhu, Y. Xie, "Facile fabrication of aligned SnO2 nanotube arrays and their field-emission property," Materials Letters, 118 (2014) 43.
[105] M.S. Wu, J.T. Lee, Y.Y. Wang, C.C. Wan, "Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition," The Journal of Physical Chemistry B, 108 (2004) 16331.
[106] P.D. Joshi, C.M. Tank, S.A. Kamble, D.S. Joag, S.V. Bhoraskar, V.L. Mathe, "Arc plasma synthesized Si nanotubes: A promising low turn on field emission source," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 33 (2015) 021806.
[107] C. Mu, Y. Yu, W. Liao, X. Zhao, D. Xu, X. Chen, D. Yu, "Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition," Applied Physics Letters, 87 (2005) 113104.
[108] R. Yao, J. She, S. Deng, J. Chen, N. Xu. “Field emission from vertically aligned silicon nanotubes.” in 2007 IEEE 20th International Vacuum Nanoelectronics Conference. 2007. IEEE.
[109] H.J. Geipel, N. Hsieh, M.H. Ishaq, C.W. Koburger, F.R. White, "Composite silicide gate electrodes-interconnections for VLSI device technologies," IEEE Journal of Solid-State Circuits, 15 (1980) 482.
[110] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, M. Wordeman, "One‐micron polycide (WSi2 on Poly‐Si) MOSFET technology," Journal of the Electrochemical Society, 128 (1981) 2207.
[111] M.E. Alperin, T.C. Hollaway, R.A. Haken, C.D. Gosmeyer, R.V. Karnaugh, W.D. Parmantie, "Development of the self-aligned titanium silicide process for VLSI applications," IEEE Journal of Solid-State Circuits, 20 (1985) 61.
[112] H. Iwai, T. Ohguro, S.i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectronic Engineering, 60 (2002) 157.
[113] T. Morimoto, T. Ohguro, S. Momose, T. Iinuma, I. Kunishima, K. Suguro, I. Katakabe, H. Nakajima, M. Tsuchiaki, M. Ono, "Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI," IEEE Transactions on Electron Devices, 42 (1995) 915.
[114] Y.W. Ok, T.Y. Seong, C.J. Choi, K.N. Tu, "Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing," Applied Physics Letters, 88 (2006) 043106.
[115] J. Kim, E.-S. Lee, C.-S. Han, Y. Kang, D. Kim, W.A. Anderson, "Observation of Ni silicide formations and field emission properties of Ni silicide nanowires," Microelectronic Engineering, 85 (2008) 1709.
[116] W.L. Chiu, C.H. Chiu, J.Y. Chen, C.W. Huang, Y.T. Huang, K.C. Lu, C.L. Hsin, P.H. Yeh, W.W. Wu, "Single-crystalline δ-Ni2Si nanowires with excellent physical properties," Nanoscale Research Letters, 8 (2013) 1.
[117] L. Romano, J. Vila-Comamala, K. Jefimovs, M. Stampanoni, "Effect of isopropanol on gold assisted chemical etching of silicon microstructures," Microelectronic Engineering, 177 (2017) 59.
[118] X.G. Zhang, S.D. Collins, R.L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in  HF  solution," Journal of The Electrochemical Society, 136 (2019) 1561.
[119] R.L. Smith, S.D. Collins, "Porous silicon formation mechanisms," Journal of Applied Physics, 71 (1992) R1.
[120] X.G. Zhang, "Mechanism of pore formation on n‐type silicon," Journal of The Electrochemical Society, 138 (2019) 3750.
[121] B. Miao, J. Zhang, X. Ding, D. Wu, Y. Wu, W. Lu, J. Li, "Improved metal assisted chemical etching method for uniform, vertical and deep silicon structure," Journal of Micromechanics and Microengineering, 27 (2017) 055019.
[122] Y.H. Liang, S.Y. Yu, C.L. Hsin, C.W. Huang, W.W. Wu, "Growth of single-crystalline cobalt silicide nanowires with excellent physical properties," Journal of Applied Physics, 110 (2011) 074302.
[123] W.J. Huang, S.M. Yang, T.T. Liao, K.C. Lu, "Synthesis of morphology-improved single-crystalline iron silicide nanowires with enhanced physical characteristics," CrystEngComm, 23 (2021) 3270.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2021-10-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明