博碩士論文 104384601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.144.252.243
姓名 蒂亞(Diah Puspitasari)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鎂摻雜對於鈉離子電池 Na3V2-xMgx(PO4)2F3/C 陰極的結構與電化學性質的影響
(Exploring the role of Mg Doping in Structural and Electrochemical Properties of Na3V2-xMgx(PO4)2F3/C Cathode for Sodium-Ion Battery)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-26以後開放)
摘要(中) 摘要
隨著石化能源的廣泛使用與依賴,石化燃料漸漸枯竭造成能源危機,此外也對環境造成不少汙染,因此政府積極推動再生能源 (如:太陽能與風能等) 作為替代能源,再加上電子行動裝置與電動車的蓬勃發展,儲能系統無疑是很重要的關鍵。儘管鋰離子電池已是目前最普遍應用的儲能裝置,仍有不少缺點如資源有限與地表分布不均造成的高成本,需審視鋰離子是否合適應用於大規模的electrical energy storage system (EES)。近年來,地表資源蘊存豐富與成本低的鈉離子電池逐漸受到重視,其原理也與鋰離子電池相似,使得鈉離子電池極具發展潛能。
具有三維NASICON (Na-superionic conductor) 型架構的Na3V2(PO4)2F3 提供足夠的空間來容納鈉 (Na+) 離子,還具有高能量密度和優異的循環性能,適合作為鈉離子電池的陰極材料。然而,低導電性造成較差電容維持率 (Rate Capability) 的缺點阻礙實際的應用。為解決此問題,我們藉由結合溶膠-凝膠法 (Sol-gel) 與碳-熱還原 (Carbon-thermal reduction),合成出不同比例的鎂 (Mg2 +, x = 0, 0.01, 0.05, and 0.1) 摻雜在碳包覆的Na3V2-xMgx(PO4)2F3。我們詳細研究了鎂離子在Na3V2(PO4)2F3 / C 結構和電化學性能中的作用。在V 位取代的 Mg2+ 離子通過產生電子缺陷和增加 Na+ 離子在晶格晶體中的離子擴散途徑來增加電子電導率和離子電導率。Na3V1.95Mg0.05(PO4)2F3 / C電極在10 C下實現了80 mAh / g的優異倍率性能;此外,500次循環後保留容量仍達到88%,平均庫侖效率為99.9%。這一成果與Mg摻雜的Na3V2(PO4)2F3/C的多重效應有關:(1)提高體電子電導率; (2)促進Na+ 離子在晶體結構中的擴散; (3)減小晶體尺寸和粒徑: (3)提高結構穩定性。
除了透過Mg2+ 原子摻雜外,將Ca2+ 離子取代到 NVPF 晶體結構裡也能達到優化Na3V2(PO4)2F3 的電化學性值。儘管 Ca2+ 離子尺寸較大,XRD 分析結果顯示晶體結構沒有變化。此外,Na3V1.95Ca0.05(PO4)2F3 / C 電極在 0.1 C 和 10 C 下的最高電容量分別為124 mAh / g 和 86 mAh / g,主要因為晶格的擴張與更小的顆粒尺寸
摘要(英) ABSTRACT

The energy crisis and high levels of pollution resulting from fossil fuels have boosted the government to develop renewable energies (i.e., solar tide and wind). The lithium-ion battery is an energy storage system that has been widely applied for mobile phone, laptop computer, and electric vehicles. However, lithium resources are expensive and geographically constrained, making the application of lithium-ion in massive scale electrical energy storage systems (EES) needs to be reconsidered. On the other hand, sodium batteries are currently getting much attention due to global abundance and low cost. Moreover, the working principle of sodium-ion batteries and lithium-ion batteries are alike, making them promising to be developed as an energy storage system.
Na3V2(PO4)2F3/C with a 3D NASICON (Na-superionic conductor) type framework provides sufficient space to accommodate Na+ ions, making the material potentially a cathode material. Na3V2(PO4)2F3/C also has high energy density and excellent cycling performance. However, capacity reduction and inferior rate capability due to low electronic conductivity make this material difficult to implement practically. Here, sodium storage delivered excellent performance was realized by substituting the Mg2+ ion into the Na3V2(PO4)2F3/C structure, synthesized by a combination of sol-gel and carbon-thermal reduction. We studied the role of magnesium ions in the Na3V2(PO4)2F3/C structure and electrochemical properties in detail. The Mg2+ ion, which is substituted at the V site, increases the electronic conductivity and ionic conductivity with resulting hole and broadening the ionic diffusion pathway for Na+ ions in the lattice crystal. An excellent rate capability of 80 mAh g-1 at 10 C was achieved by Na3V1.95Mg0.05(PO4)2F3/C electrode; In addition, the retention capacity still reaches 88% after 500 cycles and the average coulombic efficiency is 99.9%. This achievement is related to multiple effect of Mg-doped Na3V2(PO4)2F3/C : (1) elevating the bulk electronic conductivity; (2) boosting the Na+ ion diffusion in the crystal structure; (3) reducing the crystal size and particle size: (3) improving the structural stability.
Besides the Mg2+ as a dopant atom, the electrochemical enhancement of Na3V2(PO4)2F3 was conducted by Ca2+ doped Na3V2(PO4)2F3. Despite the large size of the Ca2+ ion, the XRD pattern showed no change in the crystal structure. Moreover, the Ca2+ doped NVPF (x = 0.05) electrode delivered the highest capacities 124 mAh g-1 and 86 mAh g-1 at 0.1 C and 10 C, respectively, due to the enlargement of the crystal lattice and smaller particle size.
關鍵字(中) ★ 鈉離子電池 關鍵字(英) ★ Sodium ion battery
論文目次 CONTENT
Abstract (in Chinese) .............................................................................................................i
Abstract (in English) .............................................................................................................iii
Acknowledgement .................................................................................................................v
Content ..................................................................................................................................vi
List of Figures .......................................................................................................................x
List of Tables..........................................................................................................................xvi
CHAPTER 1 INTRODUCTION
1.1 Research background ...........................................................................................1
1.2 Motivation ............................................................................................................2
1.3 Research goal .......................................................................................................4
1.4 Thesis Outline ......................................................................................................4
CHAPTER 2 LITERATURE REVIEW
2.1 The fundamental of rechargable battery system ..................................................5
2.2 Sodium-ion battery (SIB) ....................................................................................10
2.2.1 Layer oxide compound..........................................................................13
2.2.2 Polyanion compound ............................................................................15
2.2.3 Hexacynometalate (Prussian blue analog) ............................................21
2.3 The strategy to improve the electrochemical properties of
Polyanion material...............................................................................................22
2.3.1 Heteroatom doping as strategy for boosting electrochemical
performance for SIB ...........................................................................24
CHAPTER 3 EXPERIMENT METHOD
3.1 Materials ..............................................................................................................30
3.2 Synthesis of Na3V2-xMgx(PO4)2F3/C (x = 0, 0.01, 0.05 and 0.1) .........................31
3.3 Material characterization
3.3.1 X-ray diffraction (XRD) ........................................................................31
3.3.2 Scanning electron microscope (SEM) ...................................................32
3.3.3 Dynamic light scattering (DLS) ............................................................32
3.3.4 Thermo gravimetric analyzer (TGA) ....................................................33
3.3.5 Raman spectra .......................................................................................33
3.3.6 High-resolution transmission electron microscopy (HRTEM) .............33
3.3.7 X-ray photoelectron spectroscopy (XPS) ..............................................34
3.3.8 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) .................34
3.4 Cell assembly ........................................................................................................34
3.5 Electrochemical characterization
3.5.1 Electronic conductivity ..........................................................................35
3.5.2 Electrochemical performance ................................................................35
3.5.3 Cyclic voltametric (CV) and electrochemical impedance spectroscopy (EIS) ...............................................................................................................35
3.6 The experimental flow chart and scheme .............................................................36
CHAPTER 4 RESULT AND DISCUSSION
4.1 The effect of Mg doped in Na3V2(PO4)2F3/C cathode for sodium ion battery ....39
4.1.1 Material characteristic of Na3V2-xMgx(PO4)2F3/C (x = 0, 0.01, 0.05 and 0.1)
4.1.1.1 Crystal structure .................................................................................39
4.1 1.2 Morphology and particle size .............................................................43
4.1.1.3 Crystalinity of carbon coated Na2V2-xMgx(PO4)2F3/C
(x = 0 and x = 0.5)...........................................................................................45
4.1.1.4 X-ray photoelectron spectroscopy ......................................................47
4.1.1.5 Inductively coupled plasma mass spectrometer (ICP-MS) ................49
4.1.2 Electrochemical properties of rechargeable Na3V2-xMgx(PO4)2F3/C (x = 0, 0.01, 0.05 and 0.1) cell
4.1.2.1 Electronic conductivity .......................................................................51
4.1.2.2. Cyclic voltammetry ............................................................................52
4.1.2.3 Charging and discharging performance ..............................................57
4.1.2.4 Electrochemical impedance spectroscopy (EIS) .................................59
4.1.2.5 Stability performance ..........................................................................62
4.1.2.6 Post mortem study ...............................................................................64
4.2 The effect of Ca doped Na3V2(PO4)2F3/C cathode for sodium ion battery ...........67
4.2.1 Material characteristic of Na3V2-xMgx(PO4)2F3/C (x = 0, 0.01, 0.05 and 0.1)
4.2.1.1 Crystal structure .................................................................................67
4.2.1.2 Morphology and particle size .............................................................74
4.2.1.3 Crystalinity of carbon coated Na3V2-xMgx(PO4)2F3/C (x = 0, 0.01, 0.05
and 0.1) ................................................................................................79
4.2.1.4 X-ray photoelectron spectroscopy ......................................................81
4.2.1.5 Inductively coupled plasma mass spectrometer (ICP-MS) ................82
4.2.2 Electrochemical properties of rechargeable Na3V2-xCax(PO4)2F3/C
(x = 0, 0.01, 0.05 and 0.1) cell ...................................................................................84
4.2.2.1 Electronic conductivity .......................................................................84
4.2.2.2 Cyclic voltammetry (CV) ...................................................................86
4.2.2.3 Charging and discharging performance ..............................................88
4.2.2.4 Eelctrochemical impedance spectroscopy (EIS) .................................90
4.2.2.5 Stability performance ..........................................................................92
4.2.2.6 Post mortem study ...............................................................................94

4.3 Electrochemical comparison performance of Mg2+ doped Na3V2(PO4)2F3/C and Ca2+
doped Na3V2(PO4)2F3/C .............................................................................................97
4.4 Comparison electrochemical performance of layered oxide and cation doping
Na3V2(PO4)2F3/C .......................................................................................................98
CHAPTER 5 CONCLUSION ...............................................................................................101
CHAPTER 6 FUTURE WORK ............................................................................................102
APPENDIX ............................................................................................................................103
REFERENCE .........................................................................................................................113
參考文獻 REFERENCE
1. X. Yin, W. Chen, J. Eomb, L.E. Clarke, S. H. Kim, P.L. Patel, S. Yu, G. P. Kyle. China′s Transportation Energy Consumption and CO2 Emissions from A Global Perspective, Energy Policy, 2015. 82: p. 233-248.
2. Q. Zhang, E. Uchaker, S. L. Candelariaza, G. Cao. Nanomaterials for Energy Conversion and Storage, Chem Soc Rev, 2013. 42 (7): p. 3127-3171.
3. J. R. Miller, P. Simon. Materials Science. Electrochemical Capacitors for Energy, Management. Science, 2008. 321(5889): p. 651-652.
4. K. Kalyanasundaram, M. Gratzel. Themed Issue: Nanomaterials for Energy Conversion and Storage, Journal of Materials Chemistry, 2012. 22 (46): p. 24190-24194.
5. A. B. M. S. Ali. Smart Grid: Opportunities, Developments, and Trends. Springer-Verlag London, 2013:
6. P. Simon , Y. Gogotsi , B. Dunn. Where Do Batteries End and Supercapacitors Begin?, Science., 2014. 343:p 1210-1211.
7. M. Armand. J.-M. Tarascon. Building Better Batteries, Nature., 2008. 451: p. 652-657.
8. J.-M. Tarascon, M. Armand. Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 2001 (414) 171-179.
9. H. Zhao, Q. Wu, S. Hu, H. Xu, C. N. Rasmussen. Review of Energy Storage System for Wind Power Integration Support, Applied Energy, 2015. 137: p. 545-553.
10. G. Ren, G. Ma, N. Cong. Review of Electrical Energy Storage System for Vehicular Applications, Renewable and Sustainable Energy Reviews, 2015. 41: p. 225-236.
11. M. H. Han, E. Gonzalo, G. Singha, T. Rojo. A Comprehensive Review of Sodium Layered Oxides: Powerful Cathodes for Na-Ion Batteries, Energy & Environmental Science, 2015. 8 (1): p. 81-102.
12. Y. You, A. Manthiram. Progress in High-Voltage Cathode Materials for Rechargeable Sodium-Ion Batteries, Advanced Energy Materials, 2018. 8 (2): p. 1701785.
13. Yinghua Chena, Yanming Zhaoa,∗, Xiaoning Anb, Jianmin Liuc, Youzhong Donga, Ling Chena. Preparation and Electrochemical Performance Studies on Cr-Doped Li3V2(PO4)3 as Cathode Materials for Lithium-Ion Batteries, Electrochimica Acta, 2009. 54 (24): p. 5844-5850.
14. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba. Research Development on Sodium-Ion Batteries, Chem Rev, 2014. 114 (23): p. 11636-82.
15. Q. Ni, Y. Bai, F. Wu, C. Wu. Polyanion-Type Electrode Materials For Sodium-Ion Batteries, Adv. Sci, 2017. 4 (3): p. 1-24.
16. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, K. Kang. Recent Progress in Electrode Materials for Sodium-Ion Batteries, Advanced Energy Materials, 2016. 6 (19): p. 1600943.
17. G. -L Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi, Z. -F. Ma, I. Saadoune, J. Alami, W. L. Mattis, F. Pan, Z. Chen, K. Amine. Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium-Ion Batteries., Advanced Energy Materials, 2018. 8 (14): p. 1-63.
18. J. Kim, H. Kim, K. Kang. Conversion-Based Cathode Materials for Rechargeable Sodium Batteries, Advanced Energy Materials, 2018. 8 (17): p. 1-20.
19. F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y. -S. Hu, J. Maier, Y. Yu. Multi-Electron Reaction Materials for Sodium-Based Batteries, Materials Today, 2018. 21 (9): p. 960-973.
20. J.W. Choi, D. Aurbach. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities, Nature Reviews Materials, 2016. 1(4): p. 1-16.
21. Y. You, X. -L, Wu. Y. -X, Yin, Y. -G. Guo. High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries, Energy Environ. Sci., 2014, (7): p. 1643–1647.
22. G. Chen, Q. Huang, T. Wu, L. Lu. Polyanion Sodium Vanadium Phosphate for Next Generation of Sodium‐Ion Batteries—A Review, Adv. Funct. Mater, 2020: p. 1-23.
23. S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu. Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries, Adv. Mater, 2017. 29 (48): p. 1-21.
24. Y. -U Park, D. -H. Seo, H. -S. Kwon, B. Kim, J. Kim, H. Kim, I. Kim, H. -I. Yoo, K. Kang. A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability, J Am Chem Soc, 2013. 135 (37): p. 13870-13878.
25. W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen. Na3V2(PO4)3@C Core–Shell Nanocomposites for Rechargeable Sodium-Ion Batteries,. J. Mater. Chem. A, 2014. 2 (23): p. 8668-8675.
26. Y. Wang, H. Li, P. He, E. Hosono, H. Zhou. Nano Active Materials for Lithium-Ion Batteries, Nanoscale, 2010. 2 (8): p. 1294-1305.
27. Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang. Caging Na3V2(PO4)2F3 Microcubes in Cross-Linked Graphene Enabling Ultrafast Sodium Storage and Long-Term Cycling, Adv. Sci, 2018. 5 (9): p. 1-10.
28. L. Zhao, H. Zhao, Z. Du, J. Wang, X. Long, Z. Lia, K. Swierczek. Delicate Lattice Modulation Enables Superior Na Storage Performance of Na3V2(PO4)3 as Both an Anode and Cathode Material for Sodium-Ion Batteries: Understanding The Role of Calcium Substitution for Vanadium, J. Mater. Chem. A, 2019. 7 (16): p. 9807-9814.
29. S. -Y. Chung, J. T. Bloking, Y. -M. Chiang. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes, Nature Materials, 2002. 1 (2): p. 123-128.
30. C. Liu, Z. G. Neale, G. Cao. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries, Materials Today, 2016. 19 (2): p. 109-123.
31. J.-K. Park. Principles and Applications of Lithium Secondary Batteries, Wiley-VCH Verlag & Co. KGaA, Boschstr, 12, 69469 Weinheim, Germany, 2012.
32. H. Wu, Y. Cui. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today, 2012. 7 (5): p. 414-429.
33. M. N. Obrovac, V. L. Chevrier. Alloy Negative Electrodes For Li-Ion Batteries. Chem Rev, 2014. 114 (23): p. 11444-11502.
34. S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries, Journal of Power Sources, 2014. 257: p. 421-443.
35. Y. Wang, G. Cao. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides, Chem. Mater., 2006 (18): p. 2787-2804.
36. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novµk. Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Mater, 1998. 10 (10) 725-764.
37. A. S. Aricò1, P. Bruce, B. Scrosati, J. -M. Tarascon, W. V. Schalkwijk. Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nature Materials, 2005. 4: p. 366-377.
38. E. Antolini. LiCoO2: Formation, Structure, Lithium and Oxygen Nonstoichiometry, Electrochemical Behaviour and Transport Propertie,. Solid State Ionics, 2004. 170 (3-4): p. 159-171.
39. J. Wang, X. Sun. Olivine LiFePO4: The Remaining Challenges for Future Energy Storage, Energy Environ. Sci, 2015, 8 (4): p. 1110–1138.
40. L. -X. Yuan, Z. -H. Wang, W. -X. Zhang, X. -L. Hu, J.-T. Chen, Y. -H. Huang, J. B. Goodenough. Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci., 2011. 4 (2): p. 269-284.
41. R. Koksbang, J. Barker, H. Shi, M.Y. Sa~di. Cathode Materials for Lithium Rocking Chair Batteries, Solid State Ionics, 1996. (84): p. 1-21.
42. M. -C. Lin, M. Gong, B. Lu1, Y. Wu, D. -Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. -J. Hwang, H. Dai. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature, 2015. 520 (7547): p. 325-358.
43. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi. Prototype Systems for Rechargeable Magnesium Batteries, Nature, 2000 (407) 724-727.
44. D. Kundu, E. Talaie, V. Duffort, L. F. Nazar. The Emerging Chemistry of Sodium Ion Batteries For Electrochemical Energy Storage, Angew Chem., 2015. 54 (11): p. 3431-3448.
45. M. S. Islam, C. A. J. Fisher. Lithium and Sodium Battery Cathode Materials: Computational Insights Into Voltage, Diffusion and Nanostructural Properties. Chem Soc Rev, 2014. 43 (1): p. 185-204.
46. R. Mukherjee, R. Krishnan, T. -M. Lu, N. Koratkara. Nanostructured Electrodes for High-Power Lithium Ion Batteries, Nano Energy, 2012. 1 (4): p. 518-533.
47. P. Roy, S. K. Srivastava. Nanostructured Anode Materials for Lithium Ion Batteries, Journal of Materials Chemistry A., 2015. 3 (6): p. 2454-2484.
48. I. Lahiri, W. Choi. Carbon Nanostructures In Lithium Ion Batteries: Past, Present, and Futur,. Critical Reviews in Solid State and Materials Sciences, 2013. 38 (2): p. 128-166.
49. A. L. M. Reddy, S. R. Gowda, M. M. Shaijumon, P. M. Ajayan. Hybrid Nanostructures for Energy Storage Applications, Adv. Mater, 2012. 24 (37): p. 5045-5064.
50. M. Srivastava, J. Singh, T. Kuila, R. K. Layek, N. H. Kime, J. H. Lee. Recent Advances In Graphene and Its Metal-Oxide Hybrid Nanostructures for Lithium-Ion Batteries, Nanoscale, 2015. 7 (11): p. 4820-4868.
51. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrin. 2D Materials. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage, Science, 2015. 347 (6217): p. 1-9.
52. M. S. Whittingham. Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chem Rev, 2014. 114 (23): p. 11414-11443.
53. E. Uchaker, G. Cao. Mesocrystals as Electrode Materials for Lithium-Ion Batteries, Nano Today, 2014. 9 (4): p. 499-524.
54. L. Mai, X. Tian, X. Xu, L. Chang, L. Xu. Nanowire Electrodes for Electrochemical Energy Storage Devices, Chem Rev, 2014. 114 (23): p. 11828-11862.
55. J. B Goodenough, K.S. Park. The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc, 2013. 135 (4): p. 1167-1176.
56. J. B. Goodenough, Y. Kim. Challenges for Rechargeable Li Batteries, Chem. Mater, 2010. 22 (3): p. 587-603.
57. V.A. Agubra, J.W. Fergus. The Formation And Stability of The Solid Electrolyte Interface on The Graphite Anode, Journal of Power Sources, 2014. 268: p. 153-162.
58. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu. Nanostructured Carbon-Metal Oxide Composite Electrodes for Supercapacitors: A Review, Nanoscale, 2013. 5(1): p. 72-88.
59. M. M. Kalantarian, S. Asgari, P. Mustarelli. A Theoretical Approach to Evaluate The Rate Capability of Li-Ion Battery Cathode Materials, J. Mater. Chem. A, 2014. 2 (1): p. 107-115.
60. P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek. From Lithium to Sodium: Cell Chemistry of Room Temperature Sodium-Air and Sodium-Sulfur Batteries. Beilstein J Nanotechnol, 2015. 6: p. 1016-1055.
61. C. Fang, Y. Huang, W. Zhang, J. Han, Z. Deng, Y. Cao, H. Yang. Routes to High Energy Cathodes of Sodium-Ion Batteries, Adv. Energy Mater. 2016. 6: p. 1-18.
62. C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang, S. Singh, H. Zhao, A. Schober, Y. Lei. Extended π‑Conjugated System for Fast-Charge and Discharge Sodium-Ion Batteries, J. Am. Chem. Soc. 2015. 137: p. 3124−3130.
63. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. C. -G. Alezb T. Rojo. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci, 2012. 5 (3): p. 5884-5901.
64. C. Delmas, J. -J. Braconnier, C. Fouassier, P. Hagenmuller. Electrochemical Intercalation of Sodium In NaxCO2 Bronzes, Solid state ionic, 1981 (34): p. 165-169.
65. C. Delmas, C. Fouassier, P. Hagenmullerlma. Structural Classification And Properties Of The Layered Oxidess, Physica, 1980. 99B: p. 81-85.
66. I. Saadoune, A. Maazaz, M. Me´ne´ trier, C. Delmas. On The NaxNi0.6Co0.4O2 System: Physical and Electrochemical Studies, Journal of Solid State Chemistry, 1996. 122: p. 111–117.
67. D. H. Lee, J. Xuz, Y. S. Meng. An Advanced Cathode for Na-Ion Batteries with High Rate and Excellent Structural Stability, Phys. Chem. Chem. Phys., 2013. 15; p. 3304-3312.
68. S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci, 2011. 4(9): p. 3680-3688.
69. J. -J. Ding, Y. -N. Zhou, Q. Sun, Z. -W. Fu. Cycle Performance Improvement of NaCrO2 Cathode by Carbon Coating for Sodium Ion Batteries. Electrochemistry Communications, 2012. 22: p. 85-88.
70. Z. Gong, Y. Yang. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci, 2011. 4 (9): p. 3223-3243.
71. C. Masquelier, L. Croguennec. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries, Chem. Rev, 2013. 113 (8): p. 6552-6591.
72. Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang. Phosphate Framework Electrode Materials for Sodium Ion Batteries. Adv. Sci, 2017. 4 (5): p. 1-21.
73. W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai. Self-Sacrificed Synthesis of Three-Dimensional Na3V2(PO4)3 Nano Fiber Network for High-Rate Sodium–Ion Full Batteries, Nano Energy, 2016. 25: p. 145-153.
74. H. Li, C. Wu, Y. Bai, F. Wu, M. Wang. Controllable Synthesis of High-Rate and Long Cycle-Life Na3V2(PO4)3 for Sodium-Ion Batteries, Journal of Power Sources, 2016. 326: p. 14-22.
75. Z. Jian, L. Zhao, H. Pan, Y. -S. Hu, H. Li, W. Chen, L. Chen. Carbon Coated Na3V2(PO4)3 as Novel Electrode Material for Sodium Ion Batteries. Electrochemistry Communications, 2012. 14 (1): p. 86-89.
76. W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Lia, C. E. Banks. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A, 2014. 2: p. 5358–5362.
77. K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya. The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater, 2013. 3 (4): p. 444-450.
78. M. Bianchini, N. Brisset, F. Fauth, F. Weill, E. Elkaim, E.. Suard, C. Masquelier, L. Croguennec. Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study, Chem. Mater, 2014. 26 (14): p. 4238-4247.
79. M. Bianchini, F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, L. Croguennec. Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction, Chem. Mater, 2015. 27 (8): p. 3009-3020.
80. R. A. Shakoor, D. -H. Seo, H. Kim, Y. -U. Park, J. Kim, S. -W. Kim, H. Gwon, S. Lee, K. Kang. A Combined First Principles and Experimental Study on Na3V2(PO4)2F3 for Rechargeable Na Batteries, J. Mater. Chem, 2012. 22 (38): p. 20535-20541.
81. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc, 144: p. 1188-1194.
82. F. Sauvage, E. Quarez, J. -M. Tarascon, E. Baudrin. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sciences, 2006. 8 (10): p. 1215-1221.
83. F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, G. Ceder. First-Principles Prediction of Redox Potentials In Transition-Metal Compounds Withlda+U. Physical Review B, 2004. 70 (23): p. 1-8.
84. H. Berg, J. O. Thomas. Neutron Diffraction Study of Electrochemically Delithiated LiMn2O4 spinel, Solid state, 1999 (126): p. 227-234.
85. Qi, L. Mu, J. Zhao, Y. -S. Hu, H. Liu, S. Daid. pH-Regulative Synthesis of Na3(VPO4)2F3 Nanoflowers and Their Improved Na Cycling Stability. J. Mater. Chem. A, 2016. 4 (19): p. 7178-7184.
86. J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J. -J. Lee, X. -Q. Yang, G. Henkelman, J. B. Goodenough. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery, J. Am. Chem. Soc. 2015. 137: p. 2658−2664.
87. L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J. B. Goodenough. A Superior Low-Cost Cathode for a Na-Ion Battery, Angew. Chem. 2013. 125: p. 2018 –2021.
88. Y. You, X. Yu, Y. Yin, K. -W. Nam. Sodium Iron Hexacyanoferrate with High Na Content as a Na-Rich Cathode Material for Na-Ion Batteries, Nano Research 2015, 8(1): p. 117–128.
89. Y. Lu,z L. Wang, J. Cheng, J. B. Goodenough. Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries, Chem. Commun., 2012. 48: p. 6544–6546.
90. D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. Zhou, D. R. Talham. Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability, J. Am. Chem. Soc. 2013. 135: p. 2793−2799.\r 91. D. Chao, X. Xia, J. Liu, Z. Fan, C. F. Ng, J. Lin, H. Zhang , Z. X. Shen, H. J. Fan. A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: a High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries. Adv. Mater, 2014. 26 (33): p. 5794-800.
92. S. Deng, H. Zhu, G. Wang, M. Luo, S. Shen, C. Ai, L. Yang, S. Lin, Q. Zhang, L. Gu, B. Liu, Y. Zhang, Q. Liu, G. Pan, Q. Xiong, X. Wang, X. Xia, J. Tu. Boosting Fast Energy Storage by Synergistic Engineering of Carbon and Deficiency, Nat Commun, 2020. 11(1): p. 1-11.
93. Q. Zheng, W. Liu, X. Li, H. Zhang, K. Feng, H. Zhang. Facile Construction of Nanoscale Laminated Na3V2(PO4)3 for A High-Performance Sodium Ion Battery Cathode. J. Mater. Chem. A, 2016. 4 (48): p. 19170-19178.
94. G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi, S. -Y. Choi. Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets, ACS Appl. Mater. Interfaces, 2014. 6 (10): p. 7084-7089.
95. M. G. Boebinger, M. Xu, X. M, H. Chen, R. R. Unocic, M. T. McDowell. Distinct Nanoscale Reaction Pathways in a Sulfide Material for Sodium and Lithium Batteries. J. Mater. Chem. A, 2017. 5 (23): p. 11701-11709.
96. M. Chen, X. Xia, J. Yin, Q. Chen. Construction of CO3O4 Nanotubes as High-Performance Anode Material for Lithium Ion Battries. Electrochimica Acta, 2015. 160: p. 15-21.
97. M. Chen, W. Zhou, M. Qi, J. Yin, X. Xia, Q. Chen. Exploring Highly Porous Co2P Nanowire Arrays for Electrochemical Energy Storage, Journal of Power Sources, 2017. 342: p. 964-969.
98. Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia. Heteroatom Doping: an Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater, 2020: p. 1-36.
99. Z. Li, C. Bommier, Z. S. Chong, Z. Jian, T. W. Surta, X. Wang, Z. Xing, J. C. Neuefeind, W. F. Stickle, M. Dolgos, P. A. Greaney, X. Ji. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping, Adv. Energy Mater, 2017. 7(18): p. 1-10.
100. D. Xie, J. Zhang, G. Pan, H. Li, S. Xie, S. Wang, H. Fan, F. Cheng, X. Xia.. Functionalized N-Doped Carbon Nanotube Arrays: Novel Binder-Free Anodes for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2019. 11 (20): p. 18662-18670.
101. S. A. Holgate. Unsderstanding Solid State Physics. CRC Press, Taylor & Francis Group, 2010; p. 189-192.
102. F. Xiong, S. Tan, X. Yao, Q. An, L. Mai. Crystal Defect Modulation In Cathode Materials for Non-Lithium Ion Batteries: Progress And Challenges. Materials Today, 2021: p. 1-22.
103. D. Li, L. Zhang, H. Chen, L. -X. Ding, S. Wanga, H. Wang. Nitrogen-Doped Bamboo-Like Carbon Nanotubes: Promising Anode Materials for Sodium-Ion Batteries. Chem. Commun., 2015. 51 (89): p. 16045-16048.
104. L. Fu, K. Tang, K. Song, P. A. V Aken, Y. Yu, J. Maierb. Nitrogen Doped Porous Carbon Fibres As Anode Materials for Sodium Ion Batteries With Excellent Rate Performance, Nanoscale, 2014. 6 (3): p. 1384-1389.
105. S. Liu, Z. Cai, J. Zhou, A. Panab, S. Liang. Nitrogen-Doped TiO2 Nanospheres for Advanced Sodium-Ion Battery and Sodium-Ion Capacitor Applications. J. Mater. Chem. A, 2016. 4 (47): p. 18278-18283.
106. Yu.Wang, X. Wang, X. Li, R. Yu, M. Chen, K. Tang, X. Zhang. The Novel P3-Type Layered Na0.65Mn0.75Ni0.25O2 Oxides Doped by Nonmetallic Elements for High Performance Sodium-Ion Batteries, Chemical Engineering Journal 360 (2019) 139–147.
107. R. J. Cle´ment, J. Billaud, A. R. Armstrong, G. Singh, T. Rojo, P. G. Bruce, C. P. Grey. Structurally Stable Mg-Doped P2-Na2/3Mn1−YMgyO2 Sodium-Ion Battery Cathodes with High Rate Performance: Insights from Electrochemical, NMR and Diffraction Studies. Energy Environ. Sci, 2016. 9 (10): p. 3240-3251.
108. P. -F Wang, Y. You, Y. -X. Yin, Y. -S. Wang, L. -J. Wan, L. Gu, Y. -G. Guo. Suppressing the P2-O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries, Angew. Chem, 2016. 55 (26): p. 7445-7449.
109. J. Qu, D. Wang, Z. -G. Yang, Z. -G. Wu, L. Qiu, X. -D. Guo, J. -T. Li, B. -H. Zhong, X. -C. Chen, S. -X. Dou. Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer-Tunnel Na0.6MnO2 with Mg2+ Doping at Na/Mn Site. ACS Appl. Mater. Interfaces, 2019. 11 (30): p. 26938-26945.
110. Z. -Y. Li, J. Zhang, R. Gao, H. Zhang, Z. Hu, X. Liu. Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2016. 8 (24): p. 15439-15448.
111. L. Yang, S. -H. Luo, Y. Wang, Y. Zhana, Q. Wang, Y. Zhang, X. Liu, W. Mu, F. Teng. Cu-Doped Layered P2-Type Na0.67Ni0.33-xCuxMn0.67O2 Cathode Electrode Material with Enhanced Electrochemical Performance for Sodium-Ion Batteries. Chemical Engineering Journal, 2021. 404: p. 1-9.
112. W. Liu, H. Yi, Q. Zheng, X. Li, H. Zhang. Y-Doped Na3V2(PO4)2F3 Compounds for Sodium Ion Battery Cathodes: Electrochemical Performance and Analysis of Kinetic Properties, J. Mater. Chem. A, 2017. 5 (22): p. 10928-10935.
113. Y. Zhang, S. Guo, H. Xu. Synthesis of Uniform Hierarchical Na3V1.95Mn0.05(PO4)2F3@C Hollow Microspheres as a Cathode Material for Sodium-Ion Batteries, J. Mater. Chem. A, 2018. 6 (10): p. 4525-4534.
114. H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L. -Y. Liu, X. -Q. Yang. Effects of Mg Doping on The Remarkably Enhanced Electrochemical Performance of Na3V2(PO4)3 Cathode Materials for Sodium Ion Batteries, J. Mater. Chem. A, 2015. 3 (18): p. 9578-9586.
115. U. Holzworth, N. Gibran. The Scherrer Equation Versus The "Debye-Scherrer Equation". Nature Nanotechology. 2011 (6): p. 534.
116. J. A. S. Oh, L. He, A. Plewa, M. Morita, Y. Zhao, T. Sakamoto, X. Song, W. Zhai, K. Zeng, L. Lu. Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering. ACS Appl. Mater. Interfaces, 2019. 11 (43): p. 40125-40133.
117. L. Bi, X. Li, X. Liu, Q. Zheng, D. Lin. Enhanced Cycling Stability and Rate Capability in a La-Doped Na3V2(PO4)3/C Cathode for High-Performance Sodium Ion Batteries. ACS Sustainable Chem. Eng, 2019. 7 (8): p. 7693-7699.
118. Q. Wang, Y. Zhao, J. Gao, H. Geng, J. Li, H. Jin. Triggering the Reversible Reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ Substitution. ACS Appl. Mater. Interfaces, 2020. 12 (45): p. 50315-50323.
119. R.K.B. Gover, A. Bryan, P Burns, J. Barker. The Electrochemical Insertion Properties of Sodium Vanadium Fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 2006. 177(17-18): p. 1495-1500.
120. J. -M. Le Meins, M. -P. Crosnier-Lopez,* A. Hemon-Ribaud, G. Courbion. Phase Transitions in the Na3M2(PO4)2F3 Family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies, Solid state chemistry 1999 (148) 260-277.
121. W. Yuana, J. Yana, Z. Tang, O. Shaa, J. Wang, W. Maoa, L. Mab. Mo-Doped Li3V2(PO4)3/C Cathode Material with High Rate Capability and Long Term Cyclic Stability, Electrochimica Acta, 2012. 72: p. 138-142.
122. H. Zhang, Y. Tang, J. Shen, X. Xin, L. Cui, L. Chen, C. Ouyang, S. Shi, L. Chen. Antisite Defects and Mg Doping In LiFePO4:a First-Principles Investigation. Appll Physics A, 2011. 104 (2): p. 529-537.
123. B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, X. S. Zhao. Mesoporous Carbon-Coated LiFePO4 Nanocrystals Co-Modified With Graphene and Mg2+ Doping as Superior Cathode Materials for Lithium Ion Batteries, Nanoscale, 2014. 6 (2): p. 986-995.
124. A. C. Ferrari, J. Robertson. Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Physical reviewe B 2000 (20): p. 14095-14107.
125. A. Sadezk, H. Muckenhuber, H. Grothe, R. Niessner, U. Po¨ schl. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis And Structural Information. Carbon, 2005. 43 (8): p. 1731-1742.
126. NIST X-ray Photoelectron Spectroscopy Database Home Page. https://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=Mg (accessed April 7, 2021)
127. H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S. P. Ong, F. Wua, Y. S. Meng, C. Wu. Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+ Distribution of Na-Rich Na3+xV2–xMgx(PO4)3/C for Sodium Ion Batteries, Chem. Mater, 2018. 30(8): p. 2498-2505.
128. K. Li , J. Shao, D. Xue. Site Selectivity In Doped Polyanion Cathode Materials For Li-Ion Batteries, Functional Materials Letters, 2013. 06 (04): p. 1-3.
129. J. -S. Park, J. Kim, J. H. Jo, S. -T. Myung. Role of The Mn Substituent in Na3V2(PO4)3 for High-Rate Sodium Storage, J. Mater. Chem. A, 2018. 6 (34): p. 16627-16637.
130. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. A. Farrukh, A. S. Mohamed. The Effect of Dopant Concentration on Properties of Transparent Conducting Al-Doped ZnO Thin Films for Efficient Cu2ZnSnS4 Thin-Film Solar Cells Prepared By Electro deposition Method,. Appl. Nanosci, 2015. 5 (8): p. 993-1001.
131. W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C. E. Banks. Exploration of Ion Migration Mechanism and Diffusion Capability for Na3V2(PO4)2F3 Cathode Utilized in Rechargeable Sodium-Ion Batteries, Journal of Power Sources, 2014. 256: p. 258-263.
132. L. Deng, F. -D Yu, Y. Xia, Y. -S. Jiang, X. -L. Sui, L. Zhao, X. -H. Meng, L. -F. Que, Z. -B. Wang. Stabilizing Fluorine to Achieve High-Voltage and Ultra-Stable Na3V2(PO4)2F3 Cathode For Sodium Ion Batteries, Nano Energy, 2021. 82: p.
133. Z. -Y. Gu, J. -Z. Guo, Z. -H. Sun, X. -X Zhao, W. -H. Li, X Yang, H. J. Liang, C. -D. Zhao, X. -L Wu. Carbon-Coating-Increased Working Voltage and Energy Density Towards an Advanced Na3V2(PO4)2F3@C Cathode in Sodium-Ion Batteries, Science Bulletin, 2020. 65 (9): p. 702-710.
134. Y. -U. Park, D. -H. Seo, H. Kim, J. Kim, S. Lee, B. Kim, K. Kang. A Family of High-Performance Cathode Materials for Na-ion Batteries, Na3(VO1−xPO4)2F1+2x(0 ≤x≤ 1): Combined First-Principles and Experimental Study. Adv. Funct. Mater, 2014. 24 (29): p. 4603-4614.
135. Z. Jian, C. Yuan , W. Han, X. Lu, L. Gu , X. Xi, Y. -S. Hu , H. Li , W. Chen , D. Chen, Y. Ikuhara, L. Chen. Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries. Adv. Funct. Mater, 2014. 24 (27): p. 4265-4272.
136. Q. Zhang, W. Wang, Y. Wang, P. Feng, K. Wang, S. Cheng, K. Jiang. Controllable Construction of 3D-Skeleton-Carbon Coated Na3V2(PO4)3 for High-Performance Sodium Ion Battery Cathode. Nano Energy, 2016. 20: P. 11-19.
137. W. Shen, H. Li, Z. Guo, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia. Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Appl. Mater. Interfaces, 2016. 8 (24): p. 15341-15351.
138. J. -Z. Guo, X. -L. Wu, F. Wan, J. Wang, X. -H. Zhang, R. -S. Wang. A Superior Na3V2(PO4)3-Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries, Chem. Eur. J, 2015. 21(48): p. 17371-17378.
139. P. Feng, W. Wang, K. Wang, S. Cheng, K. Jiang. Na3V2(PO4)3/C Synthesized by a Facile Solid-Phase Method Assisted with Agarose as A High-Performance Cathode for Sodium-Ion Batteries, J. Mater. Chem. A, 2017. 5 (21): p. 10261-10268.
140. S. -J. Lim, D. -W. Han, D. -H. Nam, K. -S. Hong, J. -Y. Eom, W. -H. Ryu, H. -S Kwon. Structural Enhancement of Na3V2(PO4)3/C Composite Cathode Materials by Pillar Ion Doping for High Power and Long Cycle Life Sodium-Ion Batteries, J. Mater. Chem. A, 2014. 2 (46): p. 19623-19632.
141. M. W. Borsoum. Fundamentals of Ceramics, Institute of Physics Publishing, Bristol and Philadelphia, 2003: p. 80-84.
142. Z. Yang, G. Li, J. Sun, L. Xie, Y. Jiang, Y. Huang, S. Chen. High Performance Cathode Material Based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for Sodium-Ion Batteries, Energy Storage Materials, 2020. : p. 724–730.
143. X. Ma, H. Chen, G. Ceder. Electrochemical Properties of Monoclinic NaMnO2, Journal of The Electrochemical Society, 2011, 158: p. A1307-A1312.
144. P. Vassilaras, X. Ma, X. Li, G. Ceder. Electrochemical Properties of Monoclinic NaNiO2, Journal of The Electrochemical Society, 2013, 160 (2): p. A207-A211.
145. J. Choi, K.-Ho. Kim, C.-Ho. Jung, S.-H Hong. A P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 cathode with excellent cyclability and rate capability for sodium ion batteries, Chem. Commun., 2019, 55: p. 11575-11578.
146. J. Xu, S.-L. Chou, J.-Li. Wang, H.-K. Liu, S.-X. Dou, J. Xu, S.-L. Chou, J.-L. Wang, H.-K. Liu, S.-X. Dou. Layered P2-Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodium-Ion Batteries, Chem Electro Chem 2014, 1: p. 371 – 374.
147. Y.-E. Zhu, X. Qi, X.. Chen, X. Zhou, X. Zhang, J. Wei, Y. Hub, Z. Zhou. A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries, J. Mater. Chem. A, 2016, 4: p. 11103–11109.
148. Y. Xiao, Y.-F. Zhu, H.-R. Yao, P.-F. Wang, X.-D. Zhang, H. Li, X. Yang, L. Gu, Y.-C. Li, T. Wang, Y.-X. Yin, X.-D. Guo, B.-H. Zhong, Y.-G. Guo. A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery, Adv. Energy Mater. 2019, 1803978.
149. D. A. Puspitasari, J. Patra, I.-M. Hung, D. Bresser, T.-C. Lee, J.-K Chang. Optimizing the Mg Doping Concentration of Na3V2−xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties, ACS Sustainable Chem. Eng. 2021, 9: p. 6962−6971.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2021-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明