博碩士論文 108324058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.65.133
姓名 謝勗元(Syu-Yuan Sie)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用磷脂質促進硬脂基化胜肽之基因輸送
(The Use of Phospholipid to Promote Gene Delivery of Stearylated Peptide Vehicles)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細胞穿膜胜肽(CPP)能與細胞膜相互作用,可作為藥物載體並具備基因輸送的潛力。Indolicidin(IL) 是一種帶正電的CPP,先前研究中將IL之C端硬脂基化,稱為ILs,結果發現ILs擁有自組裝效果,可作為基因載體遞送質體DNA進行轉染。為提升ILs與DNA結構穩定性,本研究嘗試加入輔助性脂質DOPE,以不同莫耳比與ILs混合來製備胜肽/脂質複合物。臨界微胞濃度測試(CMC)及DLS分析證實ILs能與DOPE帶正電的微結構,而SAXS結果顯示ILs呈現六角相結構而ILs/DOPE會自組裝成單層囊泡,其形態也透過TEM進行確認。電泳膠體實驗證實,將DOPE加入ILs可提高與DNA複合效果,但肝素競爭實驗結果顯示DNA和載體的結合主要還是倚賴帶正電的ILs,因為ILs/DOPE表面上的ILs較少,少量添加DOPE(P0.3L)會降低載體與DNA的親和力。流式細胞儀及ONPG轉染分析結果顯示,P0.3L擁有最佳的細胞攝取效果及轉染效率。雷射共軛焦顯微鏡結果顯示ILs/DOPE所帶入的DNA可自內體逃脫,為了瞭解其轉染機制,分別進行了Chloroquine、Bafilomycin A1以及酸性環境下鈣黃綠素滲漏實驗,其結果表明ILs/DOPE在酸化環境下可瓦解內體膜,促進內體逃脫。這些結果顯示DOPE的添加的確可此促進ILs的基因輸送效果。
摘要(英) Cell-penetrating peptides (CPPs) can interact with cell membranes and thus are potential carriers for gene delivery. Indolicidin (IL) is a cationic CPP. Our previous study has stearylated C-terminal of IL and denoted it as ILs. ILs can self-assemble as gene carriers to deliver plasmid DNA for transfection. In order to improve the stability of microstructure of gene carriers, we included dioleoylphosphatidylethanolamine (DOPE), a helper lipid, with ILs. Critical micelle concentration (CMC) and DLS analyses confirmed that ILs and DOPE can form cationic microstructures. The SAXS results indicated that ILs presented a hexagonal phase structure and ILs/DOPE self-assembled a monolayer vesicle, and their morphologies were confirmed by TEM. Electrophoresis experiments showed that the addition of DOPE to ILs can improve their complexation efficiency to DNA, but the results of heparin competition revealed that DNA complexation was mainly related to cationic ILs molecules. Because there were fewer ILs on the surface of ILs/DOPE, the affinity of ILs/DOPE to DNA was lower than that of the ILs group. Flow cytometry and transfection experiments indicated that P0.3L exhibited the best cell uptake and transfection efficiency. Confocal microscopy showed that DNA delivered by ILs/DOPE could escape from endosomes. The results of chloroquine, Bafilomycin A1, and calcein leakage experiments in acidic environment all indicated that ILs/DOPE disrupted endosomal membranes and promoted DNA to escape from the acidic endosome. These results all suggested that the addition of DOPE can facilitated ILs-mediated gene delivery.
關鍵字(中) ★ 細胞穿膜胜肽
★ 基因輸送
★ 非病毒載體
關鍵字(英) ★ CPP
★ Gene delivery
★ non-viral vector
★ Indolicidin
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 基因治療 3
2-2 基因載體 4
2-3 細胞穿膜胜肽(Cell Penetrating Peptides, CPPs) 6
2-3-1細胞穿膜胜肽分類 8
2-3-2細胞穿膜胜肽之改質及應用 10
2-3-3 細胞穿膜胜肽與細胞膜間的機轉 13
2-3-4 Indolicidin(IL) 15
2-4 脂質(Lipids) 18
2-4-1 脂質體(Liposomes) 23
2-4-2 脂質複合物(Lipoplexs) 25
2-4-3 輔助脂質(Helper lipids) 27
2-4-4 酸鹼度敏感型脂質體(pH-sensitive liposomes) 28
2-4-5 脂質體轉染機制 31
2-5 Peptide/Lipid載體 33
第三章 實驗藥品、儀器與方法 36
3-1 實驗材料 36
3-1-1 質體DNA 36
3-1-2 胜肽(Peptide) 37
3-1-3 細胞培養藥品 37
3-1-4 分析藥品 38
3-2 實驗儀器 42
3-3 實驗方法 44
3-3-1 溶液配置 44
3-3-2 胜肽/脂質(Peptide/Lipid)奈米粒子製備 48
3-3-3 載體奈米粒子/DNA複合物製備 48
3-3-4 質體DNA純化 49
3-3-5 HEK-293T細胞培養 50
3-3-6 載體及載體/DNA物性鑑定 53
3-3-7 包覆率測定 54
3-3-8 生物適合性測試 55
3-3-9 轉染效率分析 59
3-3-10 內體逃脫(endosomal escape)效應分析 63
第四章 結果與討論 66
4-1 奈米粒子物性鑑定 66
4-1-1 臨界微胞濃度(Critical micelle concentration) 66
4-1-2 粒徑大小及表面電位 68
4-1-3 X光小角度散射(Small angle-X ray scattering) 71
4-1-4 穿透式電子顯微鏡(TEM) 74
4-2 載體與DNA間的穩定性 75
4-2-1 粒徑大小 75
4-2-2 表面電位 77
4-2-3 電泳測試 78
4-2-2 EtBr螢光標定法 80
4-2-3 肝素競爭實驗 81
4-3 生物適合性測試 83
4-3-1 鈣黃綠素染劑滲漏實驗(Calcein dye leakage) 83
4-3-2 MTT細胞毒性測試 85
4-4 載體細胞攝取效果 87
4-4-1 流式細胞儀分析(Flow cytometry) 87
4-4-2 轉染效率 89
4-5 內體逃脫(endosomal escape)效應探討 91
4-4-1 雷射共軛焦顯微鏡 91
4-5-2 Chloroquine效應 93
4-5-2 鈣黃綠素滲漏實驗 94
4-5-3 Bafilomycin A1效應 96
第五章 結論 98
第六章 參考文獻 100
參考文獻 1. Blaese, R.M., Culver, K.W., Miller, A.D., Carter, C.S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J.J., Rosenberg, S.A., H Klein, M.B., Mullen, C.A., Ramsey, W.J., Muul, L., Morgan, R.A., and Anderson, W.F., T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science, 1995. 270: p. 477-480.
2. Hardee, C.L., Arévalo-Soliz, L.M., Hornstein, B.D., and Zechiedrich, L., Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017. 8(2): p. 1-25.
3. Cheng, X. and Lee, R.J., The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews 2016. 99(Pt A): p. 129-137.
4. Du, Z., Munye, M.M., Tagalakis, A.D., Manunta, M.D.I., and Hart, t.L., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Reports, 2014. 4: p. 7107-7112.
5. Bulaklak, K. and Gersbach, C.A., The once and future gene therapy. Nature Communications, 2020. 11(1): p. 5820-5823.
6. Shahryari, A., Saghaeian Jazi, M., Mohammadi, S., Razavi Nikoo, H., Nazari, Z., Hosseini, E.S., Burtscher, I., Mowla, S.J., and Lickert, H., Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet, 2019. 10: p. 868-892.
7. Singh, P.P., Vithalapuram, V., Metre, S., and Kodipyaka, R., Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. Journal of Liposome Research, 2020. 30(4): p. 313-335.
8. Vij, R., Lin, Z., Schneider, K., Seshasayee, D., and Koerber, J.T., Analysis of the effect of promoter type and skin pretreatment on antigen expression and antibody response after gene gun-based immunization. Plos One, 2018. 13(6): p. 1-14.
9. Du, X., Wang, J., Zhou, Q., Zhang, L., Wang, S., Zhang, Z., and Yao, C., Advanced physical techniques for gene delivery based on membrane perforation. Drug Delivery, 2018. 25(1): p. 1516-1525.
10. Riley, M.K. and Vermerris, W., Recent advances in nanomaterials for gene delivery-a review. Nanomaterials (Basel), 2017. 7(5): p. 94-112.
11. Koshimizu, Y., Isa, K., Kobayashi, K., and Isa, T., Double viral vector technology for selective manipulation of neural pathways with higher level of efficiency and safety. Gene Therapy, 2021. 28(6): p. 339-350.
12. Zhou, Z., Liu, X., Zhu, D., Wang, Y., Zhang, Z., Zhou, X., Qiu, N., Chen, X., and Shen, Y., Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017. 115: p. 115-154.
13. Ain, Q.U., Lee, J.H., Woo, Y.S., and Kim, Y.-H., Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations. Archives of Pharmacal Research, 2016. 39(9): p. 1266-1274.
14. Habault, J. and Poyet, J.-L., Recent advances in cell penetrating peptide-based anticancer therapies. Molecules, 2019. 24(5): p. 927-943.
15. Vive, E., Brodin, P., and Lebleu, B., A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Biological Chemistry, 1997. 272: p. 16010–16017.
16. Green, M. and Loewenstein, P.M., Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell, 1988. 55: p. 1179-1188.
17. Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., and Barsoum, J., Tat-mediated delivery of heterologous proteins into cells. Cell Biology, 1994. 91: p. 664-668.
18. Zaro, J.L. and Shen, W.-C., Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Frontiers of Chemical Science and Engineering, 2015. 9(4): p. 407-427.
19. Beloor, J., Zeller, S., Choi, C.S., Lee, S.-K., and Kumar, P., Cationic cell-penetrating peptides as vehicles for siRNA delivery. Therapeutic Delivery, 2015. 6: p. 491–507.
20. Yang, J., Tsutsumi, H., Furuta, T., Sakuraib, M., and Mihara, H., Interaction of amphiphilic alpha-helical cell-penetrating peptides with heparan sulfate. Organic & Biomolecular Chemistry, 2014. 12(26): p. 4673-4681.
21. Pujals, S. and Giralt, E., Proline-rich, amphipathic cell-penetrating peptides. Drug Delivery, 2008. 60(4-5): p. 473-484.
22. Rhee, M. and Davis, P., Mechanism of uptake of C105Y, a novel cell-penetrating peptide. Biological Chemistry, 2006. 281(2): p. 1233-1240.
23. Kamide, K., Nakakubo, H., Uno, S., and Fukamizu, A., Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. International Journal of Molecular Medicine, 2009. 25: p. 41-51.
24. Mello, L.R.d., Porosk, L., Lourenço, T.C., Garcia, B.B.M., Costa, C.A.R., Han, S.W., Souza, J.S.d., Langel, U.l., and Silva, E.R.d., Amyloid-like self-assembly of a hydrophobic cell-penetrating peptide and Its use as a carrier for nucleic acids. ACS Applied Bio Materials, 2021. 4(8): p. 6404-6416.
25. Mäe, M., Andaloussi, S.E., Lehto, T., and Langel, Ü., Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2009. 6: p. 1195-1205.
26. Copolovici, D.M., Langel, K., Eriste, E., and Langel, Ü., Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 2014. 8: p. 1972-1994.
27. Lee, S.H., Castagner, B., and Leroux, J.-C., Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013. 85(1): p. 5-11.
28. Lee, Y.-J., Erazo-Oliveras, A., and Pellois, J.-P., Delivery of macromolecules into live cells by simple co-incubation with a peptide. Chembiochem, 2010. 11(3): p. 325-330.
29. Salomone, F., Cardarelli, F., Luca, M.D., Boccardi, C., Nifosì, R., Bardi, G., Bari, L.D., Serresi, M., and Beltram, F., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.
30. Abes, S., Turner, J.J., Ivanova, G.D., Owen, D., Williams, D., Arzumanov, A., Clair, P., Gait, M.J., and Lebleu, B., Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Research, 2007. 35(13): p. 4495-4502.
31. Crowet, J.-M., Lins, L., Deshayes, S., Divita, G., Morris, M., Brasseur, R., and Thomas, A., Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochimica et Biophysica Acta, 2013. 1828(2): p. 499-509.
32. Keller, A.-A., Mussbach, F., Breitling, R., Hemmerich, P., Schaefer, B., Lorkowski, S., and Reissmann, S., Relationships between cargo, cell penetrating peptides and cell type for uptake of non-covalent complexes into live cells. Pharmaceuticals (Basel), 2013. 6(2): p. 184-203.
33. Endoh, T. and Ohtsuki, T., Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Advanced Drug Delivery Reviews, 2009. 61(9): p. 704-709.
34. Fisher, R.K., Mattern-Schain, S.I., Best, M.D., Kirkpatrick, S.S., Freeman, M.B., Grandas, O.H., and Mountain, D.J.H., Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 2017. 219: p. 136-144.
35. Li, H., Tsui, T.Y., and Ma, W., Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Molecular Sciences, 2015. 16(8): p. 19518-19536.
36. Åmand, H.L., Nordén, B., and Fant, K., Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochemical and Biophysical Research Communications, 2012. 418(3): p. 469-474.
37. Jha, D., Mishra, R., Gottschalk, S., Wiesmüller, K.-H., Ugurbil, K., Maier, M.E., and Engelmann, J., CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjugate Chemistry, 2011. 22(3): p. 319-328.
38. Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., Harashima, H., and Sugiura, Y., Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjugate Chemistry, 2001. 12: p. 1005−1011.
39. Karro, K., Männik, T., Männik, A., and Ustav, M., DNA transfer into animal cells using stearylated CPP based transfection reagent. Methods in Molecular Biology, 2015. 1324: p. 435-445.
40. El-Sayed, A., Masuda, T., Khalil, I., Akita, H., and Harashima, H., Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. Journal of Controlled Release, 2009. 138(2): p. 160-167.
41. Anko, M., Majhenc, J., Kogej, K., Sillard, R., Langel, Ü., Anderluh, G., and Zorko, M., Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane. Biochimica et Biophysica Acta, 2012. 1818(3): p. 915-924.
42. Lehto, T., Simonson, O.E., Mäger, I., Ezzat, K., Sork, H., Copolovici, D.-M., Viola, J.R., Zaghloul, E.M., Lundin, P., Moreno, P.M., Mäe, M., Oskolkov, N., Suhorutšenko, J., Smith, C.E., and Andaloussi, S.E., A peptide-based vector for efficient gene transfer in vitro and in vivo. Molecular Therapy, 2011. 19(8): p. 1457-1467.
43. Khalil, I.A., Futaki, S., Niwa, M., Baba, Y., Kaji, N., Kamiya, H., and Harashima, H., Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Therapy, 2004. 11(7): p. 636-644.
44. 沈筱容, 硬脂基化的Indolicidin作為傳送質體去氧核酸的非病毒載體. 國立中央大學化學工程與材料工程研究所, 2019.
45. Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J.C., Jones, A.T., Sugiura, Y., and Futaki, S., Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Molecular Therapy journals, 2004. 10(6): p. 1011-1022.
46. Hua, W.-W., Huang, S.-C., and Jin, S.-L.C., A novel antimicrobial peptide-derived vehicle for oligodeoxynucleotide delivery to inhibit TNF-alpha expression. International Journal of Pharmaceutics, 2019. 558: p. 63-71.
47. Gestin, M., Dowaidar, M., and Langel, U., Uptake mechanism of cell-penetrating peptides. Advancesin Experimental Medicine and Biology, 2017. 1030: p. 255-264.
48. Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.Q., Smith, W., and Cullor, J.S., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry, 1992. 267(7): p. 4292-4295.
49. Marchand, C., Krajewski, K., Lee, H.-F., Antony, S., Johnson, A.A., Amin, R., Roller, P., Kvaratskhelia, M., and Pommier, Y., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research, 2006. 34(18): p. 5157-5165.
50. Rokitskaya, T.I., Kolodkin, N.I., Kotova, E.A., and Antonenko, Y.N., Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochimica et Biophysica Acta, 2011. 1808(1): p. 91-97.
51. Végh, A.G., Nagy, K., Bálint, Z., Kerényi, A., Rákhely, G., Váró, G., and Szegletes, Z., Effect of antimicrobial peptide-amide: indolicidin on biological membranes. Journal of Biomedicine and Biotechnology, 2011. 2011: p. 1-6.
52. Shaw, J.E., Alattia, J.-R., Verity, J.E., Privé, G.G., and Yip, C.M., Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006. 154(1): p. 42-58.
53. Neale, C., Hsu, J.C.Y., Yip, C.M., and Pomès, R., Indolicidin binding induces thinning of a lipid bilayer. Biophysical Journal, 2014. 106(8): p. 29-31.
54. Tsai, C.-W., Lin, Z.-W., Chang, W.-F., Chen, Y.-F., and Hu, W.-W., Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf B Biointerfaces, 2018. 165: p. 18-27.
55. Hu, W.-W., Lin, Z.-W., Ruaan, R.-C., Chen, W.-Y., Jin, S.-L.C., and Chang, Y., A novel application of indolicidin for gene delivery. International Journal of Pharmaceutics, 2013. 456(2): p. 293-300.
56. 蔡秉錩, Indolicidin及其類似物之生物活性與直接穿膜特性. 國立中央大學化學工程與材料工程研究所, 2012.
57. Tarwadi, T., Jazayeri, J.A., Pambudi, S., Arbianto, A.D., Rachmawati, H., Kartasasmita, R.E., and Asyarie, S., In-silico molecular interaction of short synthetic lipopeptide/importin-alpha and in-vitro evaluation of transgene expression mediated by liposome- based gene carrier. Current Gene Therapy, 2020. 20(5): p. 383-394.
58. Blanco, A. and Blanco, G., Lipids, in Medical Biochemistry. 2017. p. 99-119.
59. Lee, K.S. and Lee, J.H., Hybrid chemical EOR using low-salinity and smart waterflood, in Hybrid Enhanced Oil Recovery using Smart Waterflooding. 2019. p. 65-110.
60. Perinelli, D.R., Cespi, M., Lorusso, N., Palmieri, G.F., Bonacucina, G., and Blasi, P., Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir, 2020. 36(21): p. 5745-5753.
61. Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2, 1976. 72: p. 1525-1568.
62. Dutt, S., Siril, P.F., and Remita, S., Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC Advances, 2017. 7(10): p. 5733-5750.
63. Li, T., Senesi, A.J., and Lee, B., Small angle X-ray scattering for nanoparticle research. Chemical Reviews, 2016. 116(18): p. 11128-11180.
64. Ha, J.-M., Jang, H.-S., Lima, S.-H., and Choi, S.-M., Selective distributions of functionalized single-walled carbon nanotubes in a polymeric reverse hexagonal phase. Soft Matter, 2015. 11(29): p. 5821-5827.
65. Riske, K.A., Amaral, L.Q., Döbereiner, H.-G., and Lamy, M.T., Mesoscopic structure in the chain-melting regime of anionic phospholipid vesicles: DMPG. Biophysical Journal, 2004. 86(6): p. 3722-3733.
66. Rideau, E., Dimova, R., Schwille, P., Wurm, F.R., and Landfester, K., Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical Society Reviews, 2018. 47(23): p. 8572-8610.
67. Pinheiro, M., Lúcio, M., Lima, J.L.F.C., and Reis, S., Liposomes as drug delivery systems for the treatment of TB. Nanomedicine, 2011. 6: p. 1413–1428.
68. Maja, L., Željko, K., and Mateja, P., Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 2020. 165.
69. Nagalingam, A., Drug delivery aspects of herbal medicines, in Japanese Kampo Medicines for the Treatment of Common Diseases: Focus on Inflammation. 2017. p. 143-164.
70. Felgner, P.L. and Gadek, T.R., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(21): p. 7413-7417.
71. Rafael, D., Andrade, F., Arranja, A., Luís, S., and Videira, M., Lipoplexes and polyplexes: gene therapy, in Encyclopedia of biomedical polymers and polymeric biomaterials. 2015. p. 4335-4347.
72. B.Thapa and R.Narain, Mechanism, current challenges and new approaches for non viral gene delivery, in Polymers and Nanomaterials for Gene Therapy. 2016. p. 1-27.
73. Dan, N., Structure and kinetics of synthetic, lipid-based nucleic acid carriers, in Lipid Nanocarriers for Drug Targeting. 2018. p. 529-562.
74. Sum, C.H., Wettig, S., and Slavcev, R.A., Impact of DNA Vector Topology on Non-Viral Gene Therapeutic Safety and Efficacy. Current Gene Therapy, 2014. 14: p. 309-329.
75. Almofti, M.R., Harashima, H., Shinohara, Y., Almofti, A., Li, W., and Kiwada, H., Lipoplex size determines lipofection efficiency with or without serum. Methods in Molecular Biology, 2003. 20(1): p. 35-43.
76. Caracciolo, G. and Amenitsch, H., Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. European Biophysics Journal, 2012. 41(10): p. 815-829.
77. Caracciolo, G. and Caminiti, R., Do DC-Chol/DOPE-DNA complexes really form an inverted hexagonal phase? Chemical Physics Letters, 2005. 411(4-6): p. 327-332.
78. Zuhorn, I.S., Bakowsky, U., Polushkin, E., Visser, W.H., Stuart, M.C.A., Engberts, J.B.F.N., and Hoekstra, D., Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Molecular Therapy, 2005. 11(5): p. 801-810.
79. Koltover, I., Salditt, T., Rädler, J.O., and Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science, 1998. 281(5373): p. 78-81.
80. Chul, C.-J. and Szoka, F.C., pH-sensitive liposomes. Liposome Research, 1994. 4: p. 361-395.
81. Ferreira, D.d.S., Lopes, S.C.d.A., Franco, M.S., and Oliveira, M.C., pH-sensitive liposomes for drug delivery in cancer treatment. Therapeutic Delivery, 2013. 4(9): p. 1099-1123.
82. Paliwal, S.R., Paliwal, R., and Vyas, S.P., A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Delivery, 2015. 22(3): p. 231-242.
83. Zangabad, P.S., Mirkiani, S., Shahsavari, S., Masoudi, B., Masroor, M., Hamed, H., Jafari, Z., Taghipour, Y.D., Hashemi, H., Karimi, M., and Hamblin, M.R., Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnology Reviews, 2017. 7: p. 95-122.
84. Guo, W., Gosselin, M.A., and Lee, R.J., Characterization of a novel diolein-based LPDII vector for gene delivery. Controlled Release, 2002. 83: p. 121-132.
85. Moitra, P., Kumar, K., Sarkar, S., Kondaiah, P., Duand, W., and Bhattacharya, S., New pH-responsive gemini lipid derived co-liposomes for efficacious doxorubicin delivery to drug resistant cancer cells. ChemComm, 2017. 53(58): p. 8184-8187.
86. Vadlapudi, A.D. and Mitra, A.K., Nanomicelles: an emerging platform for drug delivery to the eye. Therapeutic Delivery, 2013. 4(1): p. 1-3.
87. Mochizuki, S., Kanegae, N., Nishina, K., Kamikawa, Y., Koiwai, K., Masunaga, H., and Sakurai, K., The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochimica et Biophysica Acta, 2013. 1828(2): p. 412-418.
88. Karanth, H. and Murthy, R.S.R., pH-sensitive liposomes--principle and application in cancer therapy. Journal of Pharmacy and Pharmacology, 2007. 59(4): p. 469-483.
89. Kumar, Y., Kuche, K., Swami, R., Katiyar, S.S., Chaudhari, D., Katare, P.B., Banerjee, S.K., and Jain, S., Exploring the potential of novel pH sensitive lipoplexes for tumor targeted gene delivery with reduced toxicity. International Journal of Pharmaceutics, 2020. 573: p. 118889-118934.
90. Agarwal, R., Iezhitsa, I., Agarwal, P., Nasir, N.A.A., Razali, N., Alyautdin, R., and Ismail, N.M., Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 2016. 23(4): p. 1075-1091.
91. Huang, G., Zhou, Z., Srinivasan, R., Penn, M.S., Kottke-Marchant, K., Marchant, R.E., and Gupta, A.S., Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials, 2008. 29(11): p. 1676-1685.
92. Kakudo, T., Chaki, S., Futaki, S., Nakase, I., Akaji, K., Kawakami, T., Maruyama, K., Kamiya, H., and Harashima, H., Transferrin-Modified Liposomes Equipped with a pH-Sensitive Fusogenic Peptide: An Artificial Viral-like Delivery System. Biochemistry, 2004. 43: p. 5618-5628.
93. Li, H., Hu, D., Liang, F., Huang, X., and Zhu, Q., Influence factors on the critical micelle concentration determination using pyrene as a probe and a simple method of preparing samples. Royal Society Open Science, 2020. 7(3): p. 192092-192100.
94. Guterstam, P., Madani, F., Hirose, H., Takeuchi, T., Futaki, S., El Andaloussi, S., Graslund, A., and Langel, U., Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochimica et Biophysica Acta, 2009. 1788(12): p. 2509-2517.
95. Piñeiro, L., Freire, S., Bordello, J., Novoa, M., and Al-Soufi, W., Dye exchange in micellar solutions. Quantitative analysis of bulk and single molecule fluorescence titrations. Soft Matter, 2013. 9(45).
96. Eicher, B., Heberle, F.A., Marquardt, D., Rechberger, G.N., Katsarase, J., and Pabsta, G., Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. Journal of Applied Crystallography, 2017. 50: p. 419-429.
97. Kooijman, E.E., Chupin, V., Fuller, N.L., Kozlov, M.M., Kruijff, B.d., Burger, K.N.J., and Rand, P.R., Spontaneous Curvature of Phosphatidic Acid and Lysophosphatidic Acid. Biochemistry, 2005. 44: p. 2097-2102.
98. Reiss-Husson, F., Sturcture des phases liquide-cristallines de differents phospholipids, monoglycerides, sphingolipids, anhydres ouen presence d′eau. Journal of Molecular Biology, 1967. 25: p. 363-382.
99. Bergstrand, N., Arfvidsson, M.C., Kim, J.-M., Thompson, D.H., and Edwards, K., Interactions between pH-sensitive liposomes and model membranes. Biophysical Chemistry, 2003. 104(1): p. 361-379.
100. Vargaa, Z., Fehéra, B., Kitkaa, D., Wachaa, A., Bótaa, A., Berényic, S., Pipichd, V., and Fraikin, J.-L., Size measurement of extracellular vesicles and synthetic liposomes: the Impact of the hydration shell and the protein corona. Colloids Surf B Biointerfaces, 2020. 192: p. 111053-11059.
101. Fan, Y., Chen, C., Huang, Y., Zhang, F., and Lin, G., Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids Surf B Biointerfaces, 2017. 151: p. 19-25.
102. Sun, C.-S., Wang, C.Y.-H., Chen, B.P.-W., He, R.-Y., Liu, G.C.-H., Wang, C.-H., Chen, W., Chern, Y., and Huang, J.J.-T., The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity. Plos One, 2014. 9(8): p. 103644-103652.
103. Heath, N., Osteikoetxea, X., Oliveria, T.M.d., Lazaro-Ibanez, E., Shatnyeva, O., Schindler, C., Tigue, N., LorenzMMayr, Dekker, N., Overman, R., and Davies, R., Endosomal escape enhancing compounds facilitate functional delivery of extracellular vesicle cargo. Nanomedicine 2019. 14: p. 61-76.
104. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y., Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. Journal of Biological Chemistry, 1991. 266(26): p. 17707-17712.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2021-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明