參考文獻 |
1. Blaese, R.M., Culver, K.W., Miller, A.D., Carter, C.S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J.J., Rosenberg, S.A., H Klein, M.B., Mullen, C.A., Ramsey, W.J., Muul, L., Morgan, R.A., and Anderson, W.F., T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science, 1995. 270: p. 477-480.
2. Hardee, C.L., Arévalo-Soliz, L.M., Hornstein, B.D., and Zechiedrich, L., Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017. 8(2): p. 1-25.
3. Cheng, X. and Lee, R.J., The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews 2016. 99(Pt A): p. 129-137.
4. Du, Z., Munye, M.M., Tagalakis, A.D., Manunta, M.D.I., and Hart, t.L., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Scientific Reports, 2014. 4: p. 7107-7112.
5. Bulaklak, K. and Gersbach, C.A., The once and future gene therapy. Nature Communications, 2020. 11(1): p. 5820-5823.
6. Shahryari, A., Saghaeian Jazi, M., Mohammadi, S., Razavi Nikoo, H., Nazari, Z., Hosseini, E.S., Burtscher, I., Mowla, S.J., and Lickert, H., Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet, 2019. 10: p. 868-892.
7. Singh, P.P., Vithalapuram, V., Metre, S., and Kodipyaka, R., Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. Journal of Liposome Research, 2020. 30(4): p. 313-335.
8. Vij, R., Lin, Z., Schneider, K., Seshasayee, D., and Koerber, J.T., Analysis of the effect of promoter type and skin pretreatment on antigen expression and antibody response after gene gun-based immunization. Plos One, 2018. 13(6): p. 1-14.
9. Du, X., Wang, J., Zhou, Q., Zhang, L., Wang, S., Zhang, Z., and Yao, C., Advanced physical techniques for gene delivery based on membrane perforation. Drug Delivery, 2018. 25(1): p. 1516-1525.
10. Riley, M.K. and Vermerris, W., Recent advances in nanomaterials for gene delivery-a review. Nanomaterials (Basel), 2017. 7(5): p. 94-112.
11. Koshimizu, Y., Isa, K., Kobayashi, K., and Isa, T., Double viral vector technology for selective manipulation of neural pathways with higher level of efficiency and safety. Gene Therapy, 2021. 28(6): p. 339-350.
12. Zhou, Z., Liu, X., Zhu, D., Wang, Y., Zhang, Z., Zhou, X., Qiu, N., Chen, X., and Shen, Y., Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017. 115: p. 115-154.
13. Ain, Q.U., Lee, J.H., Woo, Y.S., and Kim, Y.-H., Effects of protein transduction domain (PTD) selection and position for improved intracellular delivery of PTD-Hsp27 fusion protein formulations. Archives of Pharmacal Research, 2016. 39(9): p. 1266-1274.
14. Habault, J. and Poyet, J.-L., Recent advances in cell penetrating peptide-based anticancer therapies. Molecules, 2019. 24(5): p. 927-943.
15. Vive, E., Brodin, P., and Lebleu, B., A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Biological Chemistry, 1997. 272: p. 16010–16017.
16. Green, M. and Loewenstein, P.M., Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell, 1988. 55: p. 1179-1188.
17. Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., and Barsoum, J., Tat-mediated delivery of heterologous proteins into cells. Cell Biology, 1994. 91: p. 664-668.
18. Zaro, J.L. and Shen, W.-C., Cationic and amphipathic cell-penetrating peptides (CPPs): Their structures and in vivo studies in drug delivery. Frontiers of Chemical Science and Engineering, 2015. 9(4): p. 407-427.
19. Beloor, J., Zeller, S., Choi, C.S., Lee, S.-K., and Kumar, P., Cationic cell-penetrating peptides as vehicles for siRNA delivery. Therapeutic Delivery, 2015. 6: p. 491–507.
20. Yang, J., Tsutsumi, H., Furuta, T., Sakuraib, M., and Mihara, H., Interaction of amphiphilic alpha-helical cell-penetrating peptides with heparan sulfate. Organic & Biomolecular Chemistry, 2014. 12(26): p. 4673-4681.
21. Pujals, S. and Giralt, E., Proline-rich, amphipathic cell-penetrating peptides. Drug Delivery, 2008. 60(4-5): p. 473-484.
22. Rhee, M. and Davis, P., Mechanism of uptake of C105Y, a novel cell-penetrating peptide. Biological Chemistry, 2006. 281(2): p. 1233-1240.
23. Kamide, K., Nakakubo, H., Uno, S., and Fukamizu, A., Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. International Journal of Molecular Medicine, 2009. 25: p. 41-51.
24. Mello, L.R.d., Porosk, L., Lourenço, T.C., Garcia, B.B.M., Costa, C.A.R., Han, S.W., Souza, J.S.d., Langel, U.l., and Silva, E.R.d., Amyloid-like self-assembly of a hydrophobic cell-penetrating peptide and Its use as a carrier for nucleic acids. ACS Applied Bio Materials, 2021. 4(8): p. 6404-6416.
25. Mäe, M., Andaloussi, S.E., Lehto, T., and Langel, Ü., Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2009. 6: p. 1195-1205.
26. Copolovici, D.M., Langel, K., Eriste, E., and Langel, Ü., Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 2014. 8: p. 1972-1994.
27. Lee, S.H., Castagner, B., and Leroux, J.-C., Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013. 85(1): p. 5-11.
28. Lee, Y.-J., Erazo-Oliveras, A., and Pellois, J.-P., Delivery of macromolecules into live cells by simple co-incubation with a peptide. Chembiochem, 2010. 11(3): p. 325-330.
29. Salomone, F., Cardarelli, F., Luca, M.D., Boccardi, C., Nifosì, R., Bardi, G., Bari, L.D., Serresi, M., and Beltram, F., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.
30. Abes, S., Turner, J.J., Ivanova, G.D., Owen, D., Williams, D., Arzumanov, A., Clair, P., Gait, M.J., and Lebleu, B., Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Research, 2007. 35(13): p. 4495-4502.
31. Crowet, J.-M., Lins, L., Deshayes, S., Divita, G., Morris, M., Brasseur, R., and Thomas, A., Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochimica et Biophysica Acta, 2013. 1828(2): p. 499-509.
32. Keller, A.-A., Mussbach, F., Breitling, R., Hemmerich, P., Schaefer, B., Lorkowski, S., and Reissmann, S., Relationships between cargo, cell penetrating peptides and cell type for uptake of non-covalent complexes into live cells. Pharmaceuticals (Basel), 2013. 6(2): p. 184-203.
33. Endoh, T. and Ohtsuki, T., Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Advanced Drug Delivery Reviews, 2009. 61(9): p. 704-709.
34. Fisher, R.K., Mattern-Schain, S.I., Best, M.D., Kirkpatrick, S.S., Freeman, M.B., Grandas, O.H., and Mountain, D.J.H., Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 2017. 219: p. 136-144.
35. Li, H., Tsui, T.Y., and Ma, W., Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Molecular Sciences, 2015. 16(8): p. 19518-19536.
36. Åmand, H.L., Nordén, B., and Fant, K., Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochemical and Biophysical Research Communications, 2012. 418(3): p. 469-474.
37. Jha, D., Mishra, R., Gottschalk, S., Wiesmüller, K.-H., Ugurbil, K., Maier, M.E., and Engelmann, J., CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjugate Chemistry, 2011. 22(3): p. 319-328.
38. Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., Harashima, H., and Sugiura, Y., Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjugate Chemistry, 2001. 12: p. 1005−1011.
39. Karro, K., Männik, T., Männik, A., and Ustav, M., DNA transfer into animal cells using stearylated CPP based transfection reagent. Methods in Molecular Biology, 2015. 1324: p. 435-445.
40. El-Sayed, A., Masuda, T., Khalil, I., Akita, H., and Harashima, H., Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. Journal of Controlled Release, 2009. 138(2): p. 160-167.
41. Anko, M., Majhenc, J., Kogej, K., Sillard, R., Langel, Ü., Anderluh, G., and Zorko, M., Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane. Biochimica et Biophysica Acta, 2012. 1818(3): p. 915-924.
42. Lehto, T., Simonson, O.E., Mäger, I., Ezzat, K., Sork, H., Copolovici, D.-M., Viola, J.R., Zaghloul, E.M., Lundin, P., Moreno, P.M., Mäe, M., Oskolkov, N., Suhorutšenko, J., Smith, C.E., and Andaloussi, S.E., A peptide-based vector for efficient gene transfer in vitro and in vivo. Molecular Therapy, 2011. 19(8): p. 1457-1467.
43. Khalil, I.A., Futaki, S., Niwa, M., Baba, Y., Kaji, N., Kamiya, H., and Harashima, H., Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Therapy, 2004. 11(7): p. 636-644.
44. 沈筱容, 硬脂基化的Indolicidin作為傳送質體去氧核酸的非病毒載體. 國立中央大學化學工程與材料工程研究所, 2019.
45. Nakase, I., Niwa, M., Takeuchi, T., Sonomura, K., Kawabata, N., Koike, Y., Takehashi, M., Tanaka, S., Ueda, K., Simpson, J.C., Jones, A.T., Sugiura, Y., and Futaki, S., Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Molecular Therapy journals, 2004. 10(6): p. 1011-1022.
46. Hua, W.-W., Huang, S.-C., and Jin, S.-L.C., A novel antimicrobial peptide-derived vehicle for oligodeoxynucleotide delivery to inhibit TNF-alpha expression. International Journal of Pharmaceutics, 2019. 558: p. 63-71.
47. Gestin, M., Dowaidar, M., and Langel, U., Uptake mechanism of cell-penetrating peptides. Advancesin Experimental Medicine and Biology, 2017. 1030: p. 255-264.
48. Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.Q., Smith, W., and Cullor, J.S., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry, 1992. 267(7): p. 4292-4295.
49. Marchand, C., Krajewski, K., Lee, H.-F., Antony, S., Johnson, A.A., Amin, R., Roller, P., Kvaratskhelia, M., and Pommier, Y., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research, 2006. 34(18): p. 5157-5165.
50. Rokitskaya, T.I., Kolodkin, N.I., Kotova, E.A., and Antonenko, Y.N., Indolicidin action on membrane permeability: carrier mechanism versus pore formation. Biochimica et Biophysica Acta, 2011. 1808(1): p. 91-97.
51. Végh, A.G., Nagy, K., Bálint, Z., Kerényi, A., Rákhely, G., Váró, G., and Szegletes, Z., Effect of antimicrobial peptide-amide: indolicidin on biological membranes. Journal of Biomedicine and Biotechnology, 2011. 2011: p. 1-6.
52. Shaw, J.E., Alattia, J.-R., Verity, J.E., Privé, G.G., and Yip, C.M., Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006. 154(1): p. 42-58.
53. Neale, C., Hsu, J.C.Y., Yip, C.M., and Pomès, R., Indolicidin binding induces thinning of a lipid bilayer. Biophysical Journal, 2014. 106(8): p. 29-31.
54. Tsai, C.-W., Lin, Z.-W., Chang, W.-F., Chen, Y.-F., and Hu, W.-W., Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf B Biointerfaces, 2018. 165: p. 18-27.
55. Hu, W.-W., Lin, Z.-W., Ruaan, R.-C., Chen, W.-Y., Jin, S.-L.C., and Chang, Y., A novel application of indolicidin for gene delivery. International Journal of Pharmaceutics, 2013. 456(2): p. 293-300.
56. 蔡秉錩, Indolicidin及其類似物之生物活性與直接穿膜特性. 國立中央大學化學工程與材料工程研究所, 2012.
57. Tarwadi, T., Jazayeri, J.A., Pambudi, S., Arbianto, A.D., Rachmawati, H., Kartasasmita, R.E., and Asyarie, S., In-silico molecular interaction of short synthetic lipopeptide/importin-alpha and in-vitro evaluation of transgene expression mediated by liposome- based gene carrier. Current Gene Therapy, 2020. 20(5): p. 383-394.
58. Blanco, A. and Blanco, G., Lipids, in Medical Biochemistry. 2017. p. 99-119.
59. Lee, K.S. and Lee, J.H., Hybrid chemical EOR using low-salinity and smart waterflood, in Hybrid Enhanced Oil Recovery using Smart Waterflooding. 2019. p. 65-110.
60. Perinelli, D.R., Cespi, M., Lorusso, N., Palmieri, G.F., Bonacucina, G., and Blasi, P., Surfactant self-assembling and critical micelle concentration: one approach fits all? Langmuir, 2020. 36(21): p. 5745-5753.
61. Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2, 1976. 72: p. 1525-1568.
62. Dutt, S., Siril, P.F., and Remita, S., Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC Advances, 2017. 7(10): p. 5733-5750.
63. Li, T., Senesi, A.J., and Lee, B., Small angle X-ray scattering for nanoparticle research. Chemical Reviews, 2016. 116(18): p. 11128-11180.
64. Ha, J.-M., Jang, H.-S., Lima, S.-H., and Choi, S.-M., Selective distributions of functionalized single-walled carbon nanotubes in a polymeric reverse hexagonal phase. Soft Matter, 2015. 11(29): p. 5821-5827.
65. Riske, K.A., Amaral, L.Q., Döbereiner, H.-G., and Lamy, M.T., Mesoscopic structure in the chain-melting regime of anionic phospholipid vesicles: DMPG. Biophysical Journal, 2004. 86(6): p. 3722-3733.
66. Rideau, E., Dimova, R., Schwille, P., Wurm, F.R., and Landfester, K., Liposomes and polymersomes: a comparative review towards cell mimicking. Chemical Society Reviews, 2018. 47(23): p. 8572-8610.
67. Pinheiro, M., Lúcio, M., Lima, J.L.F.C., and Reis, S., Liposomes as drug delivery systems for the treatment of TB. Nanomedicine, 2011. 6: p. 1413–1428.
68. Maja, L., Željko, K., and Mateja, P., Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 2020. 165.
69. Nagalingam, A., Drug delivery aspects of herbal medicines, in Japanese Kampo Medicines for the Treatment of Common Diseases: Focus on Inflammation. 2017. p. 143-164.
70. Felgner, P.L. and Gadek, T.R., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(21): p. 7413-7417.
71. Rafael, D., Andrade, F., Arranja, A., Luís, S., and Videira, M., Lipoplexes and polyplexes: gene therapy, in Encyclopedia of biomedical polymers and polymeric biomaterials. 2015. p. 4335-4347.
72. B.Thapa and R.Narain, Mechanism, current challenges and new approaches for non viral gene delivery, in Polymers and Nanomaterials for Gene Therapy. 2016. p. 1-27.
73. Dan, N., Structure and kinetics of synthetic, lipid-based nucleic acid carriers, in Lipid Nanocarriers for Drug Targeting. 2018. p. 529-562.
74. Sum, C.H., Wettig, S., and Slavcev, R.A., Impact of DNA Vector Topology on Non-Viral Gene Therapeutic Safety and Efficacy. Current Gene Therapy, 2014. 14: p. 309-329.
75. Almofti, M.R., Harashima, H., Shinohara, Y., Almofti, A., Li, W., and Kiwada, H., Lipoplex size determines lipofection efficiency with or without serum. Methods in Molecular Biology, 2003. 20(1): p. 35-43.
76. Caracciolo, G. and Amenitsch, H., Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. European Biophysics Journal, 2012. 41(10): p. 815-829.
77. Caracciolo, G. and Caminiti, R., Do DC-Chol/DOPE-DNA complexes really form an inverted hexagonal phase? Chemical Physics Letters, 2005. 411(4-6): p. 327-332.
78. Zuhorn, I.S., Bakowsky, U., Polushkin, E., Visser, W.H., Stuart, M.C.A., Engberts, J.B.F.N., and Hoekstra, D., Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Molecular Therapy, 2005. 11(5): p. 801-810.
79. Koltover, I., Salditt, T., Rädler, J.O., and Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science, 1998. 281(5373): p. 78-81.
80. Chul, C.-J. and Szoka, F.C., pH-sensitive liposomes. Liposome Research, 1994. 4: p. 361-395.
81. Ferreira, D.d.S., Lopes, S.C.d.A., Franco, M.S., and Oliveira, M.C., pH-sensitive liposomes for drug delivery in cancer treatment. Therapeutic Delivery, 2013. 4(9): p. 1099-1123.
82. Paliwal, S.R., Paliwal, R., and Vyas, S.P., A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Delivery, 2015. 22(3): p. 231-242.
83. Zangabad, P.S., Mirkiani, S., Shahsavari, S., Masoudi, B., Masroor, M., Hamed, H., Jafari, Z., Taghipour, Y.D., Hashemi, H., Karimi, M., and Hamblin, M.R., Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnology Reviews, 2017. 7: p. 95-122.
84. Guo, W., Gosselin, M.A., and Lee, R.J., Characterization of a novel diolein-based LPDII vector for gene delivery. Controlled Release, 2002. 83: p. 121-132.
85. Moitra, P., Kumar, K., Sarkar, S., Kondaiah, P., Duand, W., and Bhattacharya, S., New pH-responsive gemini lipid derived co-liposomes for efficacious doxorubicin delivery to drug resistant cancer cells. ChemComm, 2017. 53(58): p. 8184-8187.
86. Vadlapudi, A.D. and Mitra, A.K., Nanomicelles: an emerging platform for drug delivery to the eye. Therapeutic Delivery, 2013. 4(1): p. 1-3.
87. Mochizuki, S., Kanegae, N., Nishina, K., Kamikawa, Y., Koiwai, K., Masunaga, H., and Sakurai, K., The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochimica et Biophysica Acta, 2013. 1828(2): p. 412-418.
88. Karanth, H. and Murthy, R.S.R., pH-sensitive liposomes--principle and application in cancer therapy. Journal of Pharmacy and Pharmacology, 2007. 59(4): p. 469-483.
89. Kumar, Y., Kuche, K., Swami, R., Katiyar, S.S., Chaudhari, D., Katare, P.B., Banerjee, S.K., and Jain, S., Exploring the potential of novel pH sensitive lipoplexes for tumor targeted gene delivery with reduced toxicity. International Journal of Pharmaceutics, 2020. 573: p. 118889-118934.
90. Agarwal, R., Iezhitsa, I., Agarwal, P., Nasir, N.A.A., Razali, N., Alyautdin, R., and Ismail, N.M., Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 2016. 23(4): p. 1075-1091.
91. Huang, G., Zhou, Z., Srinivasan, R., Penn, M.S., Kottke-Marchant, K., Marchant, R.E., and Gupta, A.S., Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials, 2008. 29(11): p. 1676-1685.
92. Kakudo, T., Chaki, S., Futaki, S., Nakase, I., Akaji, K., Kawakami, T., Maruyama, K., Kamiya, H., and Harashima, H., Transferrin-Modified Liposomes Equipped with a pH-Sensitive Fusogenic Peptide: An Artificial Viral-like Delivery System. Biochemistry, 2004. 43: p. 5618-5628.
93. Li, H., Hu, D., Liang, F., Huang, X., and Zhu, Q., Influence factors on the critical micelle concentration determination using pyrene as a probe and a simple method of preparing samples. Royal Society Open Science, 2020. 7(3): p. 192092-192100.
94. Guterstam, P., Madani, F., Hirose, H., Takeuchi, T., Futaki, S., El Andaloussi, S., Graslund, A., and Langel, U., Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochimica et Biophysica Acta, 2009. 1788(12): p. 2509-2517.
95. Piñeiro, L., Freire, S., Bordello, J., Novoa, M., and Al-Soufi, W., Dye exchange in micellar solutions. Quantitative analysis of bulk and single molecule fluorescence titrations. Soft Matter, 2013. 9(45).
96. Eicher, B., Heberle, F.A., Marquardt, D., Rechberger, G.N., Katsarase, J., and Pabsta, G., Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles. Journal of Applied Crystallography, 2017. 50: p. 419-429.
97. Kooijman, E.E., Chupin, V., Fuller, N.L., Kozlov, M.M., Kruijff, B.d., Burger, K.N.J., and Rand, P.R., Spontaneous Curvature of Phosphatidic Acid and Lysophosphatidic Acid. Biochemistry, 2005. 44: p. 2097-2102.
98. Reiss-Husson, F., Sturcture des phases liquide-cristallines de differents phospholipids, monoglycerides, sphingolipids, anhydres ouen presence d′eau. Journal of Molecular Biology, 1967. 25: p. 363-382.
99. Bergstrand, N., Arfvidsson, M.C., Kim, J.-M., Thompson, D.H., and Edwards, K., Interactions between pH-sensitive liposomes and model membranes. Biophysical Chemistry, 2003. 104(1): p. 361-379.
100. Vargaa, Z., Fehéra, B., Kitkaa, D., Wachaa, A., Bótaa, A., Berényic, S., Pipichd, V., and Fraikin, J.-L., Size measurement of extracellular vesicles and synthetic liposomes: the Impact of the hydration shell and the protein corona. Colloids Surf B Biointerfaces, 2020. 192: p. 111053-11059.
101. Fan, Y., Chen, C., Huang, Y., Zhang, F., and Lin, G., Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids Surf B Biointerfaces, 2017. 151: p. 19-25.
102. Sun, C.-S., Wang, C.Y.-H., Chen, B.P.-W., He, R.-Y., Liu, G.C.-H., Wang, C.-H., Chen, W., Chern, Y., and Huang, J.J.-T., The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity. Plos One, 2014. 9(8): p. 103644-103652.
103. Heath, N., Osteikoetxea, X., Oliveria, T.M.d., Lazaro-Ibanez, E., Shatnyeva, O., Schindler, C., Tigue, N., LorenzMMayr, Dekker, N., Overman, R., and Davies, R., Endosomal escape enhancing compounds facilitate functional delivery of extracellular vesicle cargo. Nanomedicine 2019. 14: p. 61-76.
104. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y., Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. Journal of Biological Chemistry, 1991. 266(26): p. 17707-17712. |