博碩士論文 108324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.145.130.31
姓名 陳以燈(YI-DENG CHEN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 陽極氧化鋁奈米模板法製備可撓式規則有序高分子奈米結構陣列之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 具微奈米的高分子薄膜,由於其具有透明度,重量輕,柔性和堅固性的特性,使其廣泛被用於化學傳感、熱障、光子器件、顯示器和低成本光伏器件電子元件等領域,傳統製備微奈米結構,常使用PMMA模板輔助法、離子束光刻法及奈米壓印技術法等方法,但相關製程常遭遇製程時間漫長、昂貴、複雜、成本高等缺點。為克服相關製程限制,本研究首度提出一種結合自組裝奈米球微影術(nanosphere lithography)之製程技術,其主要是利用粒徑均勻的高分子微奈米球,透過其彼此的交互作用力在基材上自組裝鋪排形成六方最密堆積排列之微奈米球陣列結構作為遮罩模板,調控奈米球的直徑再結合薄膜鍍製製程及陽極氧化蝕刻條件,成功地製備出具孔徑及間距可調變之薄型陽極氧化鋁奈米通道模板,再利用熱壓法將所需高分子填入奈米通道,成功地製備出具有可撓曲之高長寬比規則有序準直排列一維高分子結構,而所製備規則有序奈米結構,其結構表面形貌具有疏水及超疏水性質,此結構也可以用於微機電工程、微流體工程領域水滴轉寄技術;本研究所開發之新穎製程,相信將可應於製備各式可撓曲液晶顯示器(Liquid Crystal Display, LCD)和等離子顯示面板(PDP)的平板顯示器。 
摘要(英) Recently, the nanoporous anodic aluminum oxide (AAO) have widely used as templates in nanotechnology. On account of their features continuous, well-organized nanostructure, they can easily adjustable morphological properties and wide range of applications such as drug delivery, membrane filtration, antireflection coating, catalysis and synthesis of various nanostructures. To fabricate thin AAO template with regular nanopores arrays, a variety of patterning techniques have been developed such as nanoimprint lithography, polymer template assisted method and e-beam lithography. However, the above-mentioned processed are high cost, operational complexity and low processing speed make them challenging to use. In this work, we fabricated the thin polymer micro/nanostructures to combine of nanosphere lithography, anodizing and hot-embossing process approach to fabricate thin AAO templates, which is based on the nanosphere lithography with multistep anodizing and etching pore-widening process. The pore diameters, pore lengths can be varied by changing the anodization parameters such as the type of the electrolyte, the electrolyte concentration, the working temperature, the applied voltage and the working time. To fabricate the double-sized diameters template for producing double-sized polymer nanocones. The polymer nanostructure has a hydrophobicity and superhydrophobicity. Wettability of the solid surface is an important property because controlling the surface wettability is significant in many functional applications in MEMS, micro-fluid, and biomaterials. The polymer nanostructures had the potential of liquid transportation. In addition, the polymer micro/nanostructure are widely used in liquid-crystal display and plasma display panel because it has the characteristics of transparency, light weight, small size, flexibility and robustness.
關鍵字(中) ★ 可撓式高分子奈米結構陣列
★ 陽極氧化鋁模板
★ 水滴搬運
關鍵字(英)
論文目次 第一章、前言及文獻回顧 1
1-1 前言 1
1-2 奈米材料 3
1.3 一維奈米結構 4
1-3-1 一維高分子奈米結構之應用 4
1-4 陽極氧化鋁膜 4
1-4-1 陽極氧化鋁膜之發展背景 4
1-4-2 陽極氧化鋁膜成長機制 6
1-4-3 陽極氧化鋁膜成長控制變因 8
1-4-4 陽極氧化鋁膜規則化孔洞製程 9
1-5 自組裝奈米球微影術 11
1-5-1 奈米球自組裝機制 11
1-5-2 奈米球微影術之發展 12
1-5-3 奈米球微影術製備規則有序之奈米結構 13
1-6 水滴接觸角之相關理論 13
1-7 研究動機 15
第二章、實驗步驟及實驗設備 17
2-1 實驗步驟 17
2-1-1 高純度金屬鋁片前處理 17
2-1-2 金屬鋁片表面進行電化學之表面平坦化處理 18
2-1-3 奈米球模板之製備 18
2-1-4 氧氣電漿蝕刻均勻可調控奈米球模板尺寸 19
2-1-5 電子槍蒸鍍二氧化矽薄膜 19
2-1-6 舉離奈米球模板 19
2-1-7 製備陽極氧化試片工作電極 20
2-1-8 製備規則有序陽極氧化鋁模板 20
2-2 熱壓法製備規則有序高分子奈米結構 21
2-2-1 填充聚苯乙烯高分子製備一維高分子奈米結構陣列 21
2-3 實驗設備 22
2-3-1 反應性離子蝕刻機 22
2-3-2 電子槍蒸鍍系統 22
2-3-3 陽極氧化鋁膜製備系統 22
2-3-4 空氣烘箱系統 23
2-3-5 pH meter 23
2-4 儀器分析實驗 24
2-4-1 掃描式電子顯微鏡 24
2-4-2 影像式接觸角量測儀 24
第三章 結果與討論 26
3-1 金屬鋁片表面進行電化學之表面平坦化形貌及分析 26
3-2 未定義凹槽之大面積隨機排列之陽極氧化鋁模板製程分析 27
3-3 金屬鋁片上製備單層自組裝奈米球模板陣列之結構與分析 28
3-4 奈米球微影術結合陽極氧化處理製備具規則有序且準直之陽極氧化鋁模板 31
3-4-1 不同陽極處理時間對陽極氧化鋁膜生成之速率影響 32
3-4-2 調控陽極氧化鋁模板奈米通道之孔徑尺寸 34
3-4-3 製備具有雙尺寸奈米通道之陽極氧化鋁模板 35
3-5 奈米球微影術結合陽極氧化及熱壓法製備高分子奈米陣列結構 37
3-5-1 一維聚苯乙烯高分子規則有序之奈米柱結構分析 38
3-5-2 一維聚苯乙烯高分子規則有序之奈米錐結構分析 39
3-5-3 一維可撓曲式聚苯乙烯高分子奈米結構分析 39
3-6 高分子薄膜與一維高分子奈米結構之水滴接觸角量測 40
第四章 結論及未來展望 42
4-1 結論 42
4-2 未來展望 42
參考文獻 44
表目錄 52
圖目錄 54
參考文獻 [1] K. V. Klitzing, G. Dorda, M. Pepper. "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Phys. Rev. Lett. 45.6 (1980) 494.
[2] L. Feng, S. Li, Y. Li, H. L. Li, J. Zhang, Zhai, D. Zhu. "Super‐hydrophobic surfaces: from natural to artificial." Adv. Mater. 14.24 (2002) 1857-1860.
[3] N. J. Shirtcliffe, F. B. Pyatt, M. I. Newton, G. McHale. "A lichen protected by a super-hydrophobic and breathable structure." J. Plant Physiol. 163.11 (2006) 1193-1197.
[4] K. Sekiguchi, K. I. Katsumata, H. Segawa, T. Nakanishi, A. Yasumori. "Fabrication of a Silica–Silica Nanoparticle Monolayer Array Nanocomposite Film on an Anodic Aluminum Oxide Substrate and Its Optical and Tribological Properties." ACS Appl. Mater. Interfaces 12.24 (2020) 27672-27681.
[5] J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. del Pilar Rodriguez-Torres, L. S. Acosta-Torres, H. S. Shin. "Nano based drug delivery systems: recent developments and future prospects." J. Nanobiotechnology 16.1 (2018) 1-33.
[6] W. Tao, D. Pan, Z. Gong, X. Peng. "Nanoporous platinum electrode grown on anodic aluminum oxide membrane: Fabrication, characterization, electrocatalytic activity toward reactive oxygen and nitrogen species." Anal. Chim. Acta 1035 (2018) 44-50.
[7] J. Chen, S. Feng, F. Gao, E. Grant, J. Xu, S. Wang, X. Lu. "Fabrication of SERS‐active substrates using silver nanofilm‐coated porous anodic aluminum oxide for detection of antibiotics." J. Food Sci. 80.4 (2015) N834-N840.
[8] C. C. Ho, K. Zhao, T. Y. Lee. "Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography." Nanoscale 6.15 (2014) 8606-8611.
[9] C. J. Jia, L. D. Sun, F. Luo, X. D. Han, L. J. Heyderman, Z. Yan, G., J. Raabe. "Large-scale synthesis of single-crystalline iron oxide magnetic nanorings." J. Am. Chem. Soc. 130.50 (2008) 16968-16977.
[10] H. Chun, M. G. Hahm, Y. Homma, R. Meritz, K. Kuramochi, L. Menon, Y. J. Jung. "Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers." ACS nano 3.5 (2009): 1274-1278.
[11] Z. He, Y. Yang, H. W. Liang, J. W. Liu, S. H. Yu. "Nanowire genome: a magic toolbox for 1D nanostructures." Adv. Mater. 31.51 (2019) 1902807.
[12] L. X. Liu, W. Chen, H. B. Zhang, Q. W. Wang, F. Guan, Z. Z. Yu. "Flexible and multifunctional silk textiles with biomimetic leaf‐like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self‐derived hydrophobicity." Adv. Funct. Mater. 29.44 (2019) 1905197.
[13] S. Li, J. Wen, X. Mo, H. Long, H. Wang, J. Wang, G. Fang. "Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode." J. Power Sources 256 (2014) 206-211.
[14] S. Xu, Y. W. Yeh, G. Poirier, M. C. McAlpine, R. A. Register, N.Yao. "Flexible piezoelectric PMN–PT nanowire-based nanocomposite and device." Nano Lett. 13.6 (2013) 2393-2398.
[15] M. Toma, G. Loget, R. M. Corn. "Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films." Nano Lett. 13.12 (2013) 6164-6169.
[16] J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, J. Ye. "Enhanced electro‐optical properties of nanocone/nanopillar dual‐structured arrays for ultrathin silicon/organic hybrid solar cell applications." Adv. Energy Mater. 6.8 (2016) 1501793.
[17] N. Song, W. Wang, Y. Wu, D. Xiao, Y. Zhao. "Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes." J Phys Chem Solids 115 (2018) 148-155.
[18] W. Zhang, J. Zhang, P. Wu, G. Chai, R. Huang, F. Ma, J. Duan. "Parallel aligned nickel nanocone arrays for multiband microwave absorption." ACS Appl. Mater. Interfaces 12.20 (2020) 23340-23346.
[19] J. Martín, J. Maiz, J. Sacristan, C. Mijangos. "Tailored polymer-based nanorods and nanotubes by" template synthesis": From preparation to applications." Polymer 53.6 (2012) 1149-1166.
[20] J. Martin, C. Mijangos. "Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores." Langmuir 25.2 (2009) 1181-1187.
[21] H. Lu, G. M. Carroll, N. R. Neale, M. C. Beard. "Infrared quantum dots: Progress, challenges, and opportunities." ACS nano 13.2 (2019) 939-953.
[22] V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufrès, G. Gervais, T. Szkopek. "Two-dimensional magnetotransport in a black phosphorus naked quantum well." Nat. Commun. 6.1 (2015) 1-7.
[23] Y. Zhang, Y. Kim, M. J. Gilbert, N. Mason. "Electronic transport in a two-dimensional superlattice engineered via self-assembled nanostructures." NPJ 2D Mater. Appl. 2.1 (2018) 1-6.
[24] Y. Kim, T. I. Ryu, K. H. Ok, M. G. Kwak, S. Park, N. G. Park, J. W. Kim. "Inverted layer‐by‐layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high‐performance organic solar cells." Adv. Funct. Mater. 25.29 (2015) 4580-4589.
[25] X. P. Wei, Y. L. Luo, F. Xu, Y. S. Chen. "Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing." Synth Met 215 (2016) 216-222.
[26] T. Minamiki, Y. Sasaki, S. Su, T. Minami. "Development of polymer field-effect transistor-based immunoassays." Polym J 51.1 (2019) 1-9.
[27] C. W. Chang, M. H. Chi, C. W. Chu, H. W. Ko, Y. H. Tu, C. C. Tsai, J. T. Chen. "Microwave-annealing-induced nanowetting: a rapid and facile method for fabrication of one-dimensional polymer nanomaterials." RSC Adv. 5.35 (2015) 27443-27448
[28] T. Yanagishita, K. Nishio, H. Masuda. "Polymer through-hole membrane fabricated by nanoimprinting using metal molds with high aspect ratios." J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25.4 (2007) L35-L38.
[29] G. N. Harakas. "Production of Colorful Aluminum Keepsakes and Gas Sensing Smart Materials: Anodizing, Dyeing, and Etching Small Aluminum Parts on a Budget." J Chem Educ 95.7 (2018) 1187-1191.
[30] F. Keller, M. S. Hunter, D. L. Robinson. "Structural features of oxide coatings on aluminum." J. Electrochem. Soc. 100.9 (1953) 411.
[31] J. Dai, J. Singh, N. Yamamoto. "The effect of nano pore size and porosity on deformation behaviors of anodic aluminum oxide membranes." SAMPE Seattle 2017 Conference and Exhibition. 2017.
[32] Y. Patel, G. Janusas, A. Palevicius, A. Vilkauskas. "Development of nanoporous AAO membrane for nano filtration using the acoustophoresis method." Sensors 20.14 (2020) 3833.
[33] O. Jessensky, F. Müller, U. Gösele. "Self-organized formation of hexagonal pore arrays in anodic alumina." Appl. Phys. Lett. 72.10 (1998) 1173-1175.
[34] G. E. Thompson. "Porous anodic alumina: fabrication, characterization and applications." Thin solid films 297.1-2 (1997) 192-201.
[35] F. Li, L. Zhang, R. M. Metzger. "On the growth of highly ordered pores in anodized aluminum oxide." Chem. Mater. 10.9 (1998) 2470-2480.
[36] A. P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele. "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina." J. Appl. Phys. 84.11 (1998) 6023-6026.
[37] H. Huang, J. Qiu, M. Sun, W. Liu, X. Wei, E. Sakai, K. Ito. "A hard coating with MAO/AAO double layers prepared on aluminum in etidronic acid by DC oxidation." Surf. Coat. Technol. 360 (2019) 307-317.
[38] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, L. Jin. "A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films." Electrochim. Acta 178 (2015) 11-17.
[39] L. Zaraska, W. J. Stępniowski, E. Ciepiela, G. D. Sulka. "The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid." Thin Solid Films 534 (2013) 155-161.
[40] W. J. Stępniowski, Z. Bojar. "Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features." Surf. Coat. Technol. 206.2-3 (2011) 265-272.
[41] L. Zaraska, G. D. Sulka, M. Jaskuła. "Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time." J Solid State Electrochem 15.11-12 (2011) 2427-2436.
[42] W. Lee, R. Ji, U. Gösele, K. Nielsch. "Fast fabrication of long-range ordered porous alumina membranes by hard anodization." Nat. Mater. 5.9 (2006) 741-747.
Keller, F., M. S. Hunter, and D. L. Robinson. "Structural features of oxide coatings on aluminum." J. Electrochem. Soc. 100.9 (1953) 411.
[43] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, A. Yasumori. "Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization." J. Electrochem. Soc. 153.9 (2006) B384.
[44] F. A. Bruera, G. R. Kramer, M. L. Vera, A. E. Ares. "Synthesis and morphological characterization of nanoporous aluminum oxide films by using a single anodization step." Coatings 9.2 (2019) 115.
[45] H. Masuda, K. Fukuda. "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina." science 268.5216 (1995) 1466-1468.
[46] H. Masuda, K. Yada, A. Osaka. "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution." Jpn. J. Appl. Phys. 37.11A (1998) L1340.
[47] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura. "Highly ordered nanochannel-array architecture in anodic alumina." Appl. Phys. Lett. 71.19 (1997) 2770-2772.
[48] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura. "Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina." Appl. Phys. Lett. 78.6 (2001) 826-828.
[49] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, T. Tamamura. "Square and triangular nanohole array architectures in anodic alumina." Adv. Mater. 13.3 (2001) 189-192.
[50] P. A. Jacquet. "On the anodic behavior of copper in aqueous solutions of orthophosphoric acid." Trans. Electrochem. Soc. 69.1 (1936) 629.
[51] C. Y. Liu, A. Datta, Y. L. Wang. "Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces." Appl. Phys. Lett. 78.1 (2001) 120-122.
[52] D. Landolt. "Fundamental aspects of electropolishing." Electrochim. Acta 32.1 (1987) 1-11.
[53] D. Ma, S. Li, C. Liang. "Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions." Corros Sci 51.4 (2009) 713-718.
[54] W. Han, F. Fang. "Fundamental aspects and recent developments in electropolishing." Int. J. Mach. Tools Manuf. 139 (2019) 1-23.
[55] C. L. Haynes, R. P. Van Duyne. "Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics." J. Phys. Chem. B 105.24 (2001) 5599-5611.
[56] J. C. Hulteen, R. P. Van Duyne. "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces." J. Vac. Sci. Technol. A 13.3 (1995) 1553-1558.
[57] I. Mínguez-Bacho, F. Scheler, P. Büttner, K. Bley, N. Vogel, J. Bachmann. "Ordered nanopore arrays with large interpore distances via one-step anodization." Nanoscale 10.18 (2018) 8385-8390.
[58] G. M. Whitesides, B. Grzybowski. "Self-assembly at all scales." Science 295.5564 (2002) 2418-2421.
[59] O. D. Velev, N. D. Denkov, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, K. Nagayama. "Mechanism of formation of two-dimensional crystals from later particles on substrata." Trends in Colloid and Interface Science VII (1993) 366-367.
[60] Y. Xia, B. Gates, Y. Yin, Y. J. A. M. Lu. "Monodispersed colloidal spheres: old materials with new applications." Adv. Mater. 12.10 (2000) 693-713.
[61] S. M. Yang, N. Coombs, G. A. Ozin. "Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals." Adv. Mater. 12.24 (2000) 1940-1944.
[62] H. J. Nam, D. Y. Jung, G. R. Yi, H. Choi. "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres." Langmuir 22.17 (2006) 7358-7363.
[63] F. Fleischhaker, A. C. Arsenault, Z. H. U. O. Wang, V. Kitaev, F. C. Peiris, G. von Freymann, G. A. Ozin. "Redox‐Tunable Defects in Colloidal Photonic Crystals." Adv. Mater. 17.20 (2005) 2455-2458.
[64] D. H. Gu, J. Lee, H. W. Ban, G. Lee, M. Song, W.Choi, J. S. Son. "Colloidal Suprastructures Self-Organized from Oppositely Charged All-Inorganic Nanoparticles." Chem. Mater. 32.19 (2020) 8662-8671.
[65] A. S. Dimitrov, K. Nagayama. "Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces." Langmuir 12.5 (1996) 1303-1311.
[66] H. Wu, G. Niu, W. Ren, L. Jiang, O. Liang, J. Zhao, Y. H. Xie. "Crucial Impact of Hydrophilicity on the Self-Assembled 2D Colloidal Crystals Using Langmuir–Blodgett Method." Langmuir 36.34 (2020) 10061-10068.
[67] J. C. Hulteen, R. P. Van Duyne. "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces." J. Vac. Sci. Technol. A 13.3 (1995) 1553-1558.
[68] R. Micheletto, H. Fukuda, M. Ohtsu. "A simple method for the production of a two-dimensional, ordered array of small latex particles." Langmuir 11.9 (1995) 3333-3336.
[69] H. Li, J. Low, K. S. Brown, N. Wu. "Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template." IEEE Sens. J. 8.6 (2008) 880-884.
[70] J. Rybczynski, U. Ebels, M. Giersig. "Large-scale, 2D arrays of magnetic nanoparticles." Colloids Surf. A Physicochem. Eng. Asp. 219.1-3 (2003) 1-6.
[71] J. Aizenberg, P. V. Braun, P. Wiltzius. "Patterned colloidal deposition controlled by electrostatic and capillary forces." Phys. Rev. Lett. 84.13 (2000) 2997.
[72] H. W. Deckman, J. H. Dunsmuir. "Natural lithography." Appl. Phys. Lett. 41.4 (1982) 377-379.
[73] X. Chen, X. Wei, K. Jiang. "The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography." Nanotechnology 20.42 (2009) 425605.
[74] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, R. P. Van Duyne. "Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays." J. Phys. Chem. B 103.19 (1999) 3854-3863.
[75] L. Wen, R. Xu, Y. Mi, Y. Lei. "Multiple nanostructures based on anodized aluminium oxide templates." Nat. Nanotechnol. 12.3 (2017) 244-250.
[76] L. D. Rafailović, C. Gammer, J. Srajer, T. Trišović, J.Rahel, H. P. Karnthaler. "Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide." RSC Adv. 6.40 (2016) 33348-33352.
[77] A. Al-Haddad, Z. Zhan, C. Wang, S. Tarish, R. Vellacheria, Y. Lei. "Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning." ACS nano 9.8 (2015) 8584-8591.
[78] A. L. Lipson, D. J. Comstock, M. C. Hersam. "Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization." Small 5.24 (2009) 2807-2811.
[79] N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub. "Wettability switching techniques on superhydrophobic surfaces." Nanoscale Res. Lett. 2.12 (2007) 577-596.
[80] R. N. Wenzel. "Resistance of solid surfaces to wetting by water." Ind. Eng. Chem. Res. 28.8 (1936) 988-994.
[81] A. B. D. Cassie, S. Baxter. "Wettability of porous surfaces." Trans. Faraday Soc. 40 (1944) 546-551.
[82] M. Callies, D. Quere. "On water repellency." Soft matter 1.1 (2005) 55-61.
[83] K. Ma, T. S. Chung, R. J. Good. "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide." J Polym Sci B Polym Phys 36.13 (1998) 2327-2337.
[84] G. Nagayama, D. Zhang. "Intermediate wetting state at nano microstructured surfaces." Soft Matter 16.14 (2020) 3514-3521.
[85] Y.C.Lin. "The Kiss of the Rose: Inspired by biology, a surface with super-hydrophobicity and high water droplet adsorption capacity and applied to the future non-residue transfer technology." Thesis of the Institute of Nanotechnology, Jiaotong University (2010) 1 -63.
[86] Q. Z. Zhong, M. H. Yi, Y. Du, A. He, Z. K. Xu, L. S. Wan. "Multiple liquid manipulations on patterned surfaces with tunable adhesive property." Adv. Mater. Interfaces. 4(20) (2017) 1700490.
[87] Y. Wang, H. Yang, H. Liu, L. Zhang, R. Duan, X. Liu, J. Chen. "Controllable domain morphology in coated poly (lactic acid) films for high-efficiency and high-precision transportation of water droplet arrays." RSC Adv. 7(84) (2017) 53525-53531.
[88] D. Wu, S. Z. Wu, Q. D. Chen, Y. L. Zhang, J. Yao, X. Yao, Sun, H. B. "Curvature‐driven reversible in situ switching between pinned and roll‐down superhydrophobic states for water droplet transportation." Adv. Mater. 23(4) (2011) 545-549.
[89] W. Cheng, M. Steinhart, U. Gösele, R. B. Wehrspohn. "Tree-like alumina nanopores generated in a non-steady-state anodization." J. Mater. Chem. 17.33 (2007) 3493-3495.
[90] X. Li, G. Meng, Q. Xu, M. Kong, X. Zhu, Z. Chu, A. P. Li. "Controlled synthesis of germanium nanowires and nanotubes with variable morphologies and sizes." Nano Lett. 11.4 (2011) 1704-1709.
[91] A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek. "Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes." J. Membr. Sci. 319.1-2 (2008) 192-198.
[92] C. T. Liu, Y. L. Lin, C. W. Chu, C. W. Chang, Y. J. Chiu, T. Y. Chiu, J. T. Chen. "Asymmetries in porous membranes: fabrication of anodic aluminum oxide membranes with double-sized nanopores and controlled surface properties." J. Phys. Chem. C 123.23 (2019) 14540-14546.
[93] J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, X. Gao. "Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores." ACS Appl. Mater. Interfaces 4.10 (2012) 5678-5683.
[94] S. Hyun, O. Kwon, B. Y. Lee, D. Seol, B. Park, J. Y. Lee, J. K. Kim. "Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices." Nanoscale 8.3 (2016) 1691-1697.
[95] S. Kim, S. Hyun, J. Lee, K. S. Lee, W. Lee, J. K. Kim. "Nanoimprinting: Anodized Aluminum Oxide/Polydimethylsiloxane Hybrid Mold for Roll‐to‐Roll Nanoimprinting (Adv. Funct. Mater. 23/2018)." Adv. Funct. Mater. 28.23 (2018) 1870156.
[96] Y. Cho, G. Kim, Y. Cho, S. Y. Lee, H. Minsky, K. T. Turner, S. Yang. "Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays." Adv. Mater. 27.47 (2015) 7788-7793.
[97] S. Boonniyom, T. Osotchan, K. Subannajui. "Hot embossing of anodic aluminium oxide on high‐density polyethylene: a deeper understanding based on hard surface coating." Micro Nano Lett. 13.3 (2018) 357-362.
[98] H. Xie, W. H. Xu, S. H. Jia, T. Wu. "Tunable fabrication of biomimetic polypropylene nanopillars with robust superhydrophobicity and antireflectivity." Nanotechnology 32.39 (2021) 395301.
[99] D. Patil, A. Sharma, S. Aravindan, P. V. Rao. "Development of hot embossing setup and fabrication of ordered nanostructures on large area of polymer surface for antibiofouling application." Micro Nano Lett. 14.2 (2019) 191-195.
[100] R. Qian, Y. Yu. "Transition of polymers from rubbery elastic state to fluid state." Front. Chem. in China 4.1 (2009) 1-9.
[101] L. B. Huang, Y. Zhou, S. T. Han, Y. Yan, L. Zhou, V. A. L. Roy. "The role of a nanoparticle monolayer on the flow of polymer melts in nanochannels." Nanoscale 6.19 (2014) 11013-11018.
指導教授 鄭紹良 審核日期 2021-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明