博碩士論文 108226025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:3.147.68.138
姓名 彭書彧(Peng-Shu-Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 用於深紫外發光二極體的氮化硼生長
(Growth of boron nitride for deep ultraviolet light-emitting Diodes)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,深紫外(deep ultraviolet, DUV, 波長 ≤ 290 nm)發光二極體 (light-emitting diodes,
LEDs) 的外部量子效率很難突破 20%,遠低於可見光 LED 的水準,主要原因在於:深紫外
LED 的 P 型磊晶層必須同時具備高穿透率、高導電性,而這是一般 DUV LED 常用材料—氮
化鋁鎵(AlGaN)所不具備的特性。然而 hBN (hexagonal Boron Nitride)是近年來熱門的三五
族氮化物材料,其兼具高能帶、低電洞活化能的特性,能使深紫外光波段的光不被吸收,
亦能大幅提升電洞濃度,增加導電性,是深紫外 LED 所需的理想 P 型材料。此外,氮化硼
的能帶高達 6 eV,接近氮化鋁 (AlN) 的 6.1 eV,能阻擋電子離開量子井,增加 DUV LED 的
內部量子效率。文獻顯示,氮化硼的電洞活化能最低可達 30 meV,遠低於 AlN 的 510 meV,
能提供大量電洞進入量子井,提升電洞電子對在量子井的複合數量,增強 DUV LED 的發光
效率,也能降低操作電壓,減少熱能生成,有助於提升元件的使用壽命。上述的優點,使
氮化硼成為目前 DUV LED 非常熱門的 P 型材料
摘要(英) Despite years of research efforts, the external quantum efficiency of deep ultraviolet (DUV,
wavelength ≤ 290 nm) LEDs rarely exceed 20%, far below the level of visible LEDs. The main
reason is that the p-type contact layer of DUV LEDs must simultaneously fulfill the requirement of
high transparent and high conductive, which is extremely difficult to achieve with the commonly
used material, AlGaN. To address the issue, hexagonal boron nitride (hBN) is recently regarded as a
potential alternative to AlGaN. hBN has the characteristics of high energy band and low hole
activation energy, which can prevent light absorption and provide sufficient free hole concentration
in the p-type layer. Because of the two merits, hBN is an ideal p-type material for DUV LEDs. In
addition, the wide bandgap (6 eV) of hBN can form a large band offset with AlGaN, effectively
blocking the electron spill from quantum wells. The hole activation energy of boron nitride is
reported to be as low as 30 meV, which is much lower than the ~510 meV of AlN. With such small
activation energy, hBN can provide a large number of holes to enter the quantum well, enhancing
the quantum efficiency of DUV LEDs. The low hole activation energy can also lower the operating
voltage, reduce heat generation, and thus improve device lifetime. The above-mentioned advantages
make boron nitride a promising p-type material for DUV LEDs.
關鍵字(中) ★ 氮化硼 關鍵字(英)
論文目次 第一章、緒論……………………………………………………………………………
1.1.氮化硼應用於深紫外發光二極體的優勢……………………………...…1
1.2.氮化硼應用的技術現況……………………………………………………3
1.3.低溫生長相對於高溫生長的差異與優勢…………………………………4
1.4.實驗方法與概論……………………………………………………………6
第二章、 實驗方法、製程與儀器………………………………………………………
2.1. 有機金屬化學氣相沉積法………………………………………..………7
2.2. 掃描式電子顯微鏡 ………………………………………………………11
2.3. X 光繞射儀…………………………………………………………….…13
2.4. 原子力顯微鏡………………………………………………………….…15
第三章、分析與討論 …………………………………………………………………
3.1.磊晶結構與基本製成介紹………………………………………………..16
3.2.五三比與磊晶時間………………………………………………………..18
3.3.氮化硼脈衝流與持續流的效果……………………………………….…23
3.4.不同結構的氮化鋁上的氮化硼差異……………………………………28
第四章、結論與未來展望 …………………………………………………………… 33
參考文獻……………………………………………………………………………… 34
參考文獻 [1] H. X. Jiang and J. Y. Lin, Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond.
Sci. Technol. 29, 084003 (2014).
[2] X. H. Jiang et al. Reduction of the Mg Acceptor Activation Energy in GaN, AlN, Al0.83Ga0.17N
and MgGaδ-Doping (AlN)5/(GaN)1: The Strain Effect. J. Phys. D: Appl. Phys. 48, 475104 (2015).
[3] M. Soltani, R. Soref, T. Palacios, and D. Englund, AlGaN/AlN integrated photonics platform for
the ultraviolet and visible spectral range. Optics Express. 24, 25415-25423 (2016).
[4] R. A. Patil. et al. Size-controllable synthesis of Bi/Bi2O3 heterojunction nanoparticles using
pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted
photoluminescence. Nanoscale 8, 3565-3571 (2016).
[5] Seung Hee Lee. et al. Improvements in structural and optical properties of wafer-scale hexagonal
boron nitride flm by post-growth annealing. Scientific Reports. 9, 10590 (2019).
[6] Y. Zhang, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 459,
820-823 (2009).
[7] Th. Böker, et al. “Band structure of MoS2, MoSe2, and a - MoTe2: Angle-resolved photoelectron
spectroscopy and ab initio calculations. Phys. Rev. B. 64, 235305 (2001).
[8] L. Wang, et al. Negligible Environmental Sensitivity of Graphene in a Hexagonal Boron
Nitride/Graphene/h-BN Sandwich Structure. ACS Nano. 6, 9314–9319 (2012).
[9] M. Bokdam, G. Brocks, M. I. Katsnelson, and P. J. Kelly. Schottky barriers at hexagonal boron
nitride/metal interfaces: A first-principles study. Phys. Rev. B. 90, 085415 (2014).
[10] Xu Yang, et al. Growth of hexagonal boron nitride on sapphire substrate by
pulsed-mode metalorganic vapor phase epitaxy, Journal of crystal Growth. 482, 1-8 (2018).
[11] Q. S. Paduano, M. Snure, and J. Shoaf. Effect of V/III ratio on the growth of hexagonal boron
nitride by MOCVD. Mater. Res. Soc. Symp. Proc. 1726, 1–6 (2015).
[12] Chuang-Yuan Chiu, Growth of High-Quality AlN Via Pulsed-Flow MOCVD. Master′s thesis.
35
National Central University. (2020).
[13] Chun-Pin Huang, High Quality AlN and BN Grown by MOCVD for Deep UV LEDs. Master
Thesis. National Central University. (2020).
[14] Chun-Pin Huang, et al. Crystal Transformation of Cubic BN Nanoislands to Rhombohedral
BN Sheets on AlN for Deep-UV Light-Emitting Diodes, ACS Appl. Nano Mater. 5285–5290 (2020).
[15] Y. Kobayashi, et al. Hexagonal Boron Nitride Grown by MOVPE, Journal of Crystal Growth.
310, 5048–5052 (2008).
[16] J. Iwański, et al. Delamination of Large Area Layers of Hexagonal Boron Nitride Grown
by MOVPE, Acta Physica Polonica A. 139, 457-461 (2021).
[17] Adama Mballo, et al. Towards P-Type Conduction in Hexagonal Boron Nitride: Doping Study
and Electrical Measurements Analysis of hBN/AlGaN Heterojunctions. Nanomaterials, 11, 211
(2021).
[18] Kenji Watanabe, et al. Far-ultraviolet plane-emission handheld device based on hexagonal boron
nitride. Nature Photonics. 3, 591–594 (2009).
[19] R. Dahal, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet
photonic material. Appl. Phys. Lett. 98, 211110 (2011)
[20] S. Majety, et al. Epitaxial growth and demonstration of hexagonal BN/AlGaN p-n junctions for
deep ultraviolet photonics. Appl. Phys. Lett. 100, 061121 (2012
指導教授 賴昆佑 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明