博碩士論文 107327024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.189.192.180
姓名 蘇宗玄(Tsung-Hsuan Su)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 手持式植體骨整合檢測儀設計製作與比較驗證
(Design/Implementation and Validation Comparison of Handheld Detection Devices for Implant Osseointegration)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著植體技術發展,其植入手術已由牙科植體推廣至截肢植體,而手術成功與否則由骨整合 (植體穩固度) 的好壞作為判斷的依據。柱狀植體植入骨骼一般視為懸臂樑結構,當骨整合情況越好,其整體結構剛性越強,共振頻率上升;反之,則下降。本研究開發基於樹梅派之植體骨整合檢測裝置,相較於以工業電腦進行資料處理,具有小體積及可手持等優點,以Osstell®生產的標準結構物Testpeg®、及依據肢體植入手術設計之骨整合模型進行驗證,藉由裝置提供客觀量化數值,來建立骨整合評估方式,與先前以商用資料擷取卡及工業電腦結果做比較。
透過檢測裝置將交流掃頻訊號輸入至電感,使之與植體上端永久磁鐵產生交互變化的磁力激振結構物,由探頭偵測磁通量變化,再經由頻率響應函數計算獲得該懸臂樑結構的共振頻率,藉此評估骨整合狀況。研究中比較兩類探頭對相同結構的評估特性,分別為(1)雙電感對型、(2)雙電感-霍爾IC型,兩類探頭差異在於偵測磁場變化之元件,雙電感對型以第二電感透過法拉第定律將磁場變化轉換為電訊號輸出;雙電感-霍爾IC型則以霍爾IC透過霍爾效應將磁場變化轉換為電訊號輸出。
研究中比較兩種探頭之靈敏度、激振源與待測物距離及響應範圍 等,雙電感對型探頭靈敏度在同磁場強度下會隨訊號頻率而變,1 kHz時為2.8mV/G、10 kHz時為24.5 mV/G;而雙電感-霍爾IC型探頭在各頻率下皆維持1.5 mV/G,總體而言雙電感對型靈敏度較雙電感-霍爾IC型佳。
雙電感對型探頭對於待測結構物磁場強度並無限制,而雙電感-霍爾IC型探頭則須確認霍爾IC量測範圍,以本研究為例,所使用霍爾IC的量測範圍最大為±1000高斯,超出此範圍即無法正確響應磁場變化。
比較激振源與待測物距離,雙電感對型探頭為4.2mm;雙電感-霍爾IC型探頭則為2.5 mm,由頻率響應函數落差點的幅值比較,雙電感-霍爾IC型探頭在不同結構物上幅值皆大於雙電感對型探頭10倍以上,說明雙電感-霍爾IC型探頭的激振能力較佳。
綜合以上比較,雙電感對型在量測磁場範圍以及靈敏度上優於雙電感-霍爾IC型,但激振能力則以雙電感-霍爾IC型優於雙電感對型。
兩類探頭對於Testpeg®皆能量測其共振頻率,其中以雙電感-霍爾IC型量測效果較佳。在山羊股骨截肢模型方面,雙電感-霍爾IC型因待測物上配件的永久磁鐵磁場強度超過量測範圍,以致無法檢測評估;僅雙電感對型探頭能量測截肢模型共振頻率,其檢測結果也能夠反應剛性愈大(表示骨整合越完全)的介面組織,具有越高共振頻率值。
本研究所做基於樹梅派之檢測裝置,名片大小的樹梅派大幅減少檢測裝置體積,雖在抗雜訊及解析度方面不如已發產成熟的商用訊號擷取卡,但亦能透過使用者介面能顯示頻率響應圖及共振頻率,方便攜帶使用。訂定裝置輸入訊號為電壓3 V、1-10 kHz掃頻訊號以及量測距離為1 mm。可量測在6000Hz以下Testpeg®之共振頻率變化;在肢體骨整合模型上因解析度過低無法正確顯示共振頻率。
摘要(英) With the development of osseointegration of implants, implant placement has been extended from dental implants to amputation implants, and the success of the surgery is judged by the osseointegration (stability of the implant).
When implants are placed in bone, they are considered as cantilever beam structures. The better the osseointegration, the stronger the rigidity, and the higher the resonance frequency; on the contrary, the lower the resonance frequency. In this study, we developed a Raspberry Pi-based implant osseointegration detection device, which has the advantages of small size and handheld type. Validation was performed using the standard structure Testpeg® manufactured by Osstell® and an osseointegration model designed for limb implant surgery. The device provided objective and quantitative values to establish an osseointegration assessment method compared to previous commercial data acquisition cards and industrial computer results.
Through the detection device, the AC sweeping signal is input to the inductor, which generates alternating magnetic field excitating the structure. The resonance frequency of the cantilever beam structure was calculated from the frequency response function by the probe detecting the magnetic force change. Two types of probes were used to measure the same structure: (1) dual inductor pair type and (2) dual inductor-Hall IC type. The difference between two probes lies in the components for detecting the magnetic field change, the dual inductor pair type converts the magnetic field change into telecommunication signal output through Faraday′s law; the dual inductor-Hall IC type converts the magnetic field change into telecommunication signal output through Hall effect.
The sensitivity of the two types of probes, the distance between the excitation source and the structure to be assessed, and the response range were compared, the sensitivity of the dual inductor pair probe varies with the signal frequency at the same magnetic field, from 2 .8mV/G at 1 kHz to 24.5 mV/G at 10 kHz. The dual inductor-Hall IC probe maintains 1.5 mV/G at all frequencies, and overall the dual inductor pair type has better sensitivity than the dual inductor-Hall IC type.
The dual inductor pair type probe has no limitation on the magnetic field strength of the structure to be measured, while the dual inductor-Hall IC type probe requires confirmation of the Hall IC measurement range. For example, in this study, the measurement range is ±1000 Gauss, beyond which the magnetic field change cannot be correctly responded to.
Comparing the distance between the excitation source and the structure to be assessed, the dual inductor pair type probe is 4.2 mm; the dual inductor-Hall IC type probe is 2.5 mm, and comparing the peak-valley differences of the frequency response function drop point, the amplitude of the dual inductor-Hall IC type probe on different structures is greater than the dual inductor pair type probe by more than 10 times, which proves that the dual inductor-Hall IC type probe has better excitation capability.
In summary, the dual inductor-Hall IC type was superior to the dual inductor-Hall IC type in terms of magnetic field range and sensitivity, but the dual inductor-Hall IC type was superior to the dual inductor pair in terms of excitation capability. Both types of probes can measure the resonant frequency in Testpeg®, among which the dual inductor-Hall IC type is more effective. In the goat femoral amputation model, the dual inductance-Hall IC type could not be measured because the magnetic field strength of the permanent magnet on the structure to be assessed exceeded the measurement range. Only the dual inductor pair type can measure the resonance frequency, and the results can fully reflect the harder interface tissue (better osseointegration) with higher resonance frequency values.
The business card-sized Raspberry pi device reduces the size of the device and displays the frequency response graph and resonance frequency through the user interface, making it easy to carry and use. The input signal of the device is set at 3 V, 1-10 kHz sweep signal and the measurement distance is 1 mm.
The resonance frequency of Testpeg® can be measured below 6000Hz, the resonance frequency cannot be displayed correctly on the limb osseointegration model due to the low resolution.
關鍵字(中) ★ 共振頻率分析
★ 骨整合評估
★ 電磁式激振檢測
★ 樹梅派
★ 掌上型檢測裝置
關鍵字(英) ★ Resonance Frequency Analysis
★ Osseointegration Assessment
★ Electro-magnetic Inspection
★ Raspberry pi
★ Hand-held Inspection Device
論文目次 摘 要 I
致 謝 VI
目 錄 IX
圖目錄 XI
表目錄 XV
第一章 緒論 1
1-1 研究背景動機與目的 1
1-2 文獻回顧 2
1-2-1 牙科植體骨整合檢測方式 3
1-2-2 截肢植體骨整合檢測方式 8
1-3 論文範疇 11
第二章 理論基礎 12
2-1 磁場理論 12
2-1-1 電感及法拉第定律 12
2-1-2 磁通量密度 13
2-1-3 庫倫磁力定律 15
2-2 霍爾元件及霍爾效應 16
2-3 共振頻率法 17
2-3-1 懸臂樑結構共振頻率 17
2-3-2 振動訊號量測 18
2-4 訊號分析 20
2-4-1 頻譜分析 20
2-4-2 根均方值 21
2-4-3 頻率響應函數 22
2-4-4 訊雜比 23
第三章 檢測裝置設計與製作 24
3-1 硬體裝置 24
3-1-1 樹梅派Raspberry Pi 24
3-1-2 類比訊號輸出模組 26
3-1-3 類比訊號採集模組介紹 27
3-2 操作介面及功能 29
3-3 檢測探頭及電路 30
3-4 探頭規格與檢測性能 35
3-4-1 靈敏度 36
3-4-2 頻率響應檢測值 38
3-4-3 檢測動態範圍 39
3-4-4 檢測裝置與待測物間量測距離 42
第四章 實驗規劃 44
4-1 實驗架構 44
4-2 TestPeg®結構物量測 45
4-3 山羊股骨截肢模型量測 52
4-4 結果與分析 57
第五章 結論與未來展望 58
5-1 結論 58
5-2 未來展望 59
參考文獻 60
附錄 63
參考文獻 [1] 衛生福利部統計處,「身心障礙者人數按縣市及類別分」 https://dep.mohw.gov.tw/DOS/cp-2976-13821-113.html
[2] 陳信宇、徐維停、黃炳勳、張寶基、張誌剛, 輔具之友-膝下義肢的使用與維護保養. 2010.
[3] G. A. Zarb and T. Albrektsson, Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence Publishing Company, 1985.
[4] Y. Li and R. Brånemark, "Osseointegrated prostheses for rehabilitation following amputation," Der Unfallchirurg, vol. 120, no. 4, pp. 285-292, 2017.
[5] 林修白,「非接觸式雙電感植牙穩固度檢測裝置設計製作暨驗證研究」,碩士,生醫科學與工程學系,國立中央大學,2017.
[6] 李偉豪,「手持式電磁型態植體骨整合檢測裝置暨驗證」,碩士,機械工程學系, 國立中央大學,2020.
[7] Osseointegration Group of Australia. "What is Osseointegration?" https://www.osseointegration.org/osseointegration/
[8] P. Apse, "The longitudinal effectiveness of osseointegrated dental implants. The Toronto study: periimplant mucosal response," Int J Periodontics Restorative Dent, vol. 11, pp. 95-111, 1991.
[9] H. Oka, T. Yamamoto, K. Saratani, and T. Kawazoe, "Application of mechanical mobility of periodontal tissues to tooth mobility examination," Medical and Biological Engineering and Computing, vol. 27, no. 1, pp. 75-81, 1989.
[10] G. Mistry, O. Shetty, S. Shetty, and R. D. Singh, "Measuring implant stability: A review of different methods," Journal of Dental Implants, vol. 4, no. 2, p. 165, 2014.
[11] R. Vayron, E. Soffer, F. Anagnostou, and G. Haiat, "Ultrasonic evaluation of dental implant osseointegration," J. Biomech., Article vol. 47, no. 14, pp. 3562-3568, Nov 2014.
[12] W. Xu and K. Robinson, "X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study," Annals of Biomedical Engineering, vol. 36, no. 3, pp. 435-443, 2008.
[13] N. Meredith, D. Alleyne, and P. Cawley, "Quantitative determination of the stability of the implant‐tissue interface using resonance frequency analysis," Clinical oral implants research, vol. 7, no. 3, pp. 261-267, 1996.
[14] N. Meredith, "Assessment of implant stability as a prognostic determinant," International Journal of Prosthodontics, vol. 11, no. 5, 1998.
[15] M. Sjöström, S. Lundgren, H. Nilson, and L. Sennerby, "Monitoring of implant stability in grafted bone using resonance frequency analysis: A clinical study from implant placement to 6 months of loading," International journal of oral and maxillofacial surgery, vol. 34, no. 1, pp. 45-51, 2005.
[16] M. Yamane, M. Yamaoka, M. Hayashi, I. Furutoyo, N. Komori, and B. Ogiso, "Measuring tooth mobility with a no‐contact vibration device," Journal of periodontal research, vol. 43, no. 1, pp. 84-89, 2008.
[17] T. Shin Chia, C.-S. Chen, and M.-C. Pan, "Assessment of dental implantation osseointegration through electromagnetic actuation and detection," Journal of Medical Devices, vol. 8, no. 3, 2014.
[18] 牟汝振,「電磁式植牙骨整合穩固度檢測技術研究與裝置開發」,碩士,機械工程學系,國立中央大學,2015.
[19] H. M. Huang, S. Y. Lee, C. Y. Yeh, and C. T. Lin, "Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach," Clinical Oral Implants Research, vol. 13, no. 1, pp. 65-74, 2002.
[20] 莊瀚伯,「牙科植體術後骨缺損型態之結構分析」,博士,機械工程研究所,國立中央大學,2012.
[21] S.-C. Hung et al., "Artifact reduction of different metallic implants in flat detector C-arm CT," American Journal of Neuroradiology, vol. 35, no. 7, pp. 1288-1292, 2014.
[22] F. Shao, W. Xu, A. Crocombe, and D. Ewins, "Natural frequency analysis of osseointegration for trans-femoral implant," Annals of Biomedical Engineering, vol. 35, no. 5, pp. 817-824, 2007.
[23] M. Al Muderis et al., "Radiographic assessment of extremity osseointegration for the amputee," Technology and innovation, vol. 18, no. 2-3, p. 211, 2016.
[24] N. J. Cairns, M. J. Pearcy, J. Smeathers, and C. J. Adam, "Ability of modal analysis to detect osseointegration of implants in transfemoral amputees: a physical model study," Medical & biological engineering & computing, vol. 51, no. 1, pp. 39-47, 2013.
[25] S. Jeyapalina, J. P. Beck, K. N. Bachus, O. Chalayon, and R. D. Bloebaum, "Radiographic evaluation of bone adaptation adjacent to percutaneous osseointegrated prostheses in a sheep model," Clinical Orthopaedics and Related Research®, vol. 472, no. 10, pp. 2966-2977, 2014.
[26] S. Gupta, H.-J. Lee, K. J. Loh, M. D. Todd, J. Reed, and A. D. Barnett, "Noncontact strain monitoring of osseointegrated prostheses," Sensors, vol. 18, no. 9, p. 3015, 2018.
[27] W. Wang and J. P. Lynch, "IWSHM 2017: Application of guided wave methods to quantitatively assess healing in osseointegrated prostheses," Structural Health Monitoring, vol. 17, no. 6, pp. 1377-1392, 2018.
[28] W. Wang and J. P. Lynch, "Identification of bone fracture in osseointegrated prostheses using Rayleigh wave methods," in Health monitoring of structural and biological systems XII, 2018, vol. 10600: International Society for Optics and Photonics, p. 106000T.
[29] L. Zheng, J. Luo, B. C. Yang, J. Y. Chen, and X. D. Zhang, "3D finite element analysis of bone stress around distally osteointegrated implant for artificial limb attachment," in Key Engineering Materials, 2005, vol. 288: Trans Tech Publ, pp. 653-656.
[30] 張博欽,「下肢植體骨整合穩固度分析研究」,碩士,機械工程學系,國立中央大學,2020.
[31] T. K. Pal, A. Chakraborty, and S. Banerjee, "A micro-anatomical comparison of goat jaw cancellous bone with human mandible: Histomorphometric study for implant dentistry," Journal of the International Clinical Dental Research Organization, vol. 6, no. 1, p. 20, 2014.
[32] kirsten. "Mutual inductance." https://studylib.net/doc/18173117/mutual-inductance
[33] 周啟, 電磁學(一), 2020. [Online]. https://cu.nsysu.edu.tw/base/10001/course/10040512/content/public/generalMaterials/GP2_Lecture07.pdf.
[34] M. D. Mudaliar and N. Sivakumar, "IoT based real time energy monitoring system using Raspberry Pi," Internet of Things, vol. 12, p. 100292, 2020.
[35] Jstrom99. "RaspberryPi Model 4B." https://commons.wikimedia.org/w/index.php?curid=83463602
[36] Winson Semiconductor Corp. (2015). WSH135 Datasheet.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2021-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明