博碩士論文 108622016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:153 、訪客IP:3.21.104.109
姓名 孫東容(Dong-Rong Sun)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 以摩擦試驗探討斷層滑移對於微生物生存的影響
(The effect of seismic fault deformation on the survivability of microorganisms: an experimental approach)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地底下的微生物佔全球生物質量的五分之一,並在生物地球化學循環中扮演非常重要的角色。另一方面,地震是地殼釋放應力的一個普遍現象,地震破裂在斷層帶中造成物質的粉碎並驅動不同的物理化學作用。目前為止,有關微生物與地震之間的研究,主要是於地震前後分析斷層周圍的水樣,探討微生物多樣性和群落結構的變化,間接獲得兩者的交互作用,卻從未有過地震破裂對微生物增殖的直接影響評估。藉由特殊設計的岩石變形容器,本研究分別對混有Shewanella oneidensis 和 Pseudomonas putida (兩種常見的細菌)的飽和水高嶺土樣本進行旋剪試驗,以研究微生物遭受地震破裂的生存潛力。含微生物的樣品在10百萬帕的正(軸)向應力下以地震速率(1公尺/秒)滑移3公尺(約規模7的地震)與10公尺(約規模7.5的地震),並在實驗前後以直接計數法計算完整細胞的數目,以及連續稀釋法估算生存細胞的數目。結果顯示,壓密過程(旋剪前)對不同菌種有不同程度的破壞。比對旋剪前的數據,旋剪後的完整細胞大量減少(一個數量級以內),存活細胞更是隨著滑移距離增加而呈對數的減少(可達三到五個數量級)。根據已發表之斷層行為與機制,我們推測地震破裂時: (1)初期的粉碎作用大量減少細胞的數量,而弱化機制熱增壓的驅動使黏土顆粒間的間隙變大,使完整細胞較易被保存(與存活);(2)菌株遭受規模7的地震仍可存活;(3)遭受規模7.5的地震,因為溫度超過這些菌株所能承受的最大值,導致菌株的滅絕。本研究論證在地震破裂後斷層帶的微生物的存活與滅絕,並且說明熱增壓作用為微生物存活的機制。
摘要(英) Subsurface microorganisms have been estimated to constitute 1/5 of the global biomass, quantitatively playing an important role in biogeochemical cycling. On the other hand, earthquake is a common phenomenon of stress release in the crust. Seismic ruptures cause comminution of materials in the fault zone and drive different physicochemical actions. To date, the studies related to the interaction between microorganisms and earthquake focused on the change of microbial diversity and community structure by analyzing water sample around faults before and after an earthquake. However, the effects of seismic ruptures on microbial proliferation have never been investigated. In this study, by using a purpose-built sample holder, we applied rotary shearing on the water-saturated kaolinite amended with two kind of bacterial strains, Shewanella oneidensis and Pseudomonas putida, which are commonly found in various environments, to investigate the potential of microbial survival after seismic ruptures. To simulate fault propagation, the water-saturated kaolinite was deformed at a seismic slip rate of 1 m/s for a total slip of 3 m (~M7 earthquake) or 10 m (~M7.5 earthquake) under a normal stress of 10 MPa. Results showed that compression damaged the cells in different levels to strains. Intact and viable cells decreased by tens of percent and orders of magnitude after shearing, respectively. Based on the fault behavior and mechanism in publication, we infered that when an earthquake ruptures: (1) The initial comminution greatly reduce the number of cells. And the following weakening mechanism driven by thermal pressurization enlarge the gaps between clay particles, making more intact cells to be preserved and survived. (2) The strains can survive an earthquake of magnitude 7. (3) With an earthquake of magnitude 7.5, temperature raised during shearing imposes great stress on these strains, leading to the extinction. This study demonstrates the survival and extinction of microorganisms in the fault zone after a seismic rupture, and suggests that thermal pressurization is the mechanism for the survival of microorganisms.
關鍵字(中) ★ 地質微生物
★ 地震
★ 斷層滑移
★ 摩擦試驗
★ 熱增壓
關鍵字(英) ★ geomicrobiology
★ earthquake
★ fault propagation
★ rotary shear
★ thermal pressurization
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
一、 緒論 1
1.1 前言 1
1.2 研究動機與目的 5
二、 實驗材料與研究方法 7
2.1 實驗材料 7
2.1.1 高嶺土 7
2.1.2 細菌溶液 7
2.2 研究方法 8
2.2.1 實驗設計 8
2.2.2 製備細菌溶液材料 11
2.2.3 高速旋剪摩擦試驗 13
2.2.4 旋剪試驗後樣本處理 22
2.2.5 樣本觀察與分析 23
2.2.6 完整細胞數量估算方法之演進 27
三、 實驗結果 29
3.1 高速旋剪摩擦試驗 29
3.2 顯微鏡影像 32
3.3 可孵育細胞數量之估算 35
3.4 完整細胞數量之估算 37
四、 討論 42
4.1 旋剪試驗力學資料之解讀與比較 42
4.2 旋剪試驗對細菌造成的影響 45
4.2.1 壓密階段造成的影響 45
4.2.2 高速旋剪階段造成的影響 48
4.3 自然界中的隱示 52
五、 結論與建議 53
5.1 結論 53
5.2 未來工作 53
參考文獻 55
參考文獻 Abboud, R., Popa, R., Souza-Egipsy, V., Giometti, C. S., Tollaksen, S., Mosher, J. J., Findlay, R. H., & Nealson, K. H. (2005). Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol, 71(2), 811-816. https://doi.org/10.1128/AEM.71.2.811-816.2005
Alagappan, G., & Cowan, R. M. (2004). Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere, 54(8), 1255-1265. https://doi.org/10.1016/j.chemosphere.2003.09.013
Andersen, T. B., & Austrheim, H. (2006). Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth and Planetary Science Letters, 242(1-2), 58-72.
Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proc Natl Acad Sci U S A, 115(25), 6506-6511. https://doi.org/10.1073/pnas.1711842115
Boulton, C., Yao, L., Faulkner, D. R., Townend, J., Toy, V. G., Sutherland, R., Ma, S., & Shimamoto, T. (2017). High-velocity frictional properties of Alpine Fault rocks: Mechanical data, microstructural analysis, and implications for rupture propagation. Journal of Structural Geology, 97, 71-92.
Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Pseudotachylytes and earthquake source mechanics. International geophysics, 94, 87-133.
Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99(B2), 2601-2618.
Ehrlich, H. L. (1999). Microbes as geologic agents: their role in mineral formation. Geomicrobiology Journal, 16(2), 135-153.
Gough, H. L., & Stahl, D. A. (2003). Optimization of direct cell counting in sediment. Journal of microbiological methods, 52(1), 39-46.
Hazael, R., Foglia, F., Kardzhaliyska, L., Daniel, I., Meersman, F., & McMillan, P. (2014). Laboratory investigation of high pressure survival in Shewanella oneidensis MR-1 into the gigapascal pressure range. Front Microbiol, 5, 612. https://doi.org/10.3389/fmicb.2014.00612
Hazael, R., Meersman, F., Ono, F., & McMillan, P. F. (2016). Pressure as a Limiting Factor for Life. Life (Basel), 6(3). https://doi.org/10.3390/life6030034
Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64(1), 1-20.
Heuer, V. B., Inagaki, F., Morono, Y., Kubo, Y., Spivack, A. J., Viehweger, B., Treude, T., Beulig, F., Schubotz, F., Tonai, S., Bowden, S. A., Cramm, M., Henkel, S., Hirose, T., Homola, K., Hoshino, T., Ijiri, A., Imachi, H., Kamiya, N., Kaneko, M., Lagostina, L., Manners, H., McClelland, H.-L., Metcalfe, K., Okutsu, N., Pan, D., Raudsepp, M. J., Sauvage, J., Tsang, M.-Y., Wang, D. T., Whitaker, E., Yamamoto, Y., Yang, K., Maeda, L., Adhikari, R. R., Glombitza, C., Hamada, Y., Kallmeyer, J., Wendt, J., Wörmer, L., Yamada, Y., Kinoshita, M., & Hinrichs, K.-U. (2020). Temperature limits to deep subseafloor life in the Nankai Trough subduction zone. Science, 370(6521), 1230-1234. https://doi.org/10.1126/science.abd7934
Jaeger, J. (1971). Friction of rocks and stability of rock slopes. Geotechnique, 21(2), 97-134.
Kallmeyer, J. (2011). Detection and quantification of microbial cells in subsurface sediments. Adv Appl Microbiol, 76, 79-103. https://doi.org/10.1016/B978-0-12-387048-3.00003-9
Kepner Jr, R. L., & Pratt, J. R. (1994). Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiological reviews, 58(4), 603-615.
Kim, H., Kaown, D., Kim, J., Park, I.-W., Joun, W.-T., & Lee, K.-K. (2020). Impact of earthquake on the communities of bacteria and archaea in groundwater ecosystems. Journal of Hydrology, 583. https://doi.org/10.1016/j.jhydrol.2020.124563
Kirchman, D., Sigda, J., Kapuscinski, R., & Mitchell, R. (1982). Statistical analysis of the direct count method for enumerating bacteria. Applied and Environmental Microbiology, 44(2), 376-382.
Kuo, L.-W., Wu, W.-J., Kuo, C.-W., Smith, S. A. F., Lin, W.-T., Wu, W.-H., & Huang, Y.-H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities. Journal of Structural Geology, 150. https://doi.org/10.1016/j.jsg.2021.104419
Kuo, L. W., Song, S. R., Yeh, E. C., & Chen, H. F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18).
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., & Soh, W. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473-476.
Ma, S., Shimamoto, T., Yao, L., Togo, T., & Kitajima, H. (2014). A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthquake Science, 27(5), 469-497. https://doi.org/10.1007/s11589-014-0097-5
Macdonald, A. (2021). Adaptation to High Pressure in the Laboratory. In Life at High Pressure (pp. 327-352). Springer.
Morimura, S., Zeng, X., Noboru, N., & Hosono, T. (2020). Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. Journal of Hydrology, 581, 124341.
Morono, Y., Terada, T., Kallmeyer, J., & Inagaki, F. (2013). An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol, 15(10), 2841-2849. https://doi.org/10.1111/1462-2920.12153
Munna, M. S., Zeba, Z., & Noor, R. (2015). Influence of temperature on the growth of Pseudomonas putida. Stamford journal of microbiology, 5(1), 9-12.
Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A. F., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2-36. https://doi.org/10.1016/j.jsg.2012.02.018
Niemeijer, A., Fagereng, Å., Ikari, M., Nielsen, S., & Willingshofer, E. (2020). Faulting in the laboratory. In Understanding Faults (pp. 167-220). Elsevier.
Okeke, O. (2010). Influence of pressure gradients and fracturing in oil field rocks on hydrocarbon accumulation and exploration: a review. Global Journal of Geological Sciences, 8(1).
Rowe, C. D., & Griffith, W. A. (2015). Do faults preserve a record of seismic slip: A second opinion. Journal of Structural Geology, 78, 1-26.
Scholz, C. H. (2019). The mechanics of earthquakes and faulting. Cambridge university press.
Shimamoto, T. (1994). A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. Jour. Tectonic Res. Group of Japan, 39, 65-78.
Si, J., Li, H., Kuo, L., Pei, J., Song, S., & Wang, H. (2014). Clay mineral anomalies in the Yingxiu–Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9). Tectonophysics, 619, 171-178.
Suzuki, K., Shibuya, T., Yoshizaki, M., & Hirose, T. (2015). Experimental Hydrogen Production in Hydrothermal and Fault Systems: Significance for Habitability of Subseafloor H2 Chemoautotroph Microbial Ecosystems. In Subseafloor Biosphere Linked to Hydrothermal Systems (pp. 87-94). https://doi.org/10.1007/978-4-431-54865-2_8
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., & Horikoshi, K. (2008). Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proceedings of the National Academy of Sciences, 105(31), 10949-10954.
Tanner, D., & Brandes, C. (2019). Understanding Faults: Detecting, Dating, and Modeling. Elsevier.
Ujiie, K., Tsutsumi, A., & Kameda, J. (2011). Reproduction of thermal pressurization and fluidization of clay-rich fault gouges by high-velocity friction experiments and implications for seismic slip in natural faults. Geological Society, London, Special Publications, 359(1), 267-285.
Umar, S. S., Salam, H. I. A., Bello, R. Y., & Hill, D. J. (2018). Effect of Temperature and benzoate concentration (s) upon the growth of P. Putida and P. aeruginosa using agar and broth of Tryptone Soya and Basal Salt as growth media (s). International Journal of Advanced Academic Research, 4(9).
Vanlint, D., Mitchell, R., Bailey, E., Meersman, F., McMillan, P. F., Michiels, C. W., & Aertsen, A. (2011). Rapid acquisition of Gigapascal-high-pressure resistance by Escherichia coli. mBio, 2(1), e00130-00110. https://doi.org/10.1128/mBio.00130-10
Viesca, R. C., & Garagash, D. I. (2015). Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience, 8(11), 875-879.
余威論. (2009). 「速度-位移相關摩擦係數與巨型山崩運動特性」. 國立中央大學應用地質所,碩士論文.
指導教授 郭力維 林立虹(Li-Wei Kuo Li-Hung Lin) 審核日期 2021-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明