博碩士論文 108329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.145.84.47
姓名 徐聖家(Sheng-Jia Shiu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 熱機處理對TiAlNbCrVZr系高熵合金微結構和機械性質影響之研究
(Thermomechanical treatment on the microstructure and mechanical properties of TiAlNbCrVZr high-entropy alloy)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 本研究目的為設計密度接近5 g/cm3、降伏強度能達到1200 MPa以及塑性能維持15 %以上之高熵合金,首先將數種高熔點且密度較低之元素,用高溫電弧融煉技術鑄成具有簡單固溶相之六元TiAlCrVNbZr系列高熵合金,觀察Zr元素含量對整體微結構與機械性質之影響,並透過滾軋製程使其厚度降低並累積應變能,再將其以短時間退火熱處理使材料晶粒細化,藉由分析微結構與機械性質探討其強化機制,找出最合適的加工製程與熱處理參數。
研究結果顯示,鑄造態的TiAlCrVNbZr系列皆為單一BCC相,並能達到 1000 MPa以上的降伏強度與20.0 %以上的拉伸塑性。另外將此系列合金以熱機處理強化,發現給予冷滾軋試片較大的加工量,在熱處理後能得到較佳的機械性質組合。此外在冷滾軋前合金材料可藉由熱滾軋製程提高整體之延展性。本實驗中得到最佳的加工製程參數是先將材料進行50 %熱滾軋,再透過70 %冷滾軋,退火熱處理後TiAlCrVNbZr3、TiAlCrVNbZr5及TiAlVCrNbZr7皆能達到期望之機械性能,其中又以Ti65AlCrVNbZr7成分有最良好的機械性質,在熱處理後能達到1351 MPa的降伏強度與15.3 %的拉伸塑性,TiAlVCrNbZr10因再結晶溫度發生較早導致強度下降較快,在本實驗設計參數中無法達成預期目標,顯示隨合金之鋯元素含量增加,退火時再結晶抵抗能力減弱。
摘要(英) The purpose of this experiment is to design a high entropy alloy with density close to 5 g/cm3, yield strength of 1200 MPa and plastic strain maintained above 15%. First, several elements with high melting point and low density such as Ti, Al, V, Cr, Nb and Zr. They are cast into a alloy with simple solid solution phases by vacuum metallurgy and rapidly solidification technology. Moreover, the main strengthening mechanism is carried out through the rolling process. It can reduce the thickness of alloy and accumulate the strain energy in it. Then through annealing heat treatment in a short time to refine the grain of the material. Finally, by analyzing the microstructure and mechanical properties to explore the strengthening mechanism, and find the most suitable processing and heat treatment parameters.
According to the tensile test results, as-cast TiAlCrVNbZr series are all single BCC phases. And, they can achieve yield strength above 1000 MPa and tensile ductility above 20.0%. In addition, this series of alloys were strengthened by thermomechanical treatment. And applying a larger amount of processing to the cold-rolled test pieces can possess mechanical properties after heat treatment. The best processing parameters obtained in this experiment are to reduce the thickness of the alloy material by 50 % first by hot rolling, and then reduce the thickness by 70 % by cold rolling. After processing annealing, TiAlCrVNbZr3, TiAlCrVNbZr5 and TiAlVCrNbZr7 can achieve the desired mechanical properties. Among them, the optimum mechanical performance occurs at TiAlCrVNbZr7 with tensile yield strength of 1363 MPa and plastic strain of 16.3 % after heat treatment. TiAlVCrNbZr10 due to the earlier recrystallization temperature caused the strength to drop quickly. The expected target cannot be achieved in the design parameters of this experiment. It shows that as the zirconium content of the alloy increases, the resistance to recrystallization is weakened during annealing.
關鍵字(中) ★ 輕量化高熵合金
★ 非等原子比
★ 熱機處理
關鍵字(英) ★ light-weight HEAs
★ non-equiatomic
★ thermomechanical treatment
論文目次 總目錄
摘要 i
Abstract iii
致謝 v
總目錄 vi
表目錄 xi
圖目錄 xii
第一章 緒論 1
1-1前言 1
1-2研究目的 1
第二章文獻回顧 3
2-1高熵合金之發展與定義 3
2-2高熵合金之固溶體形成條件 4
2-3高熵合金四大效應[4,5] 6
2-3-1高熵效應 6
2-3-2晶格應變效應 7
2-3-3延遲擴散效應 7
2-3-4雞尾酒效應 8
2-4高熵合金之成分設計 8
2-4-1低密度高熵合金 8
2-4-2非等比例高熵合金 9
2-5機械行為之影響因素 10
2-5-1固溶強化 10
2-5-2熱機處理 11
第三章 實驗方法與步驟 18
3-1 元素選擇及設計方法 18
3-2 高熵合金試片製備 18
3-2-1 合金成分配製 18
3-2-2 合金熔煉 19
3-2-3 合金板材製作-墜落式鑄造 19
3-2-4 合金試片滾軋 19
3-2-4-1 冷滾軋 19
3-2-4-2 熱滾軋 20
3-3 熱處理製程 20
3-3-1 均質化熱處理 20
3-3-2再結晶退火熱處理 20
3-4 合金密度量測 21
3-5 高熵合金微觀組織分析 21
3-5-1 X光繞射儀(XRD) 21
3-5-2光學顯微鏡(Optical Microscopy) 22
3-5-3 掃描式電子顯微鏡(SEM) 22
3-5-4 能量散射光譜儀(EDS) 23
3-5-5 電子背向散射繞射(EBSD) 23
3-6 熱性質分析 23
3-6-1熱示差掃描熱量分析(DSC) 23
3-7 機械性質分析 23
3-7-1維氏硬度分析 24
3-7-2壓縮測試分析 24
3-7-3拉伸測試分析 24
第四章 結果與討論 40
4-1 合金成份設計 40
4-1-1合金選擇與固溶體之相關參數計算 40
4-1-2 成分分析 41
4-1-3 X-ray繞射分析 41
4-2 鑄造態合金機械性質與微結構分析 42
4-2-1 鑄造態微觀組織分析 42
4-2-2鑄造態機械性質 42
4-2-2-1 壓縮測試 42
4-2-2-2 拉伸測試 42
4-2-2-3 硬度分析 43
4-3 合金之熱機處理 43
4-3-1均質化熱處理 43
4-3-1-1熱處理溫度之選擇 43
4-3-1-2 均質化熱處理後的微觀組織分析 43
4-3-2滾軋及再結晶退火熱處理 44
4-3-2-1成分分析 44
4-3-2-2 X-ray繞射分析 44
4-3-3滾軋及再結晶退火後的微觀組織分析 45
4-3-3-1 CR80%微觀組織 45
4-3-3-2 CR70%微觀組織 45
4-3-3-3 HR50% CR70%微觀組織 46
4-3-4 滾軋及再結晶退火後拉伸測試 47
4-3-4-1 CR80%拉伸測試 47
4-3-4-2 CR70%拉伸測試 47
4-3-4-3 HR 50 % CR70%拉伸測試 48
4-3-5 熱機處理之結構與機制分析 49
第五章 結論 100
參考文獻 101


表目錄
表3-1相關元素之混合焓 (J/mol) 26
表3-2所選取元素之基本性質 26
表3-3 Ti65合金元素系列表 27
表3-4 管狀爐升溫時間與溫度關係 27
表4-1 Ti65(AlVCrNb)35-XZrX ¬六元合金元素系列表 51
表 4-2 Ti65(AlVCrNb)35-XZrX 六元合金設計之固溶體形成相關參數表 51
表 4-3 Ti65(AlVCrNb)35-XZrX鑄造態之 EDS 成分分析 52
表 4-4 Ti65(AlVCrNb)35-XZrX 六元合金晶格常數 52
表4-5 合金密度量測結果 53
表 4-6 Ti65(AlVCrNb)35-XZrX 六元合金鑄造態晶粒尺寸(μm)晶粒尺寸 53
表4-7 Ti65(AlVCrNb)35-XZrX 六元合金鑄造態壓縮性質 54
表4-8 Ti65(AlVCrNb)35-XZrX 六元合金鑄造態拉伸性質 54
表4-9 Ti65合金系列鑄造態之硬度值 55
表4-10 Ti65(AlVCrNb)35-XZrX系列於1000°C均質化2小時晶粒尺寸(μm) 55
表 4-11 Ti65(AlVCrNb)35-XZrX冷滾軋80 %之 EDS 成分分析 56
表 4-12 Ti65(AlVCrNb)35-XZrX冷滾軋70 %之 EDS 成分分析 56
表 4-13 Ti65(AlVCrNb)35-XZrX熱滾軋50 %冷滾軋70 %之EDS 57
表4-14 1000°C熱滾軋50%後晶粒尺寸(μm) 57
表4-15 Ti65(AlVCrNb)32Zr3 六元合金滾軋及再結晶退火後拉伸性質 58
表4-16 Ti65(AlCrVNb)30Zr5 六元合金滾軋及再結晶退火後拉伸性質 58
表4-17 Ti65(AlVCrNb)28Zr7 六元合金滾軋及再結晶退火後拉伸性質 59
表4-18 Ti65(AlCrVNb)25Zr10 六元合金滾軋及再結晶退火後拉伸性質 59
圖目錄
圖 2- 1 以混合熵值劃分合金[4] 12
圖2-2 二元至七元等比例合金XRD繞射圖[5] 12
圖2-3 混合熵值與n元合金之單一基質成分關係[6] 13
圖2-4 在(a)高熵合金與(b)一般合金中差排的影響[34] 13
圖2-5 具有五個主要元素的晶體結構示意圖(a)BCC結構 (b)FCC結構 [4] 14
圖2-6 X光繞射情形 (a)單一元素 (b)高熵合金 [35] 14
圖2-7 添加Al對於固溶相及硬度之影響[5] 15
圖2-8 合金成分配置示意圖[7] 15
圖2-9 Tix(AlCrVNb)100-x合金之XRD繞射圖[9] 16
圖2-10 等比例TiZrNbTa四元合金和Ta與Nb金屬之XRD繞射圖[44] 16
圖2-11不同加工量之Al0.25CoCrFeNi應力應變圖[20] 17
圖2-12 不同狀態之FeMnNiCoCr應力應變圖 與EBSD晶粒圖(a)冷軋 (b)再結晶[8] 17
圖3-1 合金試片製作及實驗分析流程圖 28
圖3-2 電弧融煉爐 29
圖3-3 電弧融煉爐使用之氬焊機 29
圖3-4 TiAlNbCrVZr六元合金鑄錠樣貌 30
圖3-5 墜落式鑄造電弧融煉爐 30
圖3-6 電弧融煉爐使用之氬焊機 31
圖3-7 TiAlNbCrVZr六元合金板材 31
圖3-8 TiAlNbCrVZr六元冷滾軋試片 32
圖3-9 熱滾軋機 32
圖3-10 熱滾軋升溫爐 33
圖3-11 TiAlNbCrVZr六元熱滾軋試片 33
圖3-12 真空管狀加熱爐 34
圖3-13 密度測量裝置 34
圖3-14 試片研磨機 35
圖3-15 X-ray繞射分析儀 35
圖3-16 光學顯微鏡 36
圖3-17能量分散質譜儀(左)與電子顯微鏡(右) 36
圖3-18 高溫熱卡掃描分析儀 37
圖3-19 超音波震盪機 37
圖3-20 維氏硬度機 38
圖3-21 壓縮試片 38
圖3-22 萬能試驗機 39
圖3-23 拉伸試片 39
圖4-1 Ti65(AlVCrNb)35-XZrX -系列鑄造態X光繞射圖 60
圖4-2 Ti65(AlVCrNb)32Zr3合金鑄造態之橫截面: (a)100倍,(b)200倍 61
圖4-3 Ti65(AlVCrNb)30Zr5合金鑄造態之橫截面: (a)100倍,(b)200倍 61
圖4-4 Ti65(AlVCrNb)28Zr7合金鑄造態之橫截面: (a)100倍,(b)200倍 62
圖4-5 Ti65(AlVCrNb)25Zr10合金鑄造態之橫截面: (a)100倍,(b)200倍 62
圖4-6 Ti65(AlVCrNb)35-XZrX -系列鑄造態壓縮測試 63
圖4-7 Ti65(AlVCrNb)35-XZrX -系列鑄造態拉伸測試 63
圖4-8 Ti65(AlVCrNb)35-XZrX 鑄造態硬度測試 64
圖4-9 Ti65(AlVCrNb)25-xZrx 合金之DSC曲線 64
圖4-10 Ti65(AlVCrNb)32Zr3合金1000°C均質化2小時之橫截面: 65
圖4-11 Ti65(AlVCrNb)30Zr5合金1000°C均質化2小時之橫截面 65
圖4-12 Ti65(AlVCrNb)28Zr7合金1000°C均質化2小時之橫截面: 66
圖4-13 Ti65(AlVCrNb)25Zr10合金1000°C均質化2小時之橫截面: 66
圖4-14 Ti65(AlCrVNb)32Zr3 冷軋80 %熱處理後之X光繞射圖 67
圖4-15 Ti65(AlCrVNb)30Zr5 冷軋80 %熱處理後之X光繞射圖 67
圖4-16 Ti65(AlCrVNb)28Zr7 冷軋80 %熱處理後之X光繞射圖 68
圖4-17 Ti65(AlCrVNb)25Zr10 冷軋80 %熱處理後之X光繞射圖 68
圖4-18 Ti65(AlCrVNb)32Zr3 冷軋70 %熱處理後之X光繞射圖 69
圖4-19 Ti65(AlCrVNb)30Zr5 冷軋70 %熱處理後之X光繞射圖 69
圖4-20 Ti65(AlCrVNb)28Zr7 冷軋70 %熱處理後之X光繞射圖 70
圖4-21 Ti65(AlCrVNb)25Zr10 冷軋70 %熱處理後之X光繞射圖 70
圖4-22 Ti65(AlCrVNb)32Zr3 熱軋50%再冷軋70 %熱處理後之X光繞射圖 71
圖4-23 Ti65(AlCrVNb)30Zr5 熱軋50%再冷軋70 %熱處理後之X光繞射圖 71
圖4-24 Ti65(AlCrVNb)28Zr7 熱軋50%再冷軋70 %熱處理後之X光繞射圖 72
圖4-25 Ti65(AlCrVNb)25Zr10 熱軋50%再冷軋70%熱處理後之X光繞射圖 72
圖4-26 Ti65(AlVCrNb)32Zr3冷軋80 %並1100°C再結晶退火之橫截面:(a)滾軋態,(b) 30秒,(c) 40秒,(d)50秒,(e)60秒 73
圖4-27 Ti65(AlVCrNb)30Zr5冷軋80 %並1100°C再結晶退火之橫截面: 74
圖4-28 Ti65(AlVCrNb)28Zr7冷軋80 %並1100°C再結晶退火之橫截面: 75
圖4-29 Ti65(AlVCrNb)25Zr10冷軋80 %並1100°C再結晶退火之橫截面: 76
圖4-30 Ti65(AlVCrNb)35-XZrx冷軋80 %並1100°C再結晶退火50秒橫截面: 77
圖4-31 Ti65(AlVCrNb)32Zr3冷軋70 %並1100°C再結晶退火之橫截面: 78
圖4-32 Ti65(AlVCrNb)30Zr5冷軋70 %並1100°C再結晶退火之橫截面: 79
圖4-33 Ti65(AlVCrNb)28Zr7冷軋70 %並1100°C再結晶退火之橫截面: 80
圖4-34 Ti65(AlVCrNb)25Zr10冷軋70 %並1100°C再結晶退火之橫截面: 81
圖4-35 Ti65(AlVCrNb)35-XZrx冷軋70 %並1100°C再結晶退火50秒橫截面: 82
圖4-36 Ti65(AlVCrNb)32Zr3合金經1000°C熱滾軋後之橫截面 83
圖4-37 Ti65(AlVCrNb)30Zr5合金經1000°C熱滾軋後之橫截面 83
圖4-38 Ti65(AlVCrNb)28Zr7合金經1000°C熱滾軋後之橫截面 84
圖4-39 Ti65(AlVCrNb)25Zr10合金經1000°C熱滾軋後之橫截面 84
圖4-40 Ti65(AlVCrNb)32Zr3熱軋50%冷軋70 %並1100°C再結晶退火之橫截面: 85
圖4-41 Ti65(AlVCrNb)30Zr5熱軋50%冷軋70 %並1100°C再結晶退火之橫截面: 86
圖4-42 Ti65(AlVCrNb)28Zr7熱軋50%冷軋70 %並1100°C再結晶退火之橫截面: 87
圖4-43 Ti65(AlVCrNb)25Zr10熱軋50%冷軋70 %並1100°C再結晶退火之橫截面: 88
圖4-44 Ti65(AlCrVNb)32Zr3 冷軋80 %熱處理後之拉伸測試 89
圖4-45 Ti65(AlCrVNb)30Zr5 冷軋80 %熱處理後之拉伸測試 89
圖4-46 Ti65(AlCrVNb)28Zr7 冷軋80 %熱處理後之拉伸測試 90
圖4-47 Ti65(AlCrVNb)25Zr10 冷軋80 %熱處理後之拉伸測試 90
圖4-48 Ti65(AlCrVNb)32Zr3 冷軋70 %熱處理後之拉伸測試 91
圖4-49 Ti65(AlCrVNb)30Zr5 冷軋70 %熱處理後之拉伸測試 91
圖4-50 Ti65(AlCrVNb)28Zr7 冷軋70 %熱處理後之拉伸測試 92
圖4-51 Ti65(AlCrVNb)25Zr10 冷軋70 %熱處理後之拉伸測試 92
圖4-52 Ti65(AlCrVNb)32Zr3 熱軋50%再冷軋70 %熱處理後之拉伸測試 93
圖4-53 Ti65(AlCrVNb)30Zr5熱軋50%再冷軋70 %熱處理後之拉伸測試 93
圖4-54 Ti65(AlCrVNb)28Zr7 熱軋50%再冷軋70 %熱處理後之拉伸測試 94
圖4-55 Ti65(AlCrVNb)25Zr10 熱軋50%再冷軋70 %熱處理後之拉伸測試 94
圖4-56 Ti65(AlVCrNb)32Zr3合金之20000倍破斷面: 95
圖4-57 Ti65(AlVCrNb)30Zr5合金之20000倍破斷面: 95
圖4-58 Ti65(AlVCrNb)28Zr7合金之20000倍破斷面: 96
圖4-59 Ti65(AlVCrNb)25Zr10合金之20000倍破斷面: 96
圖4-60 Ti65(AlVCrNb)35-xZrx合金冷軋70%之拉伸性質散佈圖 97
4-61 Ti65(AlVCrNb)35-xZrx合金冷軋70%之拉伸性質散佈圖 97
4-62 Ti65(AlVCrNb)35-xZrx合金冷軋70%之拉伸性質散佈圖 98
4-63 Ti65(AlVCrNb)25Zr10合金冷軋70%再結晶熱處理之硬度圖 98
4-64 Ti65(AlVCrNb)Zr合金冷軋80%(左)與冷軋70%(右)再結晶熱處理之EBSD橫截面: 99
參考文獻 1. ASM International. Handbook Committee, “Properties and Selection : Irons, Steels, and High-Performance Alloys”, Vol.1, Materials Park, OH : ASM International, 1990.
2. ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol.2, Materials Park, OH : ASM International, 1990.
3. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, “Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes”, ADVANCED ENGINEERING MATERIALS, Vol.6, pp.299-303, 2004.
4. J. W. Yeh, “Recent Progress in High-entropy Alloys”, Annales De Chimie – Science des Materiaux, Vol.31, pp. 633-648, 2006.
5. M. H. Tsai and J. W. Yeh., “High-Entropy Alloys: A Critical Review”, Materials Research Letters, Vol. 2, pp.107–123, 2014.
6. Zhou, Y., Zhou, D., Jin, X., Zhang, L., Du, X. and Li, B., “ Design of non-equiatomic medium-entropy alloys” , Scientific Reports, Vol.8, Article 1236, 2018.
7. Z. Li, D. Raabe, “Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties”, JOM, Vol.69, pp.2099–2106, 2017.
8. M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vol.72-73, pp.5-8, 2014.
9. X. K. Zhang, J. C. Huang, P. H. Lin, T. Y. Liu, Y. C. Wu, W. P. Li, Y. N. Wang, Y. C. Liao, Jason S. C. Jang, “Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys”, Journal of Alloys and Compounds, Vol.831, 2020.
10. C. C. Juan, M. H. Tsai, C. W. Tsai, C. M. Lin, W. R. Wang, C. C. Yang, S. K. Chen, S. J. Lin, J. W. Yeh, “Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys”, Intermetallics, Vol.62, pp.76-83, 2015.
11. R. Feng, Michael C. Gao, C. Lee, Michael Mathes, T. Zuo, S. Chen, Jeffrey A. Hawk, Y. Zhang, Peter K. Liaw, “Design of Light-Weight High-Entropy Alloys”. Entropy, Vol.18, pp.333, 2016.
12. A. Kumar, M. Gupta, “An Insight into Evolution of Light Weight High Entropy Alloys: A Review”, Metals, Vol.6, pp.199, 2016.
13. W. Chen, Q. H. Tang, H. Wang, Y. C. Xie, X. H. Yan, P. Q. Dai, “Microstructure and mechanical properties of a novel refractory AlNbTiZr high-entropy alloy”, Materials Science and Technology, Vol.34, Issue 11, 2018.
14. O. N. Senkov, S. V. Senkov, D. B. Miracle, C. Woodward, “Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system”, Materials Science and Engineering: A, Vol.565, pp.51-62, 2013.
15. O.N. Senkov, C. Woodward, D. B. Miracle, “Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys”, JOM, Vol.66, pp.2030-2042, 2014.
16. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, “Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy”, Materials Letters, Vol.142, pp.153-155, 2015.
17. O.N. Senkov, S.L. Semiatin, “Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working”, Journal of Alloys and Compounds, Vol.649, pp.1110-1123, 2015.
18. S. Zherebtsov, N. Yurchenko, E. Panina, M. Tikhonovsky, N. Stepanov, “Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy”, Intermetallics, Vol.116, 2020.
19. Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu, T.G. “Nieh, An assessment on the future development of high-entropy alloys:Summary from a recent workshop”, Intermetallics, Vol.66, pp.67-76, 2015.
20. J. Hou, M. Zhang, S. Ma, Peter. K. Liaw, Y. Zhang, J. Qiao, “Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling”, Materials Science & Engineering A, Vol.707, pp.593-601, 2017.
21. R.R. Eleti, V. Raju, M. Veerasham, S.R. Reddy, P.P. Bhattacharjee “Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy”, Materials Characterization, Vol.136, pp.286-292, 2018.
22. C. C. Juan, M. H. Tsai, C. W. Tsai, W. L. Hsu, C. M. Lin, S. K. Chen, S. J. Lin, J. W. Yeh, “Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining”, Materials Letters, Vol.184, pp.200-203, 2016.
23. Y. C. Huang, Y. C. Lai, Y. H. Lin, S. K. Wu, “A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy”, Journal of Alloys and Compounds, Vol.855, 2021.
24. S. Chen, K. K. Tseng, Y. Tong, W. Li, C. W. Tsai, J. W. Yeh, Peter K. Liaw, “Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy”, Journal of Alloys and Compounds, Vol.795, pp.19-26, 2019.
25. A. R. Miedema, P. F. de Châtel and F. R. de Boer. “Cohesion in alloys — fundamentals of a semi-empirical model”, Physica B+C, Vol.100, pp.1-28, 1980.
26. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw. “Solid-Solution Phase Formation Rules for Multi-component Alloys”, Advanced Engineering Materials, Vol.10, pp.534-538, 2008.
27. X. Yang and Y. Zhang. “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp.233-238, 2012.
28. S. GUO, C. T. LIU, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol.21, pp.433-446, 2011.
29. D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.
30. R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp.35-41, 1972.
31. J. W. Yeh,“高熵合金的發展”, 華岡工程學報, Vol.27, pp.1-18, 2011.
32. W. R. Jian, Z. Xie, S. Xu, Y. Su, X. Yao, Irene J. Beyerlein, “Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi”, Acta Materialia, Vol.199, pp.352-369, 2020.
33. S. Varalakshmi, M. Kamaraj, B.S. Murty, “Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying”, Materials Science and Engineering A, Vol.527, pp.1027-1030, 2010.
34. Carlyn R. LaRosa, Mulaine Shiha, Céline Varvenne, Maryam Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys”, Materials Characterization, Vol.151, pp.310-317, 2019.
35. J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, Vol.103, pp.41-46, 2007.
36. J. Zhang, X. Li, Y. Zhang, F. Zhang, H. Wu, X.Z. Wang, Q. Zhou, H. Wang, “Sluggish dendrite growth in an undercooled high entropy alloy”, Intermetallics, Vol.119, 2020.
37. R. Wang, Y. Tang, S. Li, Y. Ai, Y. Li, B. Xiao, L. Zhu, X. Liu, S. Bai “Effect of lattice distortion on the diffusion behavior of high-entropy alloys”, Journal of Alloys and Compounds, Vol.825, 2020.
38. S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, Current science, Vol.85, pp.1404-1406, 2013.
39. F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, Vol.159, pp.108161, 2019.
40. Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, “Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys”, Journal of Alloys and Compounds, Vol.805, pp.585-596, 2019
41. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. “Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol.19, pp.698-706, 2011.
42. O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, D. B. Miracle, “Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy”, Journal of Materials Science, Vol.47, pp.6522–6534, 2012.
43. N. D. Stepanov, N. Yu. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, M. A. Tikhonovsky. “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, Vol.31, pp.1184-1193, 2015.
44. V.T. Nguyen, M. Qian, Z. Shi, T. Song, L. Huang, J. Zou, “A novel quaternary equiatomic Ti-Zr-Nb-Ta medium entropy alloy (MEA)”, Intermetallics, Vol.101, pp.39-43, 2018.
45. C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer, D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, JOM, Vol.66, pp.1993-2001, 2014.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明