博碩士論文 108329601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.144.37.196
姓名 喬哈利(Muhammad Jauharul Maqnun)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱
(Effect of spacer on the fabrication and properties of TiZr-based BMG foams for bioimplant applications)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 本次研究中,使用鋁和銅兩種造孔劑作為生物植入材料成功製備了鈦鋯基金屬玻璃多孔材。基於所需的孔隙率,鈦鋯基金屬玻璃粉末與間隔顆粒以不同的體積分率混合,然後通過熱壓機在壓力300MPa、溫度520℃和維持5分鐘的時間下處理混合粉末。在通過化學反應去除間隔顆粒後獲得多孔樣品。 XRD 和 TEM 分析表明多孔樣品在熱壓過程後仍保持非晶狀態。通過 SEM 檢查確認製造的多孔樣品的孔隙率參數與所選的間隔顆粒相似。通過使用 Al 和 Cu 間隔顆粒,產生的孔徑分別約為 195 μm和 120 μm,與人類骨骼 (100 μm -325 μm) 結構相似。根據人體骨骼結構設計孔隙度分佈(3 層和 5 層)。透過Gibson 和 Ashby 模型控制樣品的孔隙率,可以獲得與人體骨骼相似的機械性能。將樣品的孔隙率從 2% 增加到 72.4% 證實了壓縮強度(從 1261 MPa 到 24 MPa)和楊氏係數(從 79.7 GPa到 1.6 GPa)的降低。腐蝕測試結果證實,如製備的多孔樣品所示,通過孔隙率為 40.4%、Ecorr 為 0.25 V 和 Icorr 為 4.27 x 10-9 A/mm2的 Cu 間隔顆粒可以獲得高耐腐蝕性。在生物相容性測試中,使用 Cu 間隔顆粒製備的多孔樣品顯示細胞活力隨著孵育時間的增加而增加,這意味著細胞不斷生長。孵育 8 小時後,觀察到細胞遷移並顯示距離減少約 600 μm。鈣沉積率的結果始終高於 100%,表明該樣品在人體中具有優異的生物相容性。
摘要(英) In this study, porous samples of TiZr-based BMG foams were successfully fabricated by using Al and Cu space holders as bio-implant materials. The TiZr-based MG powder mixed with spacer particles in the various ratio of volume fractions based on the desired porosity. The mixed powder was then processed by a hot pressing machine under 300 MPa of pressure, 520°C temperature, and 5 minutes of holding time. The porous sample was obtained after removing the spacer particles with chemical reactions. The XRD and TEM analysis exhibit that the porous samples retain their amorphous state after hot pressing process. The porosity parameters of fabricated porous samples were confirmed similar to the selected spacer particles by SEM examination. By using Al and Cu spacer particles resulting pore size of approximately 195 and 120 μm, respectively, which is similar to the human bones (100-325 μm). The porosity distribution was designed in gradient porosity (3 and 5 layers) based on the gradient structure of the human bones. Similar mechanical properties to the human bones can be obtained by controlling the porosity of the samples based on the Gibson and Ashby model. Increasing porosity of the samples from 2% to 72.4% confirmed a decrease in the compressive strength (from 1261 to 24 MPa) and Young’s modulus (from 79.7 to 1.6 GPa). The corrosion test results show that high corrosion resistance can be obtained as shown in the fabricated porous sample by Cu spacer particles in porosity of 40.4% with Ecorr of 0.25 V and Icorr of 4.27 x 10-9 A/mm2. In the biocompatibility test, the fabricated porous sample by using Cu spacer particles show that cell viability increased with increasing incubation time which means that the cell was growing continuously. After 8 h incubation, the cell migration was observed and showing a distance reduction of approximately 600 μm. The results of calcium deposition rate are always higher than 100% show that the sample positively biocompatible in the human body.
關鍵字(中) ★ 金屬玻璃多孔材
★ 造孔劑
★ 熱壓
★ 生物材料
關鍵字(英) ★ BMG foam
★ spacer holder
★ hot-pressing
★ biomaterials
論文目次 摘要 ..................................................................................................................................i
Abstract ........................................................................................................................... ii
Contents ........................................................................................................................... v
List of Tables ..................................................................................................................ix
List of Figures .................................................................................................................xi
Chapter 1. INTRODUCTION ......................................................................................... 1
1-1 Background of study ............................................................................................. 1
1-2 Motivation and goals ............................................................................................. 3
Chapter 2. LITERATURE STUDY ................................................................................ 6
2-1 Characteristics of bio-implant materials ............................................................... 6
2-2 Human bones ......................................................................................................... 7
2-2-1 Bone cells ....................................................................................................... 8
2-2-2 Bone remodeling process ............................................................................... 9
2-2-3 Mechanical properties of bone tissue ............................................................ 9
2-3 Biocompatible TiZr-based BMGs ....................................................................... 11
2-4 BMG foams as porous materials ......................................................................... 13
2-4-1 Porous materials ........................................................................................... 13
2-4-2 Difficulties of BMG foams as porous implants ........................................... 14
2-5 Designing of TiZr-based BMG foams ................................................................ 14
2-6 Fabricating of TiZr-based BMG foams .............................................................. 15
2-6-1 Space holder ................................................................................................. 15
2-6-2 Replication ................................................................................................... 16
2-6-3 Bubble generation ........................................................................................ 17
2-6-4 Freeze casting .............................................................................................. 17
2-6-5 Rapid prototyping ........................................................................................ 18
2-7 Selected spacer holder particles .......................................................................... 18
2-8 Corrosion properties ............................................................................................ 19
2-9 Similarity of SBF and HBSS with human plasma blood .................................... 21
Chapter 3. EXPERIMENTAL DETAILS ..................................................................... 22
3-1 Materials .............................................................................................................. 22
3-1-1 Apparatus and chemicals ............................................................................. 22
3-1-2 Instrument .................................................................................................... 23
3-2 Experimental methods ......................................................................................... 25
3-2-1 Sample fabrication ....................................................................................... 25
3-2-2 Thermal conductivity ................................................................................... 26
3-2-3 Thermal analysis .......................................................................................... 27
3-2-4 Density measurement ................................................................................... 27
3-2-5 Real porosity ................................................................................................ 28
3-2-6 Microstructure characterization ................................................................... 29
3-2-7 Morphology ................................................................................................. 30
3-2-8 Mechanical properties .................................................................................. 30
3-2-9 Corrosion tests ............................................................................................. 32
3-2-10 Biocompatibility Test ................................................................................ 32
Chapter 4. RESULTS AND DISCUSSION .................................................................. 35
4-1 Thermal conductivity .......................................................................................... 35
4-2 Thermal stability ................................................................................................. 36
4-3 Removal of spacer particles ................................................................................ 37
4-4 Real porosity ....................................................................................................... 38
4-5 Morphology of TiZr-based BMG foams ............................................................. 39
4-6 Structural characterization .................................................................................. 40
4-7 Mechanical properties ......................................................................................... 41
4-7-1 Compressive strength and Young’s modulus .............................................. 41
4-7-2 Gibson and Ashby model for predicting Young’s modulus and compressive strength .................................................................................................................. 43
4-8 Corrosion properties ............................................................................................ 44
4-9 Biocompatibility test ........................................................................................... 46
4-9-1 Cell viability ................................................................................................ 46
4-9-2 Migration capacity ....................................................................................... 46
4-9-3 Calcium deposition ...................................................................................... 47
Chapter 5. CONCLUSIONS ......................................................................................... 48
REFERENCES .............................................................................................................. 50
Tables ............................................................................................................................. 62
Figures ........................................................................................................................... 76
參考文獻 [1] B. Basu, D. Katti and A. Kumar, ADVANCED BIOMATERIALS Fundamentals, Processing , and Applications. United States: A John Wiley & Sons, Inc., 2009.
[2] Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering R: Reports, vol. 87, pp. 1–57, 2015.
[3] M. Abdel-Hady Gepreel and M. Niinomi, “Biocompatibility of Ti-alloys for long-term implantation,” J. Mech. Behav. Biomed. Mater., vol. 20, pp. 407–415, 2013.
[4] D. G. K. Hong and J. Oh, “Recent advances in dental implants,” Maxillofac. Plast. Reconstr. Surg., vol. 39, pp. 1-10, 2017.
[5] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review,” Progress in Materials Science, vol. 54 , pp. 397–425, 2009.
[6] R. Huiskes, H. Weinans, and B. Van Rietbergen, “The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials,” Clin. Orthop. Relat. Res., no. 274, pp. 124–134, 1992.
[7] S. Nag, R. Banerjee, and H. L. Fraser, “Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys,” in Materials Science and Engineering C, vol. 25, no. 3, pp. 357–362, 2005.
[8] A. Inoue, “Stabilization of Metallic Supercooled Liquid,” Acta Mater., vol. 48, pp. 279–306, 2000.
[9] A. L. Greer, “Metallic glasses...on the threshold,” Mater. Today, vol. 12, no. 1–2, pp. 14–22, 2009.
[10] M. Telford, “The case for bulk metallic glass,” Mater. Today, vol. 7, no. 3, pp. 36–43, 2004.
[11] T. Zhang and A. Inoue, “Ti-based amorphous alloys with a large supercooled liquid region,” Mater. Sci. Eng. A, vol. 304–306, no. 1–2, pp. 771–774, 2001.
[12] T. Zhang and A. Inoue, “Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization,” Materials Transactions, JIM, vol. 39, no. 10. pp. 1001–1006, 1998.
[13] D. V. Louzguine and A. Inoue, “Nanocrystallization of Ti-Ni-Cu-Sn amorphous alloy,” Scr. Mater., vol. 43, no. 4, pp. 371–376, 2000.
[14] A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti 13.8Cu12.5Ni10.0Be22.5,” Appl. Phys. Lett., vol. 63, pp. 2342–2344, 1993.
[15] A. Inoue, C. Fan, and T. Masumoto, “Thermal Properties of Zr-TM-B and Zr-TM-Ga (TM=Co, Ni, Cu) Amorphous Alloys with Wide Range of Supercooling,” Mater. Trans. JIM, vol. 36, no. 12, pp. 1411–1419, 1995.
[16] J. J. Oak, D. V. Louzguine-Luzgin, and A. Inoue, “Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior,” J. Mater. Res., vol. 22, no. 5, pp. 1346–1353, 2007.
[17] Y. C. Kim, W. T. Kim, and D. H. Kim, “A development of Ti-based bulk metallic glass,” Mater. Sci. Eng. A, vol. 375–377, no. 1-2 SPEC. ISS., pp. 127–135, 2004.
[18] K. F. Xie, K. F. Yao, and T. Y. Huang, “A Ti-based bulk glassy alloy with high strength and good glass forming ability,” Intermetallics, vol. 18, no. 10, pp. 1837–1841, 2010.
[19] J. J. Oak, D. V. Louzguine-Luzgin, and A. Inoue, “Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants,” Mater. Sci. Eng. C, vol. 29, no. 1, pp. 322–327, 2009.
[20] P. Gong, K. F. Yao, X. Wang, and Y. Shao, “Centimeter-sized Ti-based bulk metallic glass with high specific strength,” Prog. Nat. Sci. Mater. Int., vol. 22, no. 5, pp. 401–406, 2012.
[21] Y. J. Huang, J. Shen, J. F. Sun, and X. B. Yu, “A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability,” J. Alloys Compd., vol. 427, no. 1–2, pp. 171–175, 2007.
[22] M. Niinomi, “Recent research and development in titanium alloys for biomedical applications and healthcare goods,” Sci. Technol. Adv. Mater., vol. 4, no. 5, pp. 445–454, 2003.
[23] C. H. Lin, C. H. Huang, J. F. Chuang, J. C. Huang, J. S. C. Jang, and C. H. Chen, “Rapid screening of potential metallic glasses for biomedical applications,” Mater. Sci. Eng. C, vol. 33, no. 8, pp. 4520–4526, 2013.
[24] C. H. Huang, J. J. Lai, J. C. Huang, C. H. Lin, and J. S. C. Jang, “Effects of Cu content on electrochemical response in Ti-based metallic glasses under simulated body fluid,” Mater. Sci. Eng. C, vol. 62, pp. 368–376, 2016.
[25] I. O. Igbokwe, E. Igwenagu, and N. A. Igbokwe, “Aluminium toxicosis: A review of toxic actions and effects,” Interdiscip. Toxicol., vol. 12, no. 2, pp. 45–70, 2020.
[26] M. L. Morrison, R. A. Buchanan, A. Peker, P. K. Liaw, and J. A. Horton, “Electrochemical behavior of a Ti-based bulk metallic glass,” J. Non. Cryst. Solids, vol. 353, no. 22–23, pp. 2115–2124, 2007.
[27] S. L. Zhu, X. M. Wang, F. X. Qin., and A. Inoue, “A new Ti-based bulk glassy alloy with potential for biomedical application,” Mater. Sci. Eng. A, vol. 459, no. 1–2, pp. 233–237, 2007.
[28] G. Xie, F. Qin, S. Zhu, and A. Inoue, “Ni-free Ti-based bulk metallic glass with potential for biomedical applications produced by spark plasma sintering,” Intermetallics, vol. 29, pp. 99–103, 2012.
[29] J. Fornell et al., “Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti 40Zr 10Cu 38Pd 12 metallic glass,” J. Mech. Behav. Biomed. Mater., vol. 4, no. 8, pp. 1709–1717, 2011.
[30] F. X. Qin, X. M. Wang, G. Q. Xie, and A. Inoue, “Distinct plastic strain of Ni-free Ti-Zr-Cu-Pd-Nb bulk metallic glasses with potential for biomedical applications,” Intermetallics, vol. 16, no. 8, pp. 1026–1030, 2008.
[31] J. Fornell et al., “Improved plasticity and corrosion behavior in Ti-Zr-Cu-Pd metallic glass with minor additions of Nb: An alloy composition intended for biomedical applications,” Mater. Sci. Eng. A, vol. 559, pp. 159–164, 2013.
[32] S. L. Zhu, X. M. Wang, and A. Inoue, “Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1 cm,” Intermetallics, vol. 16, no. 8, pp. 1031–1035, 2008.
[33] Y. B. Wang, H. F. Li, Y. Cheng, Y. F. Zheng, and L. Q. Ruan, “In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material,” Mater. Sci. Eng. C, vol. 33, no. 6, pp. 3489–3497, 2013.
[34] G. Wang, H. B. Fan, Y. J. Huang, J. Shen, and Z. H. Chen, “A new TiCuHfSi bulk metallic glass with potential for biomedical applications,” Mater. Des., vol. 54, pp. 251–255, 2014.
[35] Y. Sun et al., “Comparison of mechanical behaviors of several bulk metallic glasses for biomedical application,” J. Non. Cryst. Solids, vol. 406, pp. 144–150, 2014.
[36] S. Pang, Y. Liu, H. Li, L. Sun, Y. Li, and T. Zhang, “New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications,” J. Alloys Compd., vol. 625, pp. 323–327, 2015.
[37] Y. C. Liao et al., “Synthesis and characterization of an open-pore toxic-element-free Ti-based bulk metallic glass foam for bio-implant application,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 4518–4526, 2020.
[38] V. T. Nguyen et al., “Synthesis of biocompatible TiZr-based bulk metallic glass foams for bio-implant application,” Mater. Lett., vol. 256, 2019.
[39] V. T. Nguyen et al., “Open-cell tizr-based bulk metallic glass scaffolds with excellent biocompatibility and suitable mechanical properties for biomedical application,” J. Funct. Biomater., vol. 11, no. 2, 2020.
[40] J. Daniel, G. Stephen, G. L. Kumar, R. Vinesh, and G. Vikram, “Bio implant materials: Requirements, Types-and Properties-A review,” no. 12, pp. 18–26, 2017.
[41] M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, vol. 19, no. 18, pp. 1621–1639, 1998.
[42] Sujata V. Bhat, Biomaterials. Mumbai: Alpha Science International Ltd., 2002.
[43] K. L. Ong, S. Lovald, and J. Black, Orthopaedic Biomaterials in Research and Practice, 2nd ed. CRC Press, 2014.
[44] K. M., T. RA., and S. D.D., “Hydrophilic thermoplastic polyurethanes, molecular weight on physical properties, in clinical implant materials,” in Advances in materials, G. Heimke,., vol. 9, pp. 129–143, 1990.
[45] A. G. Robling, A. B. Castillo, and C. H. Turner, “Biomechanical and molecular regulation of bone remodeling,” Annu. Rev. Biomed. Eng., vol. 8, pp. 455–498, 2006.
[46] H. K. Datta, W. F. Ng, J. A. Walker, S. P. Tuck, and S. S. Varanasi, “The cell biology of bone metabolism,” J. Clin. Pathol., vol. 61, no. 5, pp. 577–587, 2008.
[47] John E. Hall, Textbook of Medical Physiology, 12th ed. Saunders Elsevier, 2010.
[48] J. R. Jameson, “Characterization of Bone Material Properties and Microstructure in Osteogenesis Imperfecta/Brittle Bone Disease,” Marquette University, 2014.
[49] J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology. I: Structure, blood supply, cells, matrix, and mineralization.,” Instr. Course Lect., vol. 45, pp. 371–386, 1996.
[50] P. A. Downey and M. I. Siegel, “Bone biology and the clinical implications for osteoporosis,” Phys. Ther., vol. 86, no. 1, pp. 77–91, 2006.
[51] M. Capulli, R. Paone, and N. Rucci, “Osteoblast and osteocyte: Games without frontiers,” Arch. Biochem. Biophys., vol. 561, no. May, pp. 3–12, 2014.
[52] J. W. S. S. Miller S. C., de Saint-Georges L., Bowman B. M., “Bone lining cells: structure and function,” Scanning Microsc., vol. 3, no. 3, pp. 953–961, 1989.
[53] T. A. Franz-Odendaal, B. K. Hall, and P. E. Witten, “Buried alive: How osteoblasts become osteocytes,” Dev. Dyn., vol. 235, no. 1, pp. 176–190, 2006.
[54] N. A. Sims and J. H. Gooi, “Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption,” Semin. Cell Dev. Biol., vol. 19, no. 5, pp. 444–451, 2008.
[55] K. Matsuo and N. Irie, “Osteoclast-osteoblast communication,” Arch. Biochem. Biophys., vol. 473, no. 2, pp. 201–209, 2008.
[56] S. L. Dallas, M. Prideaux, and L. F. Bonewald, “The osteocyte: An endocrine cell . . . and more,” Endocr. Rev., vol. 34, no. 5, pp. 658–690, 2013.
[57] S. Khosla, M. J. Oursler, and D. G. Monroe, “Estrogen and the skeleton,” Trends Endocrinol. Metab., vol. 23, no. 11, pp. 576–581, 2012.
[58] C. Sobacchi, A. Schulz, F. P. Coxon, A. Villa, and M. H. Helfrich, “Osteopetrosis: Genetics, treatment and new insights into osteoclast function,” Nat. Rev. Endocrinol., vol. 9, no. 9, pp. 522–536, 2013.
[59] J. C. Crockett, D. J. Mellis, D. I. Scott, and M. H. Helfrich, “New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: Focus on the RANK/RANKL axis,” Osteoporos. Int., vol. 22, no. 1, pp. 1–20, 2011.
[60] S. Fukumoto and T. J. Martin, “Bone as an endocrine organ,” Trends Endocrinol. Metab., vol. 20, no. 5, pp. 230–236, 2009.
[61] D. R. Carter and D. M. Spengler, “Mechanical properties and composition of cortical bone,” Clin. Orthop. Relat. Res., vol. NO. 135, pp. 192–217, 1978.
[62] F. G. Evans, “The mechanical properties of bone, Thomas Springfield, pp. 37–48, 1973.
[63] M. B. Schaffler and D. B. Burr, “Stiffness of compact bone: Effects of porosity and density,” J. Biomech., vol. 21, no. 1, pp. 13–16, 1988.
[64] E. D. Sedlin, “A rheologic model for cortical bone. A study of the physical properties of human femoral samples.,” Acta Orthop. Scand. Suppl., 1965.
[65] J. D. Currey and G. Butler, “The mechanical properties of bone tissue in children,” J. Bone Joint Surg. Am., vol. 57, no. 6, p. 810—814, Sep. 1975.
[66] C. Hirsch and F. G. Evans, “Studies on some physical properties of infant compact bone,” Acta Orthop., vol. 35, no. 1–4, pp. 300–313, 1965.
[67] C. Öhman et al., “Compressive behaviour of child and adult cortical bone,” Bone, vol. 49, no. 4, pp. 769–776, 2011.
[68] J.-P. Berteau, C. Baron, M. Pithioux, P. Chabrand, and P. Lasaygues, “Mechanical properties of children cortical bone: A bimodal characterization,” Acoust., pp. 1–5, 2012.
[69] A. M. Agnew et al., “The response of pediatric ribs to quasi-static loading: Mechanical properties and microstructure,” Ann. Biomed. Eng., vol. 41, no. 12, pp. 2501–2514, 2013.
[70] C. Pezowicz and M. Głowacki, “The mechanical properties of human ribs in young adult,” Acta Bioeng. Biomech., vol. 14, no. 2, pp. 53–60, 2012.
[71] J. S. Nyman, A. Roy, X. Shen, R. L. Acuna, J. H. Tyler, and X. Wang, “The influence of water removal on the strength and toughness of cortical bone,” J. Biomech., vol. 39, no. 5, pp. 931–938, 2006.
[72] P. Zioupos and J. D. Currey, “Changes in the stiffness, strength, and toughness of human cortical bone with age,” Bone, vol. 22, no. 1, pp. 57–66, 1998.
[73] X. Wang, X. Shen, X. Li, and C. Mauli Agrawal, “Age-related changes in the collagen network and toughness of bone,” Bone, vol. 31, no. 1, pp. 1–7, 2002.
[74] J. C. Lotz, T. N. Gerhart, and W. C. Hayes, “Mechanical properties of metaphyseal bone in the proximal femur,” J. Biomech., vol. 24, no. 5, 1991.
[75] X. N. Dong and X. E. Guo, “The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity,” J. Biomech., vol. 37, no. 8, pp. 1281–1287, 2004.
[76] D. T. Reilly and A. H. Burstein, “The elastic and ultimate properties of compact bone tissue,” J. Biomech., vol. 8, no. 6, 1975.
[77] M. T. Fondrk, E. H. Bahniuk, and D. T. Davy, “A damage model for nonlinear tensile behavior of cortical bone,” J. Biomech. Eng., vol. 121, no. 5, pp. 533–541, 1999.
[78] T. M. Keaveny, E. F. Wachtel, and D. L. Kopperdahl, “Mechanical behavior of human trabecular bone after overloading,” J. Orthop. Res., vol. 17, no. 3, pp. 346–353, 1999.
[79] D. L. Kopperdahl, J. L. Pearlman, and T. M. Keaveny, “Biomechanical consequences of an isolated overload on the human vertebral body,” J. Orthop. Res., vol. 18, no. 5, pp. 685–690, 2000.
[80] R. Carretta, B. Luisier, D. Bernoulli, E. Stüssi, R. Müller, and S. Lorenzetti, “Novel method to analyze post-yield mechanical properties at trabecular bone tissue level,” J. Mech. Behav. Biomed. Mater., vol. 20, pp. 6–18, 2013.
[81] J. Y. Rho, R. B. Ashman, and C. H. Turner, “Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements,” J. Biomech., vol. 26, no. 2, pp. 111–119, 1993.
[82] C. H. Turner, J. Rho, Y. Takano, T. Y. Tsui, and G. M. Pharr, “The elastic properties of trabecular and cortical bone tissues are similar: Results from two microscopic measurement techniques,” J. Biomech., vol. 32, no. 4, pp. 437–441, 1999.
[83] J. Litniewski, “Determination of the elasticity coefficient for a single trabecula of a cancellous bone: Scanning acoustic microscopy approach,” Ultrasound Med. Biol., vol. 31, no. 10, pp. 1361–1366, 2005.
[84] H. H. Bayraktar, E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny, “Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue,” J. Biomech., vol. 37, no. 1, pp. 27–35, 2004.
[85] K. Choi and S. A. Goldstein, “a Comparison of the Fatigue Behavior of Human,” J. Biomech., vol. 25, no. 12, pp. 1371–1381, 1992.
[86] A. M. Torres, J. B. Matheny, T. M. Keaveny, D. Taylor, C. M. Rimnac, and C. J. Hernandez, “Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 11, pp. 2892–2897, 2016.
[87] M. Calin et al., “Designing biocompatible Ti-based metallic glasses for implant applications,” Mater. Sci. Eng. C, vol. 33, no. 2, pp. 875–883, 2013.
[88] H. C. Lin et al., “Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application,” Intermetallics, vol. 55, pp. 22–27, 2014.
[89] S. Kujala, J. Ryhänen, A. Danilov, and J. Tuukkanen, “Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute,” Biomaterials, vol. 24, no. 25, pp. 4691–4697, 2003.
[90] B. Świeczko-Żurek, “Porous Materials Used as Inserted Bone Implants,” Adv. Mater. Sci., vol. 9, no. 2, 2009.
[91] G. F. Ma et al., “Increased collagen degradation around loosened total hip replacement implants,” Arthritis Rheum., vol. 54, no. 9, pp. 2928–2933, 2006.
[92] L. Salvo, G. Martin, M. Suard, A. Marmottant, R. Dendievel, and J. J. Blandin, “Processing and structures of solids foams,” Comptes Rendus Phys., vol. 15, no. 8–9, pp. 662–673, 2014.
[93] M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams : a Design Guide Metal Foams : A Design Guide. Boston: Butterworth-Heinemann, 2000.
[94] J. D. Bobyn, G. J. Wilson, D. C. MacGregor, R. M. Pilliar, and G. C. Weatherly, “Effect of pore size on the peel strength of attachment of fibrous tissue to porous‐surfaced implants,” J. Biomed. Mater. Res., vol. 16, no. 5, pp. 571–584, 1982.
[95] B. S. Chang et al., “Osteoconduction at porous hydroxyapatite with various pore configurations,” Biomaterials, vol. 21, no. 12, pp. 1291–1298, 2000.
[96] A. Boyde, A. Corsi, R. Quarto, R. Cancedda, and P. Bianco, “Osteoconduction in large macroporous hydroxyapatite ceramic implants: Evidence for a complementary integration and disintegration mechanism,” Bone, vol. 24, no. 6, pp. 579–589, 1999.
[97] K. Gao, R. Li, and J. Yang, “Dynamic characteristics of functionally graded porous beams with interval material properties,” Eng. Struct., vol. 197, no. July, p. 109441, 2019.
[98] R. Singh, P. D. Lee, R. J. Dashwood, and T. C. Lindley, “Titanium foams for biomedical applications: A review,” Mater. Technol., vol. 25, no. 3–4, pp. 127–136, 2010.
[99] U. Müller, T. Imwinkelried, M. Horst, M. Sievers, and U. Graf-Hausner, “Do human osteoblasts grow into open-porous titanium?,” Eur. Cells Mater., vol. 11, pp. 8–15, 2006.
[100] M. Bram, C. Stiller, H. P. Buchkremer, D. Stöver, and H. Baur, “High-porosity titanium, stainless steel, and superalloy parts,” Adv. Eng. Mater., vol. 2, no. 4, pp. 196–199, 2000.
[101] M. Nicoara, A. Raduta, R. Parthiban, C. Locovei, J. Eckert, and M. Stoica, “Low Young’s modulus Ti-based porous bulk glassy alloy without cytotoxic elements,” Acta Biomater., vol. 36, pp. 323–331, 2016.
[102] A. R. Jamaludin, S. R. Kasim, A. K. Ismail, M. Z. Abdullah, and Z. A. Ahmad, “The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique,” J. Eur. Ceram. Soc., vol. 35, no. 6, pp. 1905–1914, 2015.
[103] B. Dietrich et al., “Determination of the thermal properties of ceramic sponges,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 198–205, 2010.
[104] Y. Zheng et al., “An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials,” J. Mater. Chem. A, vol. 5, no. 46, pp. 24292–24298, 2017.
[105] A. Manonukul, P. Srikudvien, M. Tange, and C. Puncreobutr, “Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method,” Mater. Sci. Eng. A, vol. 655, pp. 388–395, 2016.
[106] H. I. Bakan and K. Korkmaz, “Synthesis and properties of metal matrix composite foams based on austenitic stainless steels -titanium carbonitrides,” Mater. Des., vol. 83, pp. 154–158, 2015.
[107] J. P. Li, S. H. Li, C. A. Van Blitterswijk, and K. De Groot, “A novel porous Ti6A14V: Characterization and cell attachment,” J. Biomed. Mater. Res. - Part A, vol. 73, no. 2, pp. 223–233, 2005.
[108] H. Kwon, D. H. Park, Y. Park, J. F. Silvain, A. Kawasaki, and Y. Park, “Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures,” Met. Mater. Int., vol. 16, no. 1, pp. 71–75, 2010.
[109] M. A. Trunov, S. M. Umbrajkar, M. Schoenitz, J. T. Mang, and E. L. Dreizin, “Oxidation and melting of aluminum nanopowders,” J. Phys. Chem. B, vol. 110, no. 26, pp. 13094–13099, 2006.
[110] C. Greiner, S. M. Oppenheimer, and D. C. Dunand, “High strength, low stiffness, porous NiTi with superelastic properties,” Acta Biomater., vol. 1, no. 6, pp. 705–716, 2005.
[111] S. M. Oppenheimer and D. C. Dunand, “Porous NiTi by creep expansion of argon-filled pores,” Mater. Sci. Eng. A, vol. 523, no. 1–2, pp. 70–76, 2009.
[112] L. Mullen, R. C. Stamp, W. K. Brooks, E. Jones, and C. J. Sutcliffe, “Selective laser melting: A regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 89, no. 2, pp. 325–334, 2009.
[113] W. Xue, B. V. Krishna, A. Bandyopadhyay, and S. Bose, “Processing and biocompatibility evaluation of laser processed porous titanium,” Acta Biomater., vol. 3, no. 6, pp. 1007–1018, 2007.
[114] D. A. Hollander et al., “Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming,” Biomaterials, vol. 27, no. 7, pp. 955–963, 2006.
[115] P. Heinl, A. Rottmair, C. Körner, and R. F. Singer, “Cellular titanium by selective electron beam melting,” Adv. Eng. Mater., vol. 9, no. 5, pp. 360–364, 2007.
[116] C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scr. Mater., vol. 45, no. 10, pp. 1147–1153, 2001.
[117] A. Bansiddhi and D. C. Dunand, “Shape-memory NiTi foams produced by solid-state replication with NaF,” Intermetallics, vol. 15, no. 12, pp. 1612–1622, 2007.
[118] N. Jha, D. P. Mondal, J. Dutta Majumdar, A. Badkul, A. K. Jha, and A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route,” Mater. Des., vol. 47, pp. 810–819, 2013.
[119] A. Mansourighasri, N. Muhamad, and A. B. Sulong, “Processing titanium foams using tapioca starch as a space holder,” J. Mater. Process. Technol., vol. 212, no. 1, pp. 83–89, 2012.
[120] T. Aydoǧmuş and Ş. Bor, “Processing of porous TiNi alloys using magnesium as space holder,” J. Alloys Compd., vol. 478, no. 1–2, pp. 705–710, 2009.
[121] B. Lee et al., “Space-holder effect on designing pore structure and determining mechanical properties in porous titanium,” Mater. Des., vol. 57, pp. 712–718, 2014.
[122] G. A. Cragnolino, “Corrosion fundamentals and characterization techniques,” Tech. Corros. Monit., pp. 6–45, 2008.
[123] J. Kruger, “Fundamental Aspects of the Corrosion of Metallic Implants,” in Corrosion and Degradation of Implant Materials, B. C. Syrett and A. Acharya, Eds. West Conshohocken, PA: ASTM International, pp. 107–127, 1979.
[124] L. S. Kubie and G. M. Shults, “Studies on the relationship of the chemical constituents of blood and cerebrospinal fluid,” J. Exp. Med., vol. 42, no. 4, pp. 565–592, 1925.
[125] P. Anodic, P. Measurements, and C. Testing, “Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of,” vol. i, pp. 1–8, 2009.
[126] I. Gurappa, “Characterization of different materials for corrosion resistance under simulated body fluid conditions,” vol. 49, pp. 73–79, 2002.
[127] K. Hashimoto, “W.R. Whitney award lecture: In pursuit of new corrosion-resistant alloys,” Corrosion, vol. 58, no. 9, pp. 715–722, 2002.
[128] S. J. Pang, H. Men, C. H. Shek, C. Ma, A. Inoue, and T. Zhang, “Formation, thermal stability and corrosion behavior of glassy Ti45Zr5Cu45Ni5 alloy,” Intermetallics, vol. 15, no. 5–6, pp. 683–686, 2007.
[129] F. Qin, X. Wang, A. Kawashima, S. Zhu, H. Kimura, and A. Inoue, “Corrosion behavior of Ti-based metallic glasses,” Mater. Trans., vol. 47, no. 8, pp. 1934–1937, 2006.
[130] F. Qin, X. Wang, S. Zhu, A. Kawashima, K. Asami, and A. Inoue, “Fabrication and corrosion property of novel Ti-based bulk glassy alloys without Ni,” Mater. Trans., vol. 48, no. 3, pp. 515–518, 2007.
[131] X. Chen, A. Nouri, Y. Li, J. Lin, P. D. Hodgson, and C. Wen, “Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid,” Biotechnol. Bioeng., vol. 101, no. 2, pp. 378–387, 2008.
[132] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006.
[133] H. Suzuki, R. Yagi, T. Waki, T. Wada, C. Ohkubo, and T. Hayakawa, “Study of Apatite Deposition in a Simulated Body Fluid Immersion Experiment,” J. Oral Tissue Eng., vol. 14, no. 1, pp. 9–14, 2016.
[134] A. Oyane, K. Onuma, A. Ito, H. M. Kim, T. Kokubo, and T. Nakamura, “Formation and growth of clusters in conventional and new kinds of simulated body fluids,” J. Biomed. Mater. Res. - Part A, vol. 64, no. 2, pp. 339–348, 2003.
[135] C. M. Murphy, M. G. Haugh, and F. J. O’Brien, “The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering,” Biomaterials, vol. 31, no. 3, pp. 461–466, 2010.
[136] Standardization, I. O. f., ISO-10993-5: biological evaluation of medical devices part 5: test for cytotoxicity: in vitro methods. Arlington, VA: ANSI/AAMI, 1999.
指導教授 鄭憲清(Jason Shian-Ching Jang) 審核日期 2021-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明