博碩士論文 107226065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.139.78.149
姓名 陳永馨(YUNG-HSIN CHEN)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 AMCW雷射雷達測距系統研究
(Development of the AMCW LiDAR system)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究
★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究
★ 穩態紅外線LED封裝熱阻量測★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究
★ 鎖相熱影像檢測法用以檢測材料內部缺陷★ 光聲影像顯微術之研究
★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬★ 基於純量繞射理論以遠場聲場重建光聲影像之研究
★ 基於光聲訊號之三維資訊重建★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究基於傳統振幅調變連續波(AMCW,Amplitude modulated continuous wave)雷射雷達系統使用單一調製頻率,藉由參考訊號與量測訊號進行混頻,通過低通濾波器後,得到具有距離資訊的直流訊號。提出增加使用的調制頻率數量,將數個調制頻率訊號以掃頻(Sweep Frequency)的形式調變參考訊號與雷射輸出訊號。掃頻範圍為21-60 MHz,每一個調制頻率訊號會對應一個直流訊號。將所有的直流訊號紀錄後補零(Zero padding)並做快速傅立葉轉換(FFT,Fast Fourier Transform),即可得到距離訊號,此時半峰全寬為4.32 m。為減少FFT時與矩形函數的摺積(convolution),在FFT後利用韋納濾波減少在距離域上的半峰全寬,韋納濾波後1.76 m,讓在同個路徑上有多個物體時可以更好判斷有多個物體。
本研究適用距離範圍為5 m至17.5 m,距離誤差約在10 cm內。同路徑上有兩個物體時,在兩物體相距3.28 m開始可以分辨有兩個物體,在5.6 m開始可以具體分辨兩個物體距離。量測一次距離總耗時長約為0.5 s。
摘要(英) This thesis is based on the traditional amplitude modulated continuous wave (AMCW) LiDAR(Light detection and ranging) system using a single modulation frequency, mixing the reference signal with the measurement signal, and passing through a low-pass filter to obtain a distance information which is a DC signal. By increasing the number of modulation frequencies used, and modulate several modulation frequency signals in the form of sweep frequency. The frequency sweep range is 21-60 MHz in this paper, and each modulation frequency signal corresponds to a DC signal. After recording all the DC signals with zero padding and doing Fast Fourier Transform (FFT), the distance signal can be obtained. In order to reduce the convolution with the rectangular function during FFT, Weiner filter is used after FFT. Weiner filter can reduce the full width at half maximum in the distance domain, so that if there are multiple objects on the same path, it can be better to distinguish that there are multiple object.
The applicable distance range of this study is 5 m to 17.5 m, and the distance error is about 10 cm. When there are two objects on the same path, the distance between the two objects can be distinguished from 3.28 m. The distance between the two objects can be distinguished accurately is 5.6 m. The total measured time is 0.5 s.
關鍵字(中) ★ 振幅調變連續波
★ 雷射雷達
關鍵字(英) ★ AMCW
★ LiDAR
論文目次 一、 緒論 1
1-1 文獻回顧 1
1-2 研究動機 3
二、 實驗理論 4
3-1 混頻器 4
2-2-1 二極體非線性特性 4
2-2-2 混頻器原理 5
3-2 低通濾波器 (Low Pass Filter) 7
3-4-1 低通濾波器介紹 7
3-4-2 結合混頻器輸出直流訊號 8
3-3 振幅調製連續波 9
3-4 補零(Zero Padding) 13
2-4-1 離散頻率與離散時間關係 13
2-4-2 補零 14
3-5 韋納濾波器(Wiener Filter) 16
三、 AMCW LiDAR 測距系統計算與模擬 18
3-1 AMCW LiDAR測距系統簡介 18
3-2 AMCW LiDAR測距系統模 21
3-3 物體距離分析 23
3-4 物體分析 24
3-4-1 反射性物體 24
3-4-2 散射性物體 24
3-5 雜訊模擬 26
3-6 同路徑兩物體 27
四、 自製電流驅動器 28
4-1 電路圖 28
4-2 電路模擬 30
4-3 電路實驗結果 32
五、 AMCW LiDAR實驗架構與數據分析 33
5-1 AMCW LiDAR調頻雷射次系統 33
5-2 AMCW LiDAR距離偵測次系統 34
5-3 系統干擾訊號與自製電流驅動器頻率響應之修正 36
5-4 距離量測 38
5-4-1 同路徑單一個物體距離量測 39
5-4-2 同路徑多物體量測 42
六、 結論與未來展望 44
6-1 結論 44
6-2 未來展望 45
七、 參考文獻 47
八、 附錄 49
參考文獻 [1] B. Leibe, E. Seemann, and B. Schiele, "Pedestrian detection in crowded scenes," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′05), 2005, vol. 1: IEEE, pp. 878-885.
[2] T. Luettel, M. Himmelsbach, and H.-J. Wuensche, "Autonomous ground vehicles—Concepts and a path to the future," Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1831-1839, 2012.
[3] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, "Terrain characterization and classification with a mobile robot," Journal of field robotics, vol. 23, no. 2, pp. 103-122, 2006.
[4] R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, "Imaging distance measurements using TOF lidar," Journal of optics, vol. 29, no. 3, p. 188, 1998.
[5] B. Journet, G. Bazin, and F. Bras, "Conception of an adaptative laser range finder based on phase shift measurement," in Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996, vol. 2: IEEE, pp. 784-789.
[6] H. Lamela and E. Garcia, "A low power laser rangefinder for autonomous robot applications," in Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996, vol. 1: IEEE, pp. 161-167.
[7] A. D. Payne, A. P. Jongenelen, A. A. Dorrington, M. J. Cree, and D. A. Carnegie, "Multiple frequency range imaging to remove measurement ambiguity," in Optical 3-d measurement techniques, 2009.
[8] K. Nakamura, T. Hara, M. Yoshida, T. Miyahara, and H. Ito, "Optical frequency domain ranging by a frequency-shifted feedback laser," IEEE Journal of Quantum Electronics, vol. 36, no. 3, pp. 305-316, 2000.
[9] D. Nordin, "Optical frequency modulated continuous wave (FMCW) range and velocity measurements," Luleå tekniska universitet, 2004.
[10] F. Delorme, P. Gambini, M. Puleo, and S. Slempkes, "Fast tunable 1.5 mu m distributed Bragg reflector laser for optical switching applications," Electronics Letters, vol. 29, no. 1, p. 41, 1993.
[11] M. D. Adams and P. J. Probert, "The interpretation of phase and intensity data from AMCW light detection sensors for reliable ranging," The International Journal of Robotics Research, vol. 15, no. 5, pp. 441-458, 1996.
[12] A. Kirmani, A. Benedetti, and P. A. Chou, "Spumic: Simultaneous phase unwrapping and multipath interference cancellation in time-of-flight cameras using spectral methods," in 2013 IEEE International Conference on Multimedia and Expo (ICME), 2013: IEEE, pp. 1-6.
[13] F. Heide, L. Xiao, A. Kolb, M. B. Hullin, and W. Heidrich, "Imaging in scattering media using correlation image sensors and sparse convolutional coding," Optics express, vol. 22, no. 21, pp. 26338-26350, 2014.
[14] A. Kadambi, J. Schiel, and R. Raskar, "Macroscopic interferometry: Rethinking depth estimation with frequency-domain time-of-flight," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 893-902.
[15] J. van der Tang and C. S. Vaucher, Circuit design for RF transceivers. Springer Science & Business Media, 2001.
[15] Minicircuit, ZAD-3+
取自https://www.minicircuits.com/WebStore/dashboard.html?model=ZAD-3%2B
[16] Thorlabs, EF110 - Low-Pass Electrical Filter
取自https://www.thorlabs.com/thorproduct.cfm?partnumber=EF110#ad-image-0
[17] Alan V. Oppenhein, Alan S. Willsky, Signals and Systems, second edition, TKM Productions, 1996
[18] MACOM, MRF136
https://www.mouser.tw/ProductDetail/MACOM/MRF136?qs=3Wmz%2FrCSAaGi18KKWq1Mwg==
指導教授 鍾德元(TE-YUAN CHUNG) 審核日期 2021-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明