博碩士論文 108226038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:18.118.137.243
姓名 陳聖文(Sheng-Wun Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 五十米級固態光源用於舞台投射系統之研究
(Study of 50-m stage projection system with solid-state lighting)
相關論文
★ 建立人體皮膚反射光譜光學模型之研究★ 高動態範圍影像式照度即時檢測系統
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 非正交多區塊反射鏡車頭燈之設計★ 歐規單一光學反光鏡之高亮度近遠燈研究
★ 反射率光譜混色模型應用於印表機校色之研究★ 用於紫外光曝光系統之石英透鏡陣列設計與驗證
★ 陣列式燈具光學特性快速量測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-1以後開放)
摘要(中) 在本論文中,我們目標使用LED設計出一個在50 m 處達到1,000 lx且直徑4 m之銳利光型的舞台投射系統。於光學設計中,我們針對目標光型所需的光通量進行評估計算,接著我們選定符合系統需求之光源進行設計,光源我們選用Luminus公司的CXM-32 COB LED,並於模擬計算中假設LED發光面為一平面朗伯光源,得出此舞台頭投射系統光學效率 (Optical Efficiency) 達74.4 %,光學利用率 (Optical Utilization Factor,OUF) 為30 %。
我們設計一個深度為369.2 mm、寬度為617.5 mm之反射光杯搭配一尺寸為直徑220 mm、長寬260 mm且厚度為37 mm的正透鏡的舞台投射系統,在實驗中光源以350 W驅動並且提供48,070 lm,於十公尺處牆面上投射於出一道Beam Angle約2.3 °,且照度達33,100 lx的均勻光型,換算成50 m 處的照度約為1,324 lx,是有達到在50 m處設定的照度目標,而其中,在我們所設計的液冷式散熱系統能提供LED操作在310 W的驅動下熱衰小於6 %。
摘要(英) In this thesis, we aim to design a stage projection system with a sharp and diameter of 4 m light pattern that reaches 1,000 lx at 50 m by using LED. In the optical design, we evaluate luminous flux required by the light pattern. Then we select a light source that meets the system requirements for design. In the end, we use Luminus′ CXM-32 COB LED, and in the simulation calculation, we assume that the LED light-emitting surface is a planar Lambertian light source. And results show that the optical efficiency of the stage projection system is 74.4%, and the optical utilization factor (OUF) is 30%.
We designed a stage projection system with a reflector which depth is 369.2 mm, width is 617.5 mm and a positive lens with a size of 220 mm in diameter, 260 mm in length and width and 37 mm in thickness. In the experiment, the light source drive in 350 W and provide 48,070 lm, and the system project a uniform light pattern with beam angle of about 2.3 ° on the wall at 10 m, and the illuminance reach 33,100 lx, and it converted into the illuminance at 50 m is about 1,324 lx which can reach the illuminance target. And in a liquid cooling system, the thermal decay of the LED is less than 6 % operating at 310 W.
關鍵字(中) ★ 舞台投射系統
★ 發光二極體
★ 二階光學設計
★ 光展量
★ 光型
★ 散熱系統
關鍵字(英) ★ Stage projection system
★ Light Emitting Diode
★ Second optical design
★ Etendue
★ Light pattern
★ Cooling system
論文目次 摘要 I
Abstract VI
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XX
第一章 緒論 1
1-1 研究背景 1
1-2 LED於舞台投射燈之應用與市場分析 4
1-3 研究動機與目的 9
1-4 論文大綱 10
第二章 原理介紹 11
2-1 幾何光學 12
2-1-1 菲涅爾反射 12
2-1-2 拋物線的光學特性 14
2-2 光度學 15
2-3 光展量 21
2-4 熱交換與LED受熱影響之基礎概念 25
2-4-1 傳導 26
2-4-2 對流 27
2-4-3 輻射 28
2-4-4 LED受熱之影響 29
第三章 LED舞台投射系統光型之設計 31
3-1 目標與初階光學設計 32
3-2 LED光源的選擇與特性分析 34
第四章 散熱系統設計與運作流程 38
4-1 液冷式LED散熱系統架構 39
4-2 氣冷式LED散熱系統架構 41
4-3 散熱系統之量測結果 43
4-3-1 熱衰特性比較 43
4-3-2 溫度特性比較 46
4-3-3 氣冷系統之不同材質導熱特性比較 50
第五章 反光杯與透鏡之設計與驗證 61
5-1 反射光杯與透鏡之設計 61
5-2 反射光杯與透鏡之製作 65
5-3 光型優化設計 68
5-4 反射光杯與透鏡驗證 70
第六章 結論 77
參考文獻 79
中英名詞對照表 86
參考文獻 [1] R. Karlicek, C. C. Sun, G. Zissis, R. Ma, Handbook of Advanced Lighting Technology (Springer, Switzerland, 2017).
[2] N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Over-ington, “Characterizing white LEDs for general illumination applications,” Proc. SPIE. 3938, 240-248 (2000).
[3] M. H. Crawford, “LEDs for solid-state lighting : Performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron. 15, 1028-1040 (2009).
[4] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. G, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. solid state light. 1, 19 (2014).
[5] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high brightness InGan/AlGan double-heterostructure blue light emitting diodes,” Appl. Phys. Lett. 64 1687-1689 (1994).
[6] N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, Y. K. Ee, “Ⅲ-nitride photonics,” IEEE Photon. J. 2, 241-248 (2010).
[7] T. H. Yang, H. Y. Huang, C. C. Sun, B. G, X. H. Lee, Y. W. Yu, and T. Y. Chung, “Noncontact and instant detection of phosphor temperature in phosphor-converted white LEDs,” Sci. Rep. 8, 296 (2018).
[8] P. Schlotter, R. Schmidt, J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A. 64, 417-418 (1997).
[9] D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20-2-1) InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” J. Display Technol. 9, 190-198 (2013).
[10] V. C. Bender, T. B. Marchesan and J. M. Alonso, “Solid-State Lighting: A Concise Review of the State of the Art on LED and OLED Modeling,” IEEE Ind. Electron. Mag. 2, 6-16 (2015).
[11] L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White Polymer Light-Emitting Devices for Solid-State Lighting: Materials, Devices, and Recent Progress,” Adv. Mater. 26, 2459-2473 (2014).
[12] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274- 1278 (2005).
[13] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L.Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[14] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, New York, 2002).
[15] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
[16] N. Holonyak and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962).
[17] Zheludev, Nikolay, “The life and times of the LED – a 100-year history,” Nature Photonics. 1(4), 189–192 (2007).
[18]S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, 1997).
[19] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US5998925 (1999).
[20] R. Mueller-Mach, G. Mueller, and M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt, “Highly efficient all-nitride phosphor- converted white light emitting diode,” Phys. Stat. Sol. 202, 1727-1732 (2005).
[21] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US6685852 B2 (2004).
[22] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
[23] L. Vriens, G. Acket, and C. Ronda, “UV/blue LED–phosphor device with efficient conversion of UV/blues light to visible light,” United States Patent, US5813753 B2 (1998).
[24] S. C. Allen and A. J. Steckl, “ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection,” J. Display Technol. 3, 155-159 (2007).
[25] S. Jeon, P. Eun, Y. H. Park, Choi, J. C. Park, H. Lee, Gwang Chul, Kim, and T. Whan “White-light generation through ultraviolet-emitting diode and white-emitting phosphor,” Appl. Phys. Lett. 85, 3696-3698 (2004).
[26] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US6686676 B2 (2004).
[27] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
[28] S. Muthu, “Controlling method and system for RGB based LED luminary,” United States Patent, US6507159 B2 (2003).
[29] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).
[30] C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express 20, A75–A84 (2012).
[31] M. G. Craford, “LEDs for solid state lighting and other emerging applications: status, trends, and challenges,” Proc. SPIE 5941, 1-10 (2005).
[32] International Energy Agency, Light′s Labour′s Lost : Policies for Energy-Efficient Lighting (OECD/IEA, Paris, 2006).
[33] LEDinside, http://www.ledinside.com.tw/knowledge/20090109-8979.html.
[34] LEDinside, https://www.ledinside.com.tw/research/20170728-34482.html.
[35] 2000W鎢絲聚光燈,https://www.kupo.com.tw/kupo/pdf/Tungsten-Junior.pdf.
[36] KXS-3000W青春追光燈, https://www.kupo.com.tw/kupo/img/FOLLOWSPOT-1.jpg.
[37] 2500 W追蹤燈, http://light.cis.justgogo.tw/cis/ContentV2.aspx?mp=55106.
[38] MacoLEDs Romer G919, http://www.macostar.com.cn/show_pro.asp?news_id=1259.
[39] SS827SC HD/SC HDD, http://www.yajiang.cn/Product/detail/cat_id/107/id/15559.
[40] MacoLEDs RM320, http://www.macostar.com.cn/show_pro.asp?news_id=1342.
[41] E. Hecht, Optics, 4th eds. (Addison Wesley, San Francisco, 2002).
[42] V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE PRESS, Washington, 1998)
[43] 蔡明修,增加高對比度LED車燈生產容忍度之光學設計研究,國立中央大學光電所博士論文,中華民國一百零八年。
[44] 蔡明修,應用於四晶發光二極體之全反射式光學設計,元智大學光電所碩士論文,中華民國九十九年。
[45] CIE 1988 2° spectral luminous efficiency functions of photopic vision, CIE Publication No. 86 (1988b).
[46] 孫慶成,光電工程概論,全華圖書股份有限公司,中華民國一百零一年。
[47] 大田登,色彩工程學:理論與應用,全華圖書股份有限公司,中華民國九十七年。
[48] A. M. Colman, A Dictionary of Psychology (Oxford University Press, 2009).
[49] Julio Chaves, Introduction to Nonimaging Optics, 2rd eds. (CRC Press, New York, 2017).
[50] Juan C. Minano, “Application of the conservation of etendue theorem for 2-D subdomains of the phase space in nonimaging concentrators,” Appl. Opt. 23, 2021-2025 (1984).
[51] W. T. Welford and R. Winston, The Optics of Nonimaging Concentrators, (Academic, New York, 1978).
[52] Roland Winston, Juan Minano and Pablo Benitez, Nonimaging Optics, (Academic Press, New York, 2005).
[53] R. John Koshel, Illumination Engineering : Design with Nonimaging Optics, (WILEY IEEE, 2013).
[54] Yunus A. Çengel, Heat Transfer : A Practical Approach, 3rd eds. (International, New York, 1998).
[55] Adrian Bejan and Allan D. Kraus, Heat Transfer Handbook, (WILEY, Canada, 2003).
[56] Warren M. Rohsenow, James R Hartnett and Young I. Cho, Handbook of Heat Transfer, 3rd eds. (McGraw-Hill Education, New York, 1998).
[57] 郭浩中、賴芳儀、郭守義,LED 原理與應用,五南圖書出版股份有限公司,台北市,中華民國一百年。
[58] E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003).
[59] Mehmet, C. Becker, S. Weaver, and J. Petroski, “Thermal management of LEDs: package to system,” Proc. SPIE 5187, 64 (2004).
[60] 鐘翌菁,具螢光粉冷卻之液冷式高功率 LED,國立中央大學光電所碩士論文,中華民國一百零四年。
[61] H. Ries and J A. Muschaweck, “Tailored freeform optical surface,” J. Opt. Soc. Am. A19(3), 590-595 (2002).
[62] L. L. Doskolovich and S. I. Kharitonov, “Calculating the surface shape of mirrors for shaping an image in the form of a line,” J. Opt. Technol. 72(4), 318-321 (2005).
[63] R. A. Hicks, “Designing a mirror to realize a given projection,” J. Opt. Soc. Am. A 22(2), 323-330 (2005).
[64] B. Parkyn and D. Pelka, “Free-form illumination lens designed by a pseudo-rectangular lawnmower algorithm,” Proc. SPIE 6338, 633808-7 (2006).
[65] F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target map,” Opt. Express 18, 5295-5304 (2010).
[66] J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2001).
[67] L. L. Doskolovich and M. A. Moiseev, “Calculations for refracting optical elements for forming directional patterns in the form of a rectangle,” J. Opt. Technol. 76 430-434 (2009).
[68] H. J. Cornelissen, H. Ma, C. Ho, M. Li, and C. Mu, “Compact collimators for high brightness blue LEDs using dielectric multilayers,” Proc. SPIE 8123, 70590J (2011).
[69] J. C. Chaves, W. Falicoff, B. Parkyn, P. Beníte, J. C. Miñano, “Increased brighness by light recirculation through an LED source,” Proc. SPIE 7059, 705902 (2008).
[70] F. Fournier and J. Rolland, “Optimiation of freeform lightpipes for light-emitting-diode projectors,” Appl. Optics 47, 957-966 (2008).
[71] W. A. Parkyn and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135-140 (1997).
[72] M. A. Moiseev, L. L. Doskolovich, and N. L.Kazanskiy, “Design of high-efficient freeform LED lens for illumination of elongated rectangular regions,” Opt. Express 19, A225-A233 (2011).
[73] Z. henrong, H. Xiang, and L. Xu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627-6634 (2009).
[74] S. Li, F. Chen, K. Wang, S. Zhao, Z. Zhao, and S. Liu, “Design of a compact modified total internal reflection lens for high angular color uniformity,” Appl. Opt. 51, 8557-8562 (2012).
[75] J. J. Chen, Z. Y. Huang, T. S. Liu, M. D. Tsai, and K. L. Huang, “Freeform lens design for light-emitting diode uniform illumination by using a method of source-target luminous intensity mapping,” Appl. Opt. 54, E146-E152 (2015).
[76] Z. Zhao, H. hang, S. Liu, and X. Wang, “Effective freeform TIR lens designed for LEDs with high angular color uniformity,” Appl. Opt. 57, 4216-4221 (2018).
[77] H. Z, Z. Su, Y. Ma, Y. He, C. Liu, M. Wu, J. Yan, and C. Cheng, “Virtual source simultaneous dual-surface method for uniform illumination,” J. Opt. Soc. Am. A 32, 1366-1370 (2015).
[78] Y. Ding, X. Liu, Z. R Zheng, and P. F Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958-12966 (2008).
[79] Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055-9063 (2010).
[80] R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B.Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20, 13727-13737 (2012).
[81] S. Hu, K. Du, T. Mei, L. Wan, and N. Zhu, “Ultra-compact LED lens with double freeform surface for uniform illumination,” Opt. Express 23, 20350-20355 (2015).
[82] W. T. Welford, High Collection Nonimaging Optics, (Academic, SanDiego, Calif, 1989).
[83] R. Winston, Nonimaging Optics, (Academic, SanDiego, Calif, 2005).
[84] 陳觀宇,高光效多功能LED遠距離投射燈之研究,國立中央大學光電所碩士論文,中華民國一百零七年。
[85] C. S. Wu, K. Y. Chen, X. H. Lee, S. K. Lin, C. C. Sun, J. Y. Cai, T. H. Yang, Y. W. Yu, “Design of an LED Spot Light System with a Projection Distance of 10 km,” Crystals 9, 524 (2019).
[86] Luminus, https://www.luminus.com/products/cobarrays/standard-gen4.
[87] Cree, https://cree-led.com/products/xlamp-cob-integrated-arrays.
[88] BRO ASAP, http://www.breault.com/software/asap-features.
指導教授 楊宗勳 孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2021-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明