博碩士論文 108329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.129.13.201
姓名 鄭大維(Da-Wei Cheng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鐵與錳對鋁-鎂合金再結晶、腐蝕性與機械性質的影響
(Effect of Fe, Mn on the recrystallization, corrosion and mechanical properties of Al-5.0Mg alloy)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由顯微結構觀察、腐蝕性質不同溫度的退火處理與機械性質試驗等,探討Fe、Mn對Al-5.0Mg鍛造型鋁合金再結晶、機械性質與腐蝕性的影響。
結果顯示,隨著合金中Fe含量上升,在加工過程中容易堆積差排的富鐵相也將增加,退火後合金再結晶率將上升,使晶粒粗化,進而損害合金強度,此外,富鐵相還被發現對延性有不良影響。而隨著Mn含量上升,合金晶粒內將產生細小的Al6Mn顆粒,Al6Mn能夠阻擋退火時的差排與晶界移動,抑制合金再結晶,進而細化晶粒,達到細晶強化的效果,另外,細小的Al6Mn本身也具有散佈強化的效果,使得合金強度提升明顯。
另外,隨著Mn含量上升,合金晶粒尺寸下降,β相(Mg2Al3)在晶界上將由不連續轉為連續析出,因而損害合金抗腐蝕性;而隨著Fe含量上升,低Mn合金晶粒將細化,而高Mn合金晶粒尺寸則無明顯差異,表示Fe元素對合金抗腐蝕性無正面影響。
綜上結果發現,含高Mn且低Fe之合金,具最佳機械性質及最細晶粒尺寸,但抗腐蝕性較差,而含低Mn低Fe合金,具較差機械性質及最粗晶粒尺寸,但腐蝕性最佳。
摘要(英) This study explored the effects of Fe and Mn on the recrystallization, mechanical properties and corrosivity of Al-5.0Mg forged aluminum alloy by microstructure observation, annealing treatment at different temperatures for corrosion properties, and mechanical property tests.
The results show that as the Fe content in the alloy increases, the iron-rich phase that is easy to accumulate during processing will also increase, and the alloy recrystallization rate will increase after annealing, which will coarsen the grains and damage the strength of the alloy. In addition, the iron-rich phase has also been found to have an adverse effect on ductility. As the Mn content increases, fine Al6Mn particles will be produced in the alloy grains. Al6Mn can block the shift and grain boundary movement during annealing, inhibit the alloy recrystallization, and then refine the grains to achieve the effect of fine grain strengthening. In addition, The fine Al6Mn itself also has the effect of dispersion strengthening, which makes the alloy strength increase significantly.
In addition, as the Mn content increases, the alloy grain size decreases, and the β phase (Mg2Al3) will change from discontinuous to continuous precipitation at the grain boundary, thus impairing the corrosion resistance of the alloy; and as the Fe content increases, the low Mn alloy grain size may be fine.The grain size of the high Mn alloy will be refined, and there will be no significant difference in the grain size of the high Mn alloy, indicating that Fe has no positive effect on the corrosion resistance of the alloy.
Based on the above results, it is found that alloys containing high Mn and low Fe have the best mechanical properties and the finest grain size, but poor corrosion resistance, while alloys containing low Mn and low Fe have poor mechanical properties and the coarsest grain size , but have the best corrosion resistance.
關鍵字(中) ★ Al-Mg合金
★ AA5383
★ 再結晶
★ 敏化
★ 腐蝕性質
關鍵字(英) ★ Al-Mg Alloy
★ AA5383
★ Recrystallization
★ Sensitization
★ Corrosivity
論文目次 摘要 I
Abstract III
謝誌 V
圖目錄 VIII
表目錄 XI
一、 前言及文獻回顧 1
1.1 AA5083合金的強化機制 4
1.1.1 鋁鎂合金之強化機構 5
1.2 退火處理對微結構的影響 6
1.2.1再結晶的機制 8
1.3鋁鎂合金的腐蝕簡介 11
1.3.1 敏化(Sensitization) 13
1.3.2 安定化(Stabilization) 13
1.4合金成分對AA5383合金之影響 14
1.4.1 鎂對AA5383合金的影響 14
1.4.2微量錳對鋁合金的影響 17
1.4.3鐵對鋁合金的影響 20
1.4.4 鋯對鋁合金的影響 21
二、實驗步驟與方法 22
2.1 合金融配及成分分析 22
2.2 均質化處理、熱輥軋與退火 23
2.3冷輥軋、退火與敏化處理 24
2.4 微結構分析 24
2.4.1 光學顯微鏡 24
2.4.2 ?相析出形貌觀察 25
2.4.3腐蝕形貌觀察 25
2.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 26
2.4.3電子背向散射繞射(Electron Backscatter Diffraction, EBSD) 27
2.4.4穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 27
2.4.5導電度量測(%IACS) 28
2.5 G67腐蝕性質分析 28
2.6 機械性質分析 29
2.6.1 硬度檢測(HRF ) 29
2.6.2 拉伸試驗(Tensile Test) 30
三、 結果與討論 31
3.1 顯微結構分析 31
3.1.1 鑄態顯微結構分析 31
3.1.2再結晶微結構分析 34
3.1.3穿透式電子顯微鏡(TEM)分析 42
3.2導電度分析 43
3.3腐蝕性質分析 44
3.4機械性質分析 52
四、結論 54
五、參考文獻 55
參考文獻 [ASTM1] ASTM B928/B928M-09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[ASTM2] ASTM G66, “Standard Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5XXX Series Aluminum Alloys (ASSET TEST ) ’’ , ASTM International , West Conshohocken , PA(1999)
[ASTM3] ASTM G67-04 Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid(NAMLT Test)
[ASTM4] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy, (2017)
[ASTM5] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (2016)
[BEN] L. A. Bendersky, A. J. McAlister , and F. S. Biancaniello , “Phase Transformation during Annealing of Rapidly Solidified Al-Rich Al-Fe-Si Alloys’’ , Metallurgical Transactions A, Vol.19, No.12, pp.2893-2900(1988)
[BOV] F. S. Bovard, “Corrosion in marine and saltwater environments II, in D.A. Shifler, T. Tsuru , P. M. Natishan, S. Ito (Eds.)” , Electrochemical Society Proceedings, Vol. 2004-14, pp. 232-243.(2005)
[CAR] M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn , B.R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083” , Scripta mater ,Vol. 42, pp.335-340. (2002)
[CLA] L. M. Clarebrough, M. E. Hargreaves, G. W. WestSource, “ The Release of Energy during Annealing of Deformed Metals” Mathematical and Physical Sciences, Vol. 232, pp. 252-270(1955)
[DAV] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p.43.(1994)
[DAV2] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys” , ASM International Materials Park, Ohio, p. 31.(1994)
[DAV3] J . R . Davis, Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.33.(1993)
[DAV4] J. R.Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, Ohio, pp. 580-585.(1994)
[DAV5]V. G. Davydov, T.D. Rostova, “Scientific principles of making an alloying addition of scandium to aluminium alloys”, Materials Science and Engineering A, vol.280, pp. 30-36.(2000)
[DEC]B.F. Decker, D. Harker, ”Recrystallization in rolled copper” AIME, Vol 188 pp.887-890 (1950)
[GOU] S. Gourdet, F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminium”, Materials Science and Engineering: A, Vol. 283, PP.274-288 (2000)
[GOR]P. Gordon “Microcalorimetric Investigation of Recrystallization of Copper” Journal of Metals, pp.1043-1052(1955)
[GAR] M.A. Garcia-Bernal , R.S. Mishra , R. Verma , D. Hernandez-Silva, “Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents” , Materials Science and Engineering A, Vol.534, pp.186-192.(2012)
[HAT] J. E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International Metals Park, Ohio.(1984)
[HUM]F. J. Humphreys and M. Hatherly, “ Recrystallization and Related Annealing Phenomena,” Elsevier Oxford, pp2-3(2004)
[JIA] JianfengYan, Nathan M. Heckman, LeonardoVelasco & Andrea M. Hodge, Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries, Scientific Reports
[JIN] Jingyu Jiang, Feng Jiang, Menghan Zhang, Zhongqin Tang, Mengmeng Tong, “Recrystallization behavior of Al-Mg-Mn-Sc-Zr alloy based on two different deformation ways”, Materials Letter, Vol. 265, 127455 (2020)
[KAS] K. T. Kashyap, T. Chandrashekar, “Effects and mechanisms of grain refinement in aluminum alloys” , Bulletin of Materials Science, Vol.24 pp.345-353.(2001)
[KEN]R. Kent, V. Horn, “Aluminum: Properties and Physical Metallurgy and Phase diagrams” , ASM International Metals Park, Ohio, p.203.(1971)
[LEE] S. L. Lee, S. T. Wu, “Identification of Dispersoids in Al-Mg Alloys Containing Mn” , Metallurgical Transactions A , Vol.18A pp.1353-1357.(1987)
[LEE2] photomicrograph courtesy and Modification by S.L. Lee, National Central Univ., Taiwan(2016)
[LEE3]Shih-Wei Lee, Jien-Wei Yeh, “ Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion” , Materials Science and Engineering A,Vol. 460–461, pp.409-419. (2007)
[LIM] M.L.C. Lim , J.R. Scully , and R.G. Kelly, “Intergranular Corrosion Penetration in an Al-Mg Alloy as a Function of Electrochemical and Metallurgical Conditions” , CORROSION SCIENCE , Vol.69, pp.35-47,(2013)
[MAS] T.B. Massalski , J.L. Murray, L.H. Bennett, and H. Baker, “ Binary Alloy Phase Diagrams ”, ASM International, Ohio, p.130.(1990).
[MIL]Miljana Popovic, Endre Romhanji, “Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurements ” , Materials Science and Engineering A, Vol.492, pp460-467(2008)
[NOR]A. F. Norman, P. B. Prangnell and R. S. Mcewen, “ The solidification behaviour of dilute aluminium-scandium alloys” , Acta mater, Vol. 46, pp. 5715-5732.(1998)
[OGU] I. N. A. Oguocha, O. J. Adigun, S. Yannacopoulos, “Effect of Sensitization Heat Treatment on Properties of Al-Mg Alloy AA5083-H116”, J Mater Sci ,Vol. 43, pp. 4208-4214(2008)
[PAR] J. K. Park, A. J. Ardell, “Microstructures of the Commercial 7075 Al Alloys in the T651 and T7 Tempers”, Metallurgical Transaction A, Vol.14A, pp.1957-1965.(1983) [SEA] J. L. Searles, P. I. Gouma , R.G. Buchheit , “Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),”Metallurgical and Materials Transactions A, Vol. 32, pp.2859-2867(2001)
[SHO] Shouxun Ji , Wenchao Yang, Feng Gao, Douglas Watson, Zhongyun Fan, Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys, Materials Science & Engineering A, Vol.564,pp130-139(2013)
[SRI] Srinivasan Nagarajan , N. P. Gurao , Venkitanarayanan Parameswaran, “On the kinetics of texture development in Al-Mg alloy under high strain rate tension”, Materials Characterization, Vol.163, 110303(2020)
[TAN] L. Tan and T. R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083” , Corrosion Science, Vol.52, pp.548-554, 2010.
[UNO] K.A. Unocic, P. Kobe, M.J. Mills, G.S. Daehn, “Grain Boundary Precipitate Modification for Improved Intergranular Corrosion Resistance” , Materials Science Forum ,Vol.519, pp.327-332. (2006)
[VAS] A.K. Vasudevan and R.D. Doherty , “ Aluminum alloys contemporary research and applications” , Academic Press ,Boston , p.84.(1989)
[VLA] M. Vlach, I. Stulikova , B. Smola , N. Zaludova , “Characterization of phase development in non-isothermally annealed mold-cast and heat-treated Al–Mn–Sc–Zr alloys ” ,Materials Characterization ,Vol. 61, 72 pp.1400-1405. (2010)
[ZHI]Zhimin Yin , Qinglin Pan, Yonghong Zhang, Feng Jiang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys, Materials Science and Engineering A280 ,pp151–155(2000)
[ZHO] Zhongqin Tang, Feng Jiang, Mengjun Long, Jingyu Jiang, Huifang Liu, Mengmeng Tong, ” Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy ”, Applied Surface Science, Vol. 514, 146081(2020).
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明