博碩士論文 108329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.188.115.218
姓名 戴柏豪(Bai-Hao Dai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
(Application of using advanced high-entropy nanoparticles for catalytic reactions)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-31以後開放)
摘要(中) 高熵合金領域至今僅研究二十餘年,還有很多製程與應用方向待開發,本研究以高熵合金的理論基礎開發了一系列製程,名為金屬鹽類雷射加工技術。
本製程研究主軸以脈衝式光纖雷射施打於硝酸根前驅物之CoCrFeNiAl金屬鹽類產物為主,其產物為高熵陶瓷奈米粒子膜,為此新興材料進行一系統性的參數測試,並加以分析與應用,並且嘗試用不同金屬鹽類前驅物及不同基板來顯示此製程擁有操作簡單、可快速製造、高比表面積、產品設計自由度高與可圖案化等特點。
製程中變動參數組合為雷射重複掃描次數、前驅物容積、前驅物鹽類種類以及基材種類,將成品進行一系列的分析如電子顯微鏡之顯微結構、X光繞射分析儀、X光光電子光譜儀之元素成分及與晶體結構分析,重複驗證高熵陶瓷奈米粒子膜之材料特性及趨勢。
同步輻射之XRD分析證明出此材料為尖晶石結構之高熵陶瓷奈米粒子,A3O4(A = Co,Cr,Fe,Ni或Al)尖晶石結構中A site或B site可被其他元素佔據,所以此製程可以使二價或三價金屬填入於尖晶石中,這將會影響高熵陶瓷奈米粒子之催化之傳統結構印象。
利用其製程技術製造電催化電極,將硝酸根CoCrFeNiAl前驅物反應於氧化銦錫基板及泡沫金屬基材,於電解液中進行OER產氧反應,皆獲得優異的電流密度輸出與大幅降低反應過電位,並於穩定性量測中皆獲得超過10天以上的壽命。另外提高電催化活性與穩定性之測試,400 mA/cm2是工業應用的標準電流要求,我們的CoCrFeNiAl HEC 可以在如此高的電流密度下運行超過 150 小時而不會出現明顯衰減。
最後基於碳材和高熵協同效應,研究探討結合碳材吸附、電催化反應、氧還原反應及芬頓技術應用於水中汙染物之降解研究,將主軸高熵陶瓷奈米催化粒子長於碳材上,使汙水得到有效處理,此系統成功地證明了在運行 90 分鐘內可去除100% 的甲基橙(MO)。並在開放式循環式系統中,150分鐘可以完全降解三倍封閉式水量。
摘要(英) The field of high-entropy alloys has been studied for only about twenty years, and there are still many manufacturing processes and application directions to be developed. Our research has developed a series of processes based on the theoretical basis of high-entropy alloys, called pulsed-laser-irradiation scanning on mixed-salt solutions.
The product of our process is high-entropy ceramic nanoparticle film. The main objective of our research is mainly the CoCrFeNiAl metal salt product of the nitrate precursor. For this emerging material, a systematic parameter tests are carried out, analyzed and applied, showing that there are the characteristics of simple operation, fast manufacturing, low cost, high specific surface area, high product design freedom and ability of pattern.
The combination of variable parameters in the process is the number of laser repetitive scans, the volume of the precursor, the type of precursor salt, and the type of substrate. The finished product is performed a series of analysis, such as the microstructure of the electron microscope, X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) for elemental composition and crystal structure analysis of the photoelectron spectrometer to repeatedly verified the material characteristics and trends of the high-entropy ceramic nanoparticle film.
XRD analysis of synchrotron radiation proves that this material is a high-entropy ceramic nanoparticle with a spinel structure, A3O4、AB2O4(A, B = Co, Cr, Fe, Ni or Al). A site and B site in the spinel structure can be replaced by other elements, so divalent or trivalent metals can be occupied in the spinel by this process, which will affect the traditional structure impression of high-entropy ceramic nanoparticle catalysis.
On the other hand, high-entropy ceramics were fabricated to improve both the electrocatalytic activity and stability. 400 mA/cm2 is a standard current requirement for the industrial application and our CoCrFeNiAl HECs can run under such high current density for more than 150hrs without obvious decay.
Due to the synergistic effect between the functionalized carbon and high-entropy ceramics (HECs), this closed system successfully demonstrated a 100% removal of Methyl Orange (MO)within 90 minutes of operation, and the open circulation system demonstrated a 100% removal of Methyl Orange (MO) within minutes of 150 operation.
關鍵字(中) ★ 高熵陶瓷奈米粒子
★ 電催化劑
★ 尖晶石
★ 芬頓反應
★ 降解汙染物
關鍵字(英) ★ high-entropy ceramic nanoparticles
★ electrocatalyst
★ spinel
★ fenton reaction
★ water pollutants degradation
論文目次 摘要 I
ABSTRACT II
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究背景 1
第二章 基礎理論及文獻回顧 3
2-1 高熵特性與應用(概念簡介) 3
2-1-1 常見高熵製作方法 9
2-2 碳材 15
2-2-1 活性碳之應用領域 15
2-2-2 物理活化法製得活性碳之應用 15
2-2-3 化學活化法製得活性碳之應用 17
2-2-4 超級電容的儲能機制 21
2-2-4-1孔徑大小與離子吸附的相關性 22
2-2-4-2 離子在孔洞之間的運動方式 23
2-2-4-3 中孔材料對電容表現的影響 25
2-3 OER應用 26
2-3-1電催化分解水原理與特性 26
2-3-2電催化分解水工作原理 26
2-4 降解 31
2-4-1 動態吸附過程探討 32
2-4-2 染料溶液之酸鹼性與吸附機制探討 36
2-4-3 MB之吸附方式探討 37
2-4-4 MO之吸附方式探討 37
第三章 實驗 41
3-1 實驗動機 41
3-2 高熵與炭材材料製作 41
3-2-1 實驗藥品 41
3-2-2 實驗流程 43
3-2-3 實驗參數 43
3-3 析氧反應(OER) 44
3-3-1 實驗藥品 44
3-3-2 實驗流程 44
3-3-3 實驗參數 44
3-4 降解汙染物 45
3-4-1 實驗藥品 45
3-4-2 實驗流程 45
3-4-3 實驗參數 45
3-5 分析儀器 46
3-5-1 掃描式電子顯微鏡 (FE-SEM) 46
3-5-2穿透式電子顯微鏡 (HR-TEM) 46
3-5-3高解析感應耦合電漿質譜分析儀 (ICP-MS) 47
3-5-4 X-ray繞射分析儀 (XRD) 48
3-5-5 X-ray光電子光譜儀 (XPS ) 49
3-5-6 X-ray螢光光譜儀 (nano-XRF) 49
3-5-7 X-ray近緣吸收光譜 (XANES)、延伸X-ray吸收精細結構光譜 (EXAFS) 50
3-5-8電化學量測系統 (CHI) 50
3-5-9比表面積分析儀(Surface Area and Porosity Analyzer, BET) 52
第四章 結果與討論 53
4-1 高熵陶瓷與碳材之材料分析與討論 53
4-1-1 掃描式電子顯微鏡成像結構分析(SEM) 53
4-1-2 穿透式電子顯微鏡成像結構(TEM) 56
4-1-3高解析感應耦合電漿質譜分析儀分析(ICP-MS) 59
4-1-4 X-ray繞射分析儀分析 (XRD) 60
4-1-5 X-ray光電子光譜儀分析(XPS) 61
4-1-6 X射線螢光光譜儀(nano-XRF)、X 光近緣吸收光譜(XANES)、延伸X-ray吸收精細結構光譜(EXAFS)分析 62
4-2 析氧反應(OER) 65
4-2-1電化學測量分析 65
4-2-2 X-ray繞射分析儀分析 (XRD) 66
4-3 降解汙染物 68
4-3-1 掃描式電子顯微鏡成像結構分析(SEM) 68
4-3-2 穿透式電子顯微鏡成像結構(TEM) 69
4-3-3 比表面積分析 (Surface Area and Porosity Analyzer, BET) 69
4-3-4 X-ray繞射分析儀分析 (XRD) 71
4-3-5 降解汙染物 71
第五章 結論 73
參考文獻 74
參考文獻 1. Das, S. , et al., High performance aerospace alloys via rapid solidification processing. Materials Science and Engineering, 1988. 98: p. 1-12.
2. Suryanarayana, et al., Mechanical alloying and milling. Progress in materials science, 2001. 46(1-2): p. 1-184.
3. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
4. Yeh, J.W., et al. High-entropy alloys–a new era of exploitation. Materials Science Forum, 2007. Trans Tech Publ.
5. Turchi, C.S., et al., Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of catalysis, 1990. 122(1): p. 178-192.
6. Miracle, D.B., et al., A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
7. Tsai, M.-H., et al., High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
8. Jien-Wei, et al., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
9. Tsai, M.-H., et al., High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
10. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
11. Tsai, et al., Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
12. Dąbrowa, J., et al., Demystifying the sluggish diffusion effect in high entropy alloys. Journal of Alloys and Compounds, 2019. 783: p. 193-207.
13. Wang, Z., et al., Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics, 2015. 64: p. 63-69.
14. Murty, B.S., et al., High-entropy alloys. Elsevier, 2019.
15. Song, H., et al., Local lattice distortion in high-entropy alloys. Physical Review Materials, 2017. 1(2): p. 023404.
16. Laplanche, G., et al., Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2018. 746: p. 244-255.
17. Hsu, C.Y., et al., Microstructure and mechanical properties of new AlCoxCrFeMo0. 5Ni high‐entropy alloys. Advanced Engineering Materials, 2010. 12(1‐2): p. 44-49.
18. 林明憲, Cr-Fe-Co-Ni-Cu-Alx 六元高熵合金之腐蝕行為與薄膜性質之研究. 2002.
19. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
20. Zhang, W., et al., Science and technology in high-entropy alloys. Science China Materials, 2018. 61(1): p. 2-22.
21. 黃國雄, 等莫耳比多元合金系統之研究. 1996, 國立清華大學材料科學與工程研究所碩士論文.
22. Hanks, C.W., Vacuum melting process. U.S. Patent, 1960.
23. Werner, J.K., Powder metallurgy process. U.S. Patent, 1961.
24. Pradeep, K., et al., Atomic-scale compositional characterization of a nanocrystalline AlCrCuFeNiZn high-entropy alloy using atom probe tomography. Acta Materialia, 2013. 61(12): p. 4696-4706.
25. Fang, S., et al., Microstructure and mechanical properties of twinned Al0. 5CrFeNiCo0. 3C0. 2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Materials & Design, 2014. 54: p. 973-979.
26. Birdja, Y.Y., et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nature Energy, 2019. 4(9): p. 732-745.
27. Yang, S., et al., Wave Absorption Property of High Entropy Alloy Fabricated by Sol-Gel Process. Arch. Metall. Mater., 2020. 65.
28. Berndt, C., et al. Thermal spraying for bioceramic applications. Mater. Forum, 1990.
29. Gérard, B.J.S., et al., Application of thermal spraying in the automobile industry. Surface and Coatings Technology, 2006. 201(5): p. 2028-2031.
30. Assadi, H., et al., Cold spraying–A materials perspective. Acta Materialia, 2016. 116: p. 382-407.
31. Kelly, P.J., et al., Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
32. Valix, M., W. Cheung, et al., Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 2004. 56(5): p. 493-501.
33. Demiral, H., et al., Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal, 2008. 144(2): p. 188-196.
34. Choi, G.-G., et al., Total utilization of waste tire rubber through pyrolysis to obtain oils and CO2 activation of pyrolysis char. Elsevier B.V., 2014. 123: p. 57-64.
35. Plaza, M., et al., Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology, 2010. 71(1): p. 102-106.
36. Tian, X., et al., Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. Journal of Power Sources, 2017. 359: p. 88-96.
37. Wang, J., et al., Chemically activated fungi-based porous carbons for hydrogen storage. Carbon, 2014. 75: p. 372-380.
38. Qu, D., et al., Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
39. Shi, H.J.E.A., Activated carbons and double layer capacitance. 1996. 41(10): p. 1633-1639.
40. González, A., et al., Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
41. Obreja, V.V. Supercapacitors specialities-Materials review. in AIP Conference Proceedings. American Institute of Physics, 2014.
42. Shao, Y., et al., Design and mechanisms of asymmetric supercapacitors. Chemical reviews, 2018. 118(18): p. 9233-9280.
43. Zhong, C., et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015. 44(21): p. 7484-7539.
44. Jäckel, N., et al., Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. Journal of Power Sources, 2016. 326: p. 660-671.
45. Forse, A.C., et al., New perspectives on the charging mechanisms of supercapacitors. Journal of the American Chemical Society, 2016. 138(18): p. 5731-5744.
46. Yang, J., et al., Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors. Nano Energy, 2017. 33: p. 453-461.
47. Iwasita, T.J.E.A., Electrocatalysis of methanol oxidation. Electrochimica Acta, 2002. 47(22-23): p. 3663-3674.
48. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p. 6446-6473.
49. Kudo, A., et al., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
50. Cai, Z., et al., Nanomaterials With Different Dimensions for Electrocatalysis, in Novel Nanomaterials for Biomedical, Environmental and Energy Applications. Elsevier, 2019 p. 435-464.
51. Cui, X., et al., Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction. MRS Communications, 2018. 8(3): p. 1230-1235.
52. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochimica Acta, 2002. 47(22-23): p. 3663-3674.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明