博碩士論文 108329024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.137.222.204
姓名 盧聖元(Sheng-Yuan Lu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
(Study on high entropy oxides (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) as anode electrode for lithium-ion battery)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-31以後開放)
摘要(中) 本實驗將使用溶膠凝膠法(Sol-gel Process)進行高熵氧化物 (Co0.2Cu0.2Mg0.2Ni0.2Zn0. 2O)粉體之製備,並進一步作為鋰離子電池之負極材料進行研究。此製程技術常使用於合成陶瓷粉末,該技術具有粒徑均勻等優點,能有利於電極材料之應用。本研究將利用溶膠凝膠法製備之高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)進行鋰離子電池負極材料之應用,並探討高熵氧化物的電化學性能表現與各金屬陽離子與材料之關聯性,透過簡單地改變元素組成來進行電化學性質之測試。
在鋰離子電池實作成果方面,本研究開發之高熵氧化物負極材料,經鋰離子半電池之測試,在50mAh g-1之電流下,其電容值將可達到600 mAh g-1。此外,透過改變高熵氧化物之組成陽離子可進一步證實熵穩定作用對於電池容量而言能帶來顯著之好處,並大幅提高了循環穩定性。另外也進一步結合LNMO之高電壓正極進行全電池之測試,證明高熵氧化物未來將具備替代現今鋰離子電池電極材料之潛力。
摘要(英) In this study, sol-gel method will be used to prepare high entropy oxide (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) powder, and will be further studied as an anode material for lithium-ion batteries. Sol-gel method is often used to synthesize powders. This fabrication process not only has the advantages of uniform particle size, but also suitable for the application of electrode materials. This study uses the high entropy oxide (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) powder prepared by the sol-gel method for the application of lithium ion battery anode materials, and discuss the electrochemical performance of high entropy oxides and the correlation between metal cations and materials, and test the electrochemical properties by simply changing the composition of the elements.
In terms of the results of the performance of lithium-ion batteries, the high entropy oxide anode material developed in this research has been tested by a lithium-ion half-cell, and its capacity reaches 600 mAh g-1 at a current of 50 mAh g-1. In addition, by changing the cation composition of the high entropy oxide, it can be further confirmed that entropy stability brings significant benefits to battery capacity and greatly improves cycle stability. In addition, high-voltage cathode (LMNO) was further used to test the battery system, which proved that the high entropy oxide will have the potential to replace current lithium-ion battery electrode materials in the future.
關鍵字(中) ★ 高熵氧化物
★ 溶膠凝膠法
★ 鋰離子電池
★ 負極材料
關鍵字(英) ★ high entropy oxide
★ sol-gel method
★ lithium-ion batteries
★ anode material
論文目次 中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究背景 1
第二章 基礎理論及文獻回顧 3
2-1 二次電池 3
2-2 鋰離子電池 5
2-3 高熵之概念簡介 8
2-4 高熵氧化物之特性與應用 11
2-5 陶瓷粉末之製備方法 15
2-5-1 固態反應法 15
2-5-2 氣態反應法 15
2-5-3 液態反應法 16
2-5-3-1 沉澱法 (Precipitation method) 16
2-5-3-2噴霧裂解法 (Spray pyrolysis method) 17
2-5-3-3 溶膠凝膠法 (Sol-gel method) 19
第三章 實驗步驟 22
3-1 化學藥品 22
3-2 鋰離子電池負極材料之製備 23
3-2-1 高熵氧化物粉末之製備 23
3-2-3 鋰離子電池之製備 24
3-3 分析儀器 25
3-3-1 掃描式電子顯微鏡 (FE-SEM) 25
3-3-2 穿透式電子顯微鏡 (HR-TEM) 26
3-3-3 X-ray繞射分析儀 (XRD) 27
3-3-4 X-ray光電子光譜儀 ( XPS ) 28
3-3-5 電池測試系統介紹 30
第四章 結果與討論 31
4-1 高熵氧化物之材料分析與討論 31
4-1-1 高熵氧化物粉末之顯微結構影像分析 (SEM) 31
4-1-2 X-ray繞射分析 (XRD) 33
4-1-3 高熵氧化物粉末之穿透式電子顯微鏡分析 (TEM) 34
4-1-4 X-ray光電子光譜分析 (XPS) 36
4-1-5 X光近緣吸收光譜 (XANES) 38
4-1-6 高解析感應耦合電漿質譜分析儀分析 (ICP-MS) 41
4-2 鋰離子電池性能測試分析與討論 42
4-2-1 循環伏安圖分析 (CV) 42
4-2-2 充放電測試 43
4-2-3 長時間穩定性測試 46
4-2-4 各元素對於鋰電池性能影響之分析 49
4-3 全電池性能分析及討論 53
第五章 結論與未來工作 55
5-1 結論 55
5-2 未來工作 56
參考文獻 57
參考文獻 1. Mizushima, K., et al., A new cathode material for batteries of high energy density. Mater. Res. Bull, 1980. 15(6): p. 783.
2. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
3. Reddy, M.A., et al., CFx derived carbon–FeF2 nanocomposites for reversible lithium storage. Advanced energy materials, 2013. 3(3): p. 308-313.
4. Breitung, B., et al., In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016. 8(29): p. 14048-14056.
5. Rost, C.M., et al., Entropy-stabilized oxides. Nature communications, 2015. 6(1): p. 1-8.
6. Moździerz, M., et al., Mixed ionic-electronic transport in the high-entropy (Co, Cu, Mg, Ni, Zn) 1-xLixO oxides. Acta Materialia, 2021. 208: p. 116735.
7. Albedwawi, S.H., et al., High entropy oxides-exploring a paradigm of promising catalysts: A review. Materials & Design, 2021: p. 109534.
8. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016. 4(24): p. 9536-9541.
9. Hightech. 電池的原理與分類. 2021/5/22; Available from: https://www.stockfeel.com.tw/%E9%9B%BB%E6%B1%A0-%E6%A7%8B%E9%80%A0-%E5%8E%9F%E7%90%86-%E5%88%86%E9%A1%9E/.
10. 方程毅. 【材料科技】鋰電池樹枝狀結晶的難題. 2016/5/31; Available from: https://case.ntu.edu.tw/blog/?p=24589.
11. 平順建築材料. 鋰離子電池鋰枝晶生長:影響因素和抑制方法. 2020/10/12; Available from: https://read01.com/zh-tw/NNA4L4Q.html#.YVRAcppBxhF.
12. Xiaoting. 鋰電池鋰枝晶形成原因. 2019/11/07; Available from: http://news.chinatungsten.com/big5/tungsten-information/124927-ti-17785.
13. 何冠廷、陳弘源、陳燦耀、方冠榮、張家欽. 儲能發展的勁旅─鋰離子電池. 2019/5; Available from: https://ejournal.stpi.narl.org.tw/sd/download?source=10805-10.pdf&vlId=744d20a3f16042e8abd0435006dac0cf&nd=1&ds=1.
14. 黃國雄, 等莫耳比多元合金系統之研究. 1996, 國立清華大學材料科學與工程研究所碩士論文.
15. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
16. Ma, Y., et al., High-entropy energy materials: challenges and new opportunities. Energy & Environmental Science, 2021.
17. Yeh, J.W., et al. High-entropy alloys–a new era of exploitation. in Materials Science Forum. 2007. Trans Tech Publ.
18. Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
19. Gao, M.C., et al., High-entropy alloys. Cham: Springer International Publishing, 2016.
20. Murty, B.S., et al., High-entropy alloys. 2019: Elsevier.
21. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
22. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
23. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019. 31(26): p. 1806236.
24. Sarkar, A., et al., Nanocrystalline multicomponent entropy stabilised transition metal oxides. Journal of the European Ceramic Society, 2017. 37(2): p. 747-754.
25. Sarkar, A., et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton transactions, 2017. 46(36): p. 12167-12176.
26. Sarkar, A., et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018. 38(5): p. 2318-2327.
27. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 1-9.
28. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
29. Pluym, T., et al., Solid silver particle production by spray pyrolysis. Journal of aerosol science, 1993. 24(3): p. 383-392.
30. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of materials research, 1995. 10(7): p. 1661-1673.
31. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 1999. 59(3): p. 185-198.
32. Cerpotech. Spray pyrolysis of ceramic powders for energy, environmental and electronic applications. Available from: https://matmatch.com/suppliers/cerp-cerpotech/examples/spray-pyrolysis-powders.
33. Shirsath, S.E., et al., Ferrites obtained by sol-gel method, in Handbook of sol-gel science and technology. 2018, Springer Cham. p. 695-735.
34. Innocenzi, P., Understanding sol–gel transition through a picture. A short tutorial. Journal of Sol-Gel Science and Technology, 2020. 94(3): p. 544-550.
35. Sushil, J., et al., High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn) O by citrate gel method. Materials Chemistry and Physics, 2021. 259: p. 124014.
36. Saghir, A.V., et al., One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation. Journal of the European Ceramic Society, 2021. 41(1): p. 563-579.
37. Niu, B., et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Scientific reports, 2017. 7(1): p. 1-7.
38. Mao, A., et al., Solution combustion synthesis and magnetic property of rock-salt (Co0. 2Cu0. 2Mg0. 2Ni0. 2Zn0. 2) O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 2019. 484: p. 245-252.
39. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
40. 國立中央大學研究發展處. 貴重儀器中心:儀器服務. Available from: https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9.
41. Poizot, P., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499.
42. Helen, M., et al., Single step transformation of sulphur to Li 2 S 2/Li 2 S in Li-S batteries. Scientific reports, 2015. 5(1): p. 1-12.
43. Ding, C., et al., A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2016. 18(37): p. 25879-25886.
44. Wang, Y. F., and Zhang, L. J., Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance. J. Power Sources, 2012. 209: p. 20-29.
45. Mueller, F., et al., Iron-doped ZnO for lithium-ion anodes: impact of the dopant ratio and carbon coating content. J. Electrochem. Soc., 2017. 164: p. A6123-A6130.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明