參考文獻 |
參考文獻
[1] K. v. Klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy
Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,
Phys. Rev. Lett. 45, 494 (1980).
[2] F. Haldane, Model for a Quantum Hall Effect without Landau Levels: CondensedMatter Realization of the Parity Anomaly,Phys. Rev. Lett. 61, 18 (1988).
[3] C. L. Kane and E.J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect,
Phys. Rev. Lett. 95, 146802 (2005).
[4] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett.
95, 226801 (2005).
[5] F. D. M. Haldane and S. Raghu, Possible Realization of Directional Optical
Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry, Phys. Rev.
Lett. 100, 013904 (2008).
[6] Jun Mei, Zeguo Chen, and Ying Wu, Pseudo-time-reversal symmetry and
topological edge states in two-dimensional acoustic crystals, Scientific Reports. 6,
32752 (2016).
[7] Yuting Yang, Hua Jiang, and Zhi Hong Hang, Topological Valley Transport in
Two-dimensional Honeycomb Photonic Crystals, Scientific Reports. 8, 1588 (2018).
[8] Sunkai, Topological insulators part III: tight-binding models, Ch5. Phys 620 course
(2013).
[9] Toshikaze Kariyado and Yasuhiro Hatsugai, Manipulation of Dirac Cones in
Mechanical Graphene, Scientific Reports. 5, 18107 (2016).
[10] Ramy EI-Ganainy , Konstantinos G. Makris , Mercedeh Khajavikhan, Ziad H.
Musslimani , Stefan Rotter and Demetrios N. Christodoulides, Non-Hermitian physics
and PT symmetry, Nature Physics.14, 11-19 (2018).
[11] T. Thonhauser and David Vanderbilt, Insulator/Chern-insulator transition in the
Haldane model, Phys. Rev. Lett. 74, 235111 (2006).
[12] Asbóth, János K., Oroszlány, László, Pályi, András, A Short Course on
Topological Insulators (Springer, Lecture Note in Physics, 2016).
[13] Shunyu Yao and Zhong Wang, Edge states and topological invariants of nonHermitian systems, Phys. Rev. Lett. 121, 086803 (2018).
[14] Kazuki Yokomizo and Shuichi Murakami, Non-Bloch Band Theory of NonHermitian Systems, Phys. Rev. Lett. 123, 066404 (2019).
[15] Nobuyuki Okuma, Kohei Kawabata,Ken Shiozaki, and Masatoshi Sato,
Topological Origin of Non-Hermitian Skin Effects, Phys. Rev. Lett.124, 086801 (2020).
[16] Ching Hua Lee, Stefan Imhof, Christian Berger, Florian Bayer, Johannes Brehm,
Laurens W. Molenkamp, Tobias Kiessling and Ronny Thomale, Topolectrical Circuits,
communications physics.1, 39 (2018).
[17]Shuo Liu, Wenlong Gao, Qian Zhang, Shaojie Ma, Lei Zhang,Changxu Liu, Yuan
Jiang Xiang, Tie Jun Cui and Shuang Zhang, Topologically Protected Edge State in
Two-Dimensional Su–Schrieffer–Heeger Circuit, Research, 8609875 (2019).
[18] Shuo Liu, Ruiwen Shao, Shaojie Ma, Lei Zhang, Oubo You, Haotian Wu, Yuan
Jiang Xiang, Tie Jun Cui, and Shuang Zhang, Non-Hermitian Skin Effect in a NonHermitian Electrical Circuit, Research. 5608038 (2021).
[19] X. Z. Zhang and Z. Song, Partial topological Zak phase and dynamical
confinement in non-Hermitian bipartite system, Phys. Rev. Applied. 99, 012113(2019).
[20] You Wang, Li-Jun Lang, Ching Hua Lee, Baile Zhang and Y.D Chong,
Topologically enhanced harmonic generation in a nonlinear transmission line
metamaterial, Nature Communications. 10, 1102 (2019).
[21] Shuo Liu, Shaojie Ma, Cheng Yang, Lei Zhang, Wenlong Gao, Yuan Jiang Xiang,
Tie Jun Cui, and Shuang Zhang, Gain- and Loss-Induced Topological Insulating Phase
in a Non-Hermitian Electrical Circuit, Phys. Rev. Applied. 13, 014047 (2020).
[22] Feng Liu, Novel Topological Phase with a Zero Berry Curvature, Phys. Rev. Lett.
118, 076803 (2017).
[23] Hai-Xiao Wang, Chengpeng Liang, Yin Poo, Pi-Gang Luan and Guang-Yu Guo,
The topological edge modes and Tamm modes in Su–Schrieffer–Heeger LC-resonator
circuits, J. Phys. D: Appl. Phys. 54, 435301 (2021).
[24] Imhof, S. et al, Topolectrical circuit realization of topological corner modes, Nat.
Phys. 14, 925–929 (2018).
[25] Albert, V. V., Glazman, L. I. and Jiang, L, Topological properties of linear circuit
lattices, Phys. Rev. Lett. 114, 173902 (2015).
[26] Serra-Garcia, M., Süsstrunk, R. and Huber, S. D, Observation of quadrupole
transitions and edge mode topology in an LC network, Phys. Rev. B. 99, 020304 (R)
(2019).
[27]Fleury, R., Khanikaev, A. B., and Alù, A, Floquettopological insulators for sound,
Nat. Commun. 7, 11744 (2016).
[28] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H.
Musslimani, Stefan Rotter, and Demetrios N. Christodoulides, Non-Hermitian physics
and PT symmetry, Nature Physics. 14, 11-19 (2018).
[29] Carl M. Bender and Stefan Boettcher, Real Spectra in Non-Hermitian
Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
[30] Dan S. Borgnia, Alex Jura Kruchkov, and Robert-Jan Slager, Non-Hermitian
Boundary Modes and Topology, Phys. Rev. Lett. 124, 056802 (2020).
[31] Motohiko Ezawa, Electric circuits for non-Hermitian Chern insulators, Phys. Rev.
B. 100, 081401 (2019).
[32] Ya-Jie Wu, and Junpeng Hou, Symmetry-protected localized states at defects in
non-Hermitian systems, Phys. Rev. Applied. 99, 062107 (2019).
[33] Baogang Zhu, Rong Lu, and Shu Chen, PT symmetry in the non-Hermitian SuSchrieffer-Heeger model with complex boundary potentials, Phys. Rev. Applied. 89,
062102 (2014).
[34] L. Jin, and Z. Song, Bulk-boundary correspondence in a non-Hermitian system in
one dimension with chiral inversion symmetry, Phys. Rev. B. 99, 081103 (2019).
[35]Shunyu Yao, Fei Song, and Zhong Wang, Non-Hermitian Chern Bands, Phys. Rev.
Lett. 121,136802 (2018).
[36] Daniel Leykam, Konstantin Y. Bliokh, Chunli Huang, Y. D. Chong, and Franco
Nori,Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems,
Phys. Rev. Lett.118, 040401 (2017).
[37]Simon Lieu, Topological phases in the non-Hermitian Su-Schrieffer-Heeger model,
Phys. Rev. B. 97, 045106 (2018).
[38] Kenta Esaki, Masatoshi Sato, Kazuki Hasebe, and Mahito Kohmoto, Edge states
and topological phases in non-Hermitian systems, Phys. Rev. B. 84, 205128 (2011).
[39] Zongping Gong,1, Yuto Ashida,1, Kohei Kawabata,Kazuaki Takasan, Sho
Higashikawa, and Masahito Ueda, Topological Phases of Non-Hermitian Systems,
Phys. Rev. X. 8, 031079 (2018).
[40] Hui Jiang, Chao Yang, and Shu Chen, Topological invariants and phase diagrams
for one-dimensional two-band non-Hermitian systems without chiral symmetry, Phys.
Rev. Applied. 98, 052116 (2018).
[41]Mingsen Pan, Han Zhao, Pei Miao, Stefano Longhi, and Liang Feng, Photonic zero
mode in a non-Hermitian photonic lattice, Nat. Commun. 9, 1308 (2018).
[42] Julia M. Zeuner, Mikael C. Rechtsman, Yonatan Plotnik, Yaakov Lumer, Stefan
Nolte, Mark S. Rudner, Mordechai Segev, and Alexander Szameit, Observation of a
Topological Transition in the Bulk of a Non-Hermitian System, Phys. Rev. Lett.115,
040402 (2015).
[43]Huitao Shen, Bo Zhen, and Liang Fu, Topological Band Theory for Non-Hermitian
Hamiltonians, Phys. Rev. Lett.120,146402 (2018).
[44]Chuanhao Yin, Hui Jiang, Linhu Li, Rong Lü, and Shu Chen, Geometrical meaning
of winding number and its characterization of topological phases in one-dimensional
chiral non-Hermitian systems, Phys. Rev. Applied. 97, 052115 (2018).
[45]Yu Chen,and Hui Zhai, Hall conductance of a non-Hermitian Chern insulator, Phys.
Rev. B. 98, 245130 (2018).
[46] Timothy M. Philip, Mark R. Hirsbrunner, and Matthew J. Gilbert, Loss of Hall
conductivity quantization in a non-Hermitian quantum anomalous Hall insulator, Phys.
Rev. B. 98, 155430 (2018).
[47] Li-Jun Lang , Yijiao Weng, Yunhui Zhang, Enhong Cheng , and Qixia Liang ,
Dynamical robustness of topological end states in nonreciprocal Su-Schrieffer-Heeger
models with open boundary conditions, Phys. Rev. B. 103, 014302 (2021).
[48] Han-Ting Chen,Chia-Hsun Chang, and Hsien-chung Kao, The Zak phase and
Winding number, arXiv:1908.06700 (2019). |