參考文獻 |
[1] Koji Hashimoto, Sotaro Sugishita, Akinori Tanaka, and Akio Tomiya. Deep learning and the AdS/CFT
correspondence. Phys. Rev. D, 98:046019, Aug 2018.
[2] Juan Maldacena. International Journal of Theoretical Physics, 38(4):1113:1133, 1999.
[3] Alfonso V. Ramallo. Introduction to the ads/cft correspondence, 2013.
[4] Russell D. Reed and Robert J. Marks. Neural Smithing: Supervised Learning in Feedforward Articial
Neural Networks. MIT Press, 1999.
[5] Viren Jain, Joseph F. Murray, Fabian Roth, Srinivas Turaga, Valentin Zhigulin, Kevin L. Briggman,
Moritz N. Helmstaedter, Winfried Denk, and H. Sebastian Seung. Supervised learning of image restoration with convolutional networks. In 2007 IEEE 11th International Conference on Computer Vision, pages 1-8, 2007.
[6] H. B. Barlow. Unsupervised learning. Neural Computation, 1:295-311, 1989.
[7] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.
[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.
[9] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics, 22:400-407, 1951.
[10] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge, MA, USA, 1969.
[11] Vincent Francois-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle Pineau. An
introduction to deep reinforcement learning. CoRR, abs/1811.12560, 2018.
[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, Feb 2015.
[13] Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning for semi-markov
decision processes with neural odes. CoRR, abs/2006.16210, 2020.
[14] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dierential
equations. CoRR, abs/1806.07366, 2018.
[15] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled dierential equations for
irregular time series, 2020.
[16] Koji Hashimoto. Ads/cft correspondence as a deep boltzmann machine. Physical Review D, 99(10), May
2019.
[17] Tetsuya Akutagawa, Koji Hashimoto, and Takayuki Sumimoto. Deep learning and ads/qcd. Physical
Review D, 102(2), Jul 2020.
[18] Koji Hashimoto, Hong-Ye Hu, and Yi-Zhuang You. Neural ode and holographic qcd, 2020. |