參考文獻 |
(1) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
(2) Liang, J.; Li, F.; Cheng, H.-M. High-capacity lithium-ion batteries: Bridging future and current. Energy Storage Materials 2016, 4, A1-A2.
(3) Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343 (6176), 1210.
(4) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
(5) Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 (7179), 652-657.
(6) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126.
(7) Armand, M.; Tarascon, J. M. Building Better Batteries. Nature 2008, 451, 652.
(8) Kasavajjula, U.; Wang, C.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of Power Sources 2007, 163, 1003-1039.
(9) Vazquez, S.; Lukic, S. M.; Galvan, E.; Franquelo, L. G.; Carrasco, J. M. Energy Storage Systems for Transport and Grid Applications. IEEE Transactions on Industrial Electronics 2010, 57 (12), 3881-3895.
(10) Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D. U. A review of current automotive battery technology and future prospects. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2013, 227 (5), 761-776.
(11) Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Batteries for Large-Scale Stationary Electrical Energy Storage. The Electrochemical Society Interface 2010, 19 (3), 49-53.
(12) Xu, J.; Dou, S.; Liu, H.; Dai, L. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2 (4), 439-442.
(13) Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 2004, 104 (10), 4245-4270.
(14) Divya, K. C.; Østergaard, J. Battery energy storage technology for power systems—An overview. Electric Power Systems Research 2009, 79 (4), 511-520.
(15) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
(16) Sparacino, A. R.; Reed, G. F.; Kerestes, R. J.; Grainger, B. M.; Smith, Z. T. In Survey of battery energy storage systems and modeling techniques, 2012 IEEE Power and Energy Society General Meeting, 22-26 July 2012; 2012; pp 1-8.
(17) Su , D. S.; Schlögl, R. Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem 2010, 3 (2), 136-168.
(18) Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO[sub 4] for Lithium Battery Cathodes. Journal of The Electrochemical Society 2001, 148 (3), A224.
(19) Yi, T.-F.; Jiang, L.-J.; Shu, J.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids 2010, 71 (9), 1236-1242.
(20) Zhou, G.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science 2014, 7 (4), 1307-1338.
(21) Gwon, H.; Hong, J.; Kim, H.; Seo, D.-H.; Jeon, S.; Kang, K. Recent progress on flexible lithium rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 538-551.
(22) Yamada, Y.; Usui, K.; Chiang, C. H.; Kikuchi, K.; Furukawa, K.; Yamada, A. General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes. ACS Applied Materials & Interfaces 2014, 6 (14), 10892-10899.
(23) Chan, M. K. Y.; Wolverton, C.; Greeley, J. P. First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon. Journal of the American Chemical Society 2012, 134 (35), 14362-14374.
(24) Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q. Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances 2021, 2021, 1205324.
(25) Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614.
(26) Poizot, P.; Laruelle S Fau - Grugeon, S.; Grugeon S Fau - Dupont, L.; Dupont L Fau - Tarascon, J. M.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. (0028-0836 (Print)).
(27) Yu, S.-H.; Lee, S. H.; Lee, D. J.; Sung, Y.-E.; Hyeon, T. Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small 2016, 12 (16), 2146-2172.
(28) Courtney, I. A.; Dahn, J. R. Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. Journal of The Electrochemical Society 1997, 144 (6), 2045-2052.
(29) Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. Journal of Power Sources 2010, 195 (9), 2419-2430.
(30) Wang, Y.; Huang, H.-Y. S., Comparison of Lithium-Ion Battery Cathode Materials and the Internal Stress Development. 2011; pp 1685-1694.
(31) Nyman, A.; Zavalis, T. G.; Elger, R.; Behm, M.; Lindbergh, G. Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations. Journal of the Electrochemical Society 2010, 157 (11), A1236-A1246.
(32) Park, G.; Gunawardhana, N.; Nakamura, H.; Lee, Y.-S.; Yoshio, M. The study of electrochemical properties and lithium deposition of graphite at low temperature. Journal of Power Sources 2012, 199, 293-299.
(33) Wang, C.-Y.; Zhang, G.; Ge, S.; Xu, T.; Ji, Y.; Yang, X.-G.; Leng, Y. Lithium-ion battery structure that self-heats at low temperatures. Nature 2016, 529 (7587), 515-518.
(34) Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B. Electrode Degradation in Lithium-Ion Batteries. ACS nano 2020, 14 (2), 1243-1295.
(35) Lu, Y.; Yu, L.; Lou, X. W. Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries. Chem 2018, 4 (5), 972-996.
(36) Bragg, W. L. The diffraction of short electromagnetic Waves by a Crystal. Scientia 1929, 23 (45), 153.
(37) Jauncey, G. E. The Scattering of X-Rays and Bragg′s Law. (0027-8424 (Print)).
(38) Vbaková, H. In A powerful tool for material identification: Raman spectroscopy, 2011.
(39) Hofer, F.; Schmidt, F. P.; Grogger, W.; Kothleitner, G. Fundamentals of electron energy-loss spectroscopy. IOP Conference Series: Materials Science and Engineering 2016, 109, 012007.
(40) Ray, S.; Shard, A. G. Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry 2011, 83 (22), 8659-8666.
(41) Choi, N.-S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y.-K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.
(42) Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22 (3), 587.
(43) Manthiram, A. Materials Challenges and Opportunities of Lithium Ion Batteries. The Journal of Physical Chemistry Letters 2011, 2 (3), 176-184.
(44) Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39 (8), 3115-3141.
(45) Xu, Y.; Yin, G.; Ma, Y.; Zuo, P.; Cheng, X. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry 2010, 20 (16), 3216-3220.
(46) Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews 2013, 113 (7), 5364-5457.
(47) Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
(48) Obrovac, M. N.; Chevrier, V. L. Alloy Negative Electrodes for Li-Ion Batteries. Chem. Rev. 2014, 114, 11444.
(49) Xu, Y.; Liu Q Fau - Zhu, Y.; Zhu Y Fau - Liu, Y.; Liu Y Fau - Langrock, A.; Langrock A Fau - Zachariah, M. R.; Zachariah Mr Fau - Wang, C.; Wang, C. Uniform nano-Sn/C composite anodes for lithium ion batteries. (1530-6992 (Electronic)).
(50) Liu, D.; Liu, Z. J.; Li, X.; Xie, W.; Wang, Q.; Liu, Q.; Fu, Y.; He, D. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries. LID - 10.1002/smll.201702000 [doi]. (1613-6829 (Electronic)).
(51) Su, X.; Wu, Q.; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B. W.; Wu, J. Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Advanced Energy Materials 2014, 4 (1), 1300882, DOI: https://doi.org/10.1002/aenm.201300882.
(52) Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4 (9), 3287-3295, DOI: 10.1039/C1EE01388B.
(53) Deng, J.; Ji H Fau - Yan, C.; Yan C Fau - Zhang, J.; Zhang J Fau - Si, W.; Si W Fau - Baunack, S.; Baunack S Fau - Oswald, S.; Oswald S Fau - Mei, Y.; Mei Y Fau - Schmidt, O. G.; Schmidt, O. G. Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. (1521-3773 (Electronic)).
(54) Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem 2015, 2 (11), 1645-1651.
(55) Wei, Z.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H.; Ma, J. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. Journal of Materials Chemistry A 2018, 6 (26), 12185-12214.
(56) Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery. Chemistry of Materials 2005, 17 (12), 3297-3301.
(57) Park, A.-R.; Park, C.-M. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes. ACS nano 2017, 11 (6), 6074-6084.
(58) Luo, B.; Qiu, T.; Hao, L.; Wang, B.; Jin, M.; Li, X.; Zhi, L. Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. Journal of Materials Chemistry A 2016, 4 (2), 362-367.
(59) Zhang, F.; Shen, Y.; Shao, M.; Zhang, Y.; Zheng, B.; Wu, J.; Zhang, W.; Zhu, A.; Huo, F.; Li, S. SnSe2 Nanoparticles Chemically Embedded in a Carbon Shell for High-Rate Sodium-Ion Storage. ACS Applied Materials & Interfaces 2020, 12 (2), 2346-2353.
(60) Coleman, J. N.; Lotya, M.; O′Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science (New York, N.Y.) 2011, 331 (6017), 568-571.
(61) Ke, H.; Luo, W.; Cheng, G.; Tian, X.; Pi, Z. Synthesis of flower-like SnS<sub>2</sub> nanostructured microspheres using PEG 200 as solvent Micro & Nano Letters [Online], 2009, p. 177-180.
(62) Liu, S.; Lu, X.; Xie, J.; Cao, G.; Zhu, T.; Zhao, X. Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Applied Materials & Interfaces 2013, 5 (5), 1588-1595.
(63) Kim, E.; Son D Fau - Kim, T.-G.; Kim Tg Fau - Cho, J.; Cho J Fau - Park, B.; Park B Fau - Ryu, K.-S.; Ryu Ks Fau - Chang, S.-H.; Chang, S. H. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. (1433-7851 (Print)).
(64) Huang, J. Y.; Zhong L Fau - Wang, C. M.; Wang Cm Fau - Sullivan, J. P.; Sullivan Jp Fau - Xu, W.; Xu W Fau - Zhang, L. Q.; Zhang Lq Fau - Mao, S. X.; Mao Sx Fau - Hudak, N. S.; Hudak Ns Fau - Liu, X. H.; Liu Xh Fau - Subramanian, A.; Subramanian A Fau - Fan, H.; Fan H Fau - Qi, L.; Qi L Fau - Kushima, A.; Kushima A Fau - Li, J.; Li, J. In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode. (1095-9203 (Electronic)).
(65) Chen, J.; Cheng, F. Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of chemical research 2009, 42 (6), 713-723.
(66) Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials 2006, 18 (17), 2325-2329.
(67) Xu, W.; Zhao, K.; Niu, C.; Zhang, L.; Cai, Z.; Han, C.; He, L.; Shen, T.; Yan, M.; Qu, L.; Mai, L. Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 2014, 8, 196-204.
(68) Hou, C.; Wang, J.; Zhang, W.; Li, J.; Zhang, R.; Zhou, J.; Fan, Y.; Li, D.; Dang, F.; Liu, J.; Li, Y.; Liang, K. A.-O.; Kong, B. A.-O. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage. (1944-8252 (Electronic)).
(69) Ji, L.; Xin, H. L.; Kuykendall, T. R.; Wu, S.-L.; Zheng, H.; Rao, M.; Cairns, E. J.; Battaglia, V.; Zhang, Y. SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Physical Chemistry Chemical Physics 2012, 14 (19), 6981-6986.
(70) Xu, W.; Xie, Z.; Cui, X.; Zhao, K.; Zhang, L.; Dietrich, G.; Dooley, K. M.; Wang, Y. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability. ACS Applied Materials & Interfaces 2015, 7 (40), 22533-22541.
(71) Chen, P.; Su, Y.; Liu, H.; Wang, Y. Interconnected Tin Disulfide Nanosheets Grown on Graphene for Li-Ion Storage and Photocatalytic Applications. ACS Applied Materials & Interfaces 2013, 5 (22), 12073-12082.
(72) Qu, B.; Ji, G.; Ding, B.; Lu, M.; Chen, W.; Lee, J. Y. Origin of the Increased Li+-Storage Capacity of Stacked SnS2/Graphene Nanocomposite. ChemElectroChem 2015, 2 (8), 1138-1143.
(73) Yan, S.; Li, K.; Lin, Z.; Song, H.; Jiang, T.; Wu, J.; Shi, Y. Fabrication of a reversible SnS2/RGO nanocomposite for high performance lithium storage. RSC Advances 2016, 6 (38), 32414-32421.
(74) Zhang, Q.; Li, R.; Zhang, M.; Zhang, B.; Gou, X. SnS2/reduced graphene oxide nanocomposites with superior lithium storage performance. Electrochimica Acta 2014, 115, 425-433.
(75) Wang, G.; Peng, J.; Zhang, L.; Zhang, J.; Dai, B.; Zhu, M.; Xia, L.; Yu, F. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (7), 3659-3666.
(76) Zhang, Z.; Zhao, H. A.-O.; Du, Z.; Chang, X.; Zhao, L.; Du, X.; Li, Z.; Teng, Y.; Fang, J.; Świerczek, K. (101) Plane-Oriented SnS(2) Nanoplates with Carbon Coating: A High-Rate and Cycle-Stable Anode Material for Lithium Ion Batteries. (1944-8252 (Electronic)).
(77) Liu, Y.; Yu, X.-Y.; Fang, Y.; Zhu, X.; Bao, J.; Zhou, X.; Lou, X. W. Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. Joule 2018, 2 (4), 725-735.
(78) Chen, Q.; Lu, F.; Xia, Y.; Wang, H.; Kuang, X. Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries. Journal of Materials Chemistry A 2017, 5 (8), 4075-4083.
(79) Bengono, D. A. M.; Zhang, B.; Yao, Y.; Tang, L.; Yu, W.; Zheng, J.; Chu, D.; Li, J.; Tong, H. Fe3O4 wrapped by reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Ionics 2020, 26 (4), 1695-1701.
(80) Luo, B.; Hu, Y.; Zhu, X.; Qiu, T.; Zhi, L.; Xiao, M.; Zhang, H.; Zou, M.; Cao, A.; Wang, L. Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A 2018, 6 (4), 1462-1472.
(81) Zhai, C.; Du, N.; Zhang, H.; Yu, J.; Yang, D. Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2011, 3 (10), 4067-4074.
(82) Wang, J.-G.; Sun, H.; Liu, H.; Jin, D.; Zhou, R.; Wei, B. Edge-oriented SnS2 nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A 2017, 5 (44), 23115-23122.
(83) Balogun, M.-S.; Qiu, W.; Jian, J.; Huang, Y.; Luo, Y.; Yang, H.; Liang, C.; Lu, X.; Tong, Y. Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (41), 23205-23215.
(84) Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials 2012, 24 (38), 5166-5180.
(85) Horng, Y.-Y.; Lu, Y.-C.; Hsu, Y.-K.; Chen, C.-C.; Chen, L.-C.; Chen, K.-H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources 2010, 195 (13), 4418-4422.
(86) Yen, H.-F.; Horng, Y.-Y.; Hu, M.-S.; Yang, W.-H.; Wen, J.-R.; Ganguly, A.; Tai, Y.; Chen, K.-H.; Chen, L.-C. Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors. Carbon 2015, 82, 124-134.
(87) Mankelevich, Y. A.; Ashfold, M. N. R.; Ma, J. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures. Journal of Applied Physics 2008, 104 (11), 113304.
(88) Wang, C. H.; Du, H. Y.; Tsai, Y. T.; Chen, C. P.; Huang, C. J.; Chen, L. C.; Chen, K. H.; Shih, H. C. High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC. Journal of Power Sources 2007, 171 (1), 55-62.
(89) Feng, J.; Chen, J.; Geng, B.; Feng, H.; Li, H.; Yan, D.; Zhuo, R.; Cheng, S.; Wu, Z.; Yan, P. Two-dimensional hexagonal SnS2 nanoflakes: fabrication, characterization, and growth mechanism. Applied Physics A 2011, 103 (2), 413-419.
(90) Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano letters 2012, 12 (6), 3005-3011.
(91) Lee, S. H.; Jo, Y.-R.; Noh, Y.; Kim, B.-J.; Kim, W. B. Fabrication of hierarchically branched SnO2 nanowires by two-step deposition method and their applications to electrocatalyst support and Li ion electrode. Journal of Power Sources 2017, 367, 1-7.
(92) Zhou, J.; Jiang, Z.; Niu, S.; Zhu, S.; Zhou, J.; Zhu, Y.; Liang, J.; Han, D.; Xu, K.; Zhu, L.; Liu, X.; Wang, G.; Qian, Y. Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. Chem 2018, 4 (2), 372-385.
(93) Jiang, Y.; Song, D.; Wu, J.; Wang, Z.; Huang, S.; Xu, Y.; Chen, Z.; Zhao, B.; Zhang, J. Sandwich-like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. ACS nano 2019, 13 (8), 9100-9111.
(94) Lehman, J. H.; Terrones, M.; Mansfield, E.; Hurst, K. E.; Meunier, V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49 (8), 2581-2602.
(95) Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Bin Wu, H.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature communications 2014, 5 (1), 5002.
(96) Lu, F.; Chen, Q.; Wang, Y.; Wu, Y.; Wei, P.; Kuang, X. Flexible additive-free CC@TiOxNy@SnS2 nanocomposites with excellent stability and superior rate capability for lithium-ion batteries. RSC Advances 2016, 6 (29), 24366-24372.
(97) Wang, Q.; Huang, Y.; Miao, J.; Zhao, Y.; Wang, Y. Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries. Electrochimica Acta 2013, 93, 120-130.
(98) Zhang Z Fau - Zhao, H.; Zhao, H. A.-O.; Fang J Fau - Chang, X.; Chang X Fau - Li, Z.; Li Z Fau - Zhao, L.; Zhao, L. Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage. (1944-8252 (Electronic)).
(99) Ge, X.; Liu, S.; Qiao, M.; Du, Y.; Li, Y.; Bao, J.; Zhou, X. Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel-Containing Carbon Nanofibers. Angewandte Chemie International Edition 2019, 58 (41), 14578-14583.
(100) Zhang, Z.; Zhao, H.; Fang, J.; Chang, X.; Li, Z.; Zhao, L. Tin Disulfide Nanosheets with Active-Site-Enriched Surface Interfacially Bonded on Reduced Graphene Oxide Sheets as Ultra-Robust Anode for Lithium and Sodium Storage. ACS Appl Mater Interfaces 2018, 10 (34), 28533-28540.
(101) Mei, L.; Xu, C.; Yang, T.; Ma, J.; Chen, L.; Li, Q.; Wang, T. Superior electrochemical performance of ultrasmall SnS2 nanocrystals decorated on flexible RGO in lithium-ion batteries. Journal of Materials Chemistry A 2013, 1 (30), 8658-8664.
(102) Chao, J.; Zhang, X.; Xing, S.; Fan, Q.; Yang, J.; Zhao, L.; Li, X. Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries. Materials Science and Engineering: B 2016, 210, 24-28.
(103) Huang, Z. X.; Wang, Y.; Liu, B.; Kong, D.; Zhang, J.; Chen, T.; Yang, H. Y. Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions. Scientific Reports 2017, 7 (1), 41015.
(104) Zhu, Y.; Chu, Y.; Liang, J.; Li, Y.; Yuan, Z.; Li, W.; Zhang, Y.; Pan, X.; Chou, S.-L.; Zhao, L.; Zeng, R. Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries. Electrochimica Acta 2016, 190, 843-851.
(105) Zhong, H.; Yang, G.; Song, H.; Liao, Q.; Cui, H.; Shen, P.; Wang, C.-X. Vertically Aligned Graphene-Like SnS2 Ultrathin Nanosheet Arrays: Excellent Energy Storage, Catalysis, Photoconduction, and Field-Emitting Performances. The Journal of Physical Chemistry C 2012, 116 (16), 9319-9326.
(106) Chang, K.; Wang, Z.; Huang, G.; Li, H.; Chen, W.; Lee, J. Y. Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. Journal of Power Sources 2012, 201, 259-266.
(107) Gao, C.; Li, L.; Raji, A.-R. O.; Kovalchuk, A.; Peng, Z.; Fei, H.; He, Y.; Kim, N. D.; Zhong, Q.; Xie, E.; Tour, J. M. Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (48), 26549-26556.
(108) Liu, S. Y.; Lu, X.; Xie, J.; Cao, G. S.; Zhu, T. J.; Zhao, X. B. Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 1588.
(109) Jiang, Y.; Feng, Y.; Xi, B.; Kai, S.; Mi, K.; Feng, J.; Zhang, J.; Xiong, S. Ultrasmall SnS2 nanoparticles anchored on well-distributed nitrogen-doped graphene sheets for Li-ion and Na-ion batteries. Journal of Materials Chemistry A 2016, 4 (27), 10719-10726.
(110) Ma, Z.; Wang, Y.; Yang, Y.; Yousaf, M.; Zou, M.; Cao, A.; Han, R. P. S. Flexible hybrid carbon nanotube sponges embedded with SnS2 from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. RSC Advances 2016, 6 (36), 30098-30105.
(111) Deng, W.; Chen, X.; Liu, Z.; Hu, A.; Tang, Q.; Li, Z.; Xiong, Y. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. Journal of Power Sources 2015, 277, 131-138.
(112) Sun, H.; Ahmad, M.; Luo, J.; Shi, Y.; Shen, W.; Zhu, J. SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Materials Research Bulletin 2014, 49, 319-324.
(113) Zhang, L.; Huang, Y.; Zhang, Y.; Fan, W.; Liu, T. Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage. ACS Applied Materials & Interfaces 2015, 7 (50), 27823-27830.
(114) Zhai, C. X.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-ion Batteries. ACS Appl. Mater. Interfaces 2011, 3, 4067.
(115) Liu, Y.; Wang, C.; Yang, H.; Shi, Z.-J.; Huang, F.-Q. Uniform-loaded SnS2/single-walled carbon nanotubes hybrid with improved electrochemical performance for lithium ion battery. Materials Letters 2015, 159, 329-332.
(116) Guan, D.; Li, J.; Gao, X.; Yuan, C. Carbon nanotube-assisted growth of single-/multi-layer SnS2 and SnO2 nanoflakes for high-performance lithium storage. RSC Advances 2015, 5 (72), 58514-58521.
(117) Wu, Y.; Lin, G.; Zhou, X.; Chen, J.; Zhuang, J.; Chen, Q.; Luo, Y.; Lu, D.; Ganesh, V.; Zeng, R. Exploring structural stability mechanism of TiO2 encapsulated in 3D flower-like SnS2 anode for lithium ion batteries. Journal of Electroanalytical Chemistry 2020, 857, 113740.
(118) Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359.
(119) Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2008, 47 (16), 2930-2946.
(120) Liu, Y.; Zhou, G.; Liu, K.; Cui, Y. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. Accounts of chemical research 2017, 50 (12), 2895-2905.
(121) Meng, J.; Guo, H.; Niu, C.; Zhao, Y.; Xu, L.; Li, Q.; Mai, L. Advances in Structure and Property Optimizations of Battery Electrode Materials. Joule 2017, 1 (3), 522-547.
(122) Wu, H.-L.; Huff, L. A.; Gewirth, A. A. In Situ Raman Spectroscopy of Sulfur Speciation in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7 (3), 1709-1719.
(123) Syum, Z.; Venugopal, B.; Sabbah, A.; Billo, T.; Chou, T.-C.; Wu, H.-L.; Chen, L.-C.; Chen, K.-H. Superior lithium-ion storage performance of hierarchical tin disulfide and carbon nanotube-carbon cloth composites. Journal of Power Sources 2021, 482, 228923.
(124) Zhu, G.; Wen, K.; Lv, W.; Zhou, X.; Liang, Y.; Yang, F.; Chen, Z.; Zou, M.; Li, J.; Zhang, Y.; He, W. Materials insights into low-temperature performances of lithium-ion batteries. Journal of Power Sources 2015, 300, 29-40.
(125) Luo, Y.; Xu, X.; Zhang, Y.; Pi, Y.; Zhao, Y.; Tian, X.; An, Q.; Wei, Q.; Mai, L. Hierarchical Carbon Decorated Li3V2(PO4)3 as a Bicontinuous Cathode with High-Rate Capability and Broad Temperature Adaptability. Advanced Energy Materials 2014, 4 (16), 1400107.
(126) Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources 2014, 262, 129-135.
(127) Plichta, E. J.; Hendrickson, M.; Thompson, R.; Au, G.; Behl, W. K.; Smart, M. C.; Ratnakumar, B. V.; Surampudi, S. Development of low temperature Li-ion electrolytes for NASA and DoD applications. Journal of Power Sources 2001, 94 (2), 160-162.
(128) Ratnakumar, B. V.; Smart, M. C.; Surampudi, S. Effects of SEI on the kinetics of lithium intercalation. Journal of Power Sources 2001, 97-98, 137-139.
(129) Huang, C. K.; Sakamoto, J. S.; Wolfenstine, J.; Surampudi, S. The Limits of Low-Temperature Performance of Li-Ion Cells. Journal of The Electrochemical Society 2000, 147 (8), 2893.
(130) Zhang, S. S.; Xu, K.; Jow, T. R. A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry Communications 2002, 4 (11), 928-932.
(131) Mancini, M.; Nobili, F.; Dsoke, S.; D’Amico, F.; Tossici, R.; Croce, F.; Marassi, R. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. Journal of Power Sources 2009, 190 (1), 141-148.
(132) Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. Journal of Power Sources 2010, 195 (15), 4997-5004.
(133) Zhang, S. S.; Xu, K.; Jow, T. R. Low temperature performance of graphite electrode in Li-ion cells. Electrochimica Acta 2002, 48 (3), 241-246.
(134) Smart, M. C.; Ratnakumar, B. V.; Surampudi, S. Use of Organic Esters as Cosolvents in Electrolytes for Lithium-Ion Batteries with Improved Low Temperature Performance. Journal of The Electrochemical Society 2002, 149 (4), A361.
(135) Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Croft, H.; Tice, D.; Staniewicz, R. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. Journal of Power Sources 2003, 119-121, 349-358.
(136) Tron, A.; Jeong, S.; Park, Y. D.; Mun, J. Aqueous Lithium-Ion Battery of Nano-LiFePO4 with Antifreezing Agent of Ethyleneglycol for Low-Temperature Operation. ACS Sustainable Chemistry & Engineering 2019, 7 (17), 14531-14538.
(137) Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (22), 18826-18835.
(138) Jansen, A. N.; Dees, D. W.; Abraham, D. P.; Amine, K.; Henriksen, G. L. Low-temperature study of lithium-ion cells using a LiySn micro-reference electrode. Journal of Power Sources 2007, 174 (2), 373-379.
(139) Abraham, D. P.; Heaton, J. R.; Kang, S. H.; Dees, D. W.; Jansen, A. N. Investigating the Low-Temperature Impedance Increase of Lithium-Ion Cells. Journal of The Electrochemical Society 2008, 155 (1), A41.
(140) Sides, C. R.; Martin, C. R. Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries. Advanced Materials 2005, 17 (1), 125-128.
(141) Sun, Z.; Li, Z.; Wu, X.-L.; Zou, M.; Wang, D.; Gu, Z.; Xu, J.; Fan, Y.; Gan, S.; Han, D.; Niu, L. A Practical Li-Ion Full Cell with a High-Capacity Cathode and Electrochemically Exfoliated Graphene Anode: Superior Electrochemical and Low-Temperature Performance. ACS Applied Energy Materials 2019, 2 (1), 486-492.
(142) Dong, X.; Guo, Z.; Guo, Z.; Wang, Y.; Xia, Y. Organic Batteries Operated at −70°C. Joule 2018, 2 (5), 902-913.
(143) Varzi, A.; Mattarozzi, L.; Cattarin, S.; Guerriero, P.; Passerini, S. 3D Porous Cu–Zn Alloys as Alternative Anode Materials for Li-Ion Batteries with Superior Low T Performance. Advanced Energy Materials 2018, 8 (1), 1701706.
(144) Ma, W.; Wang, Y.; Yang, Y.; Wang, X.; Yuan, Z.; Liu, X.; Ding, Y. Temperature-Dependent Li Storage Performance in Nanoporous Cu–Ge–Al Alloy. ACS Applied Materials & Interfaces 2019, 11 (9), 9073-9082.
(145) Fan, H.-H.; Li, H.-H.; Wang, Z.-W.; Li, W.-L.; Guo, J.-Z.; Fan, C.-Y.; Sun, H.-Z.; Wu, X.-L.; Zhang, J.-P. Tailoring Coral-Like Fe7Se8@C for Superior Low-Temperature Li/Na-Ion Half/Full Batteries: Synthesis, Structure, and DFT Studies. ACS Applied Materials & Interfaces 2019, 11 (51), 47886-47893.
(146) Liu, X.; Wang, Y.; Yang, Y.; Lv, W.; Lian, G.; Golberg, D.; Wang, X.; Zhao, X.; Ding, Y. A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature. Nano Energy 2020, 70, 104550.
(147) Liu, Y.; Yang, B.; Dong, X.; Wang, Y.; Xia, Y. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. Angewandte Chemie International Edition 2017, 56 (52), 16606-16610.
(148) Zhang, J.; Liu, X.; Wang, J.; Shi, J.; Shi, Z. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochimica Acta 2016, 187, 134-142.
(149) Ji, Y.; Zhang, Y.; Wang, C.-Y. Li-Ion Cell Operation at Low Temperatures. Journal of The Electrochemical Society 2013, 160 (4), A636-A649.
(150) Nobili, F.; Mancini, M.; Dsoke, S.; Tossici, R.; Marassi, R. Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. Journal of Power Sources 2010, 195 (20), 7090-7097.
(151) Yang, X.; Xu, J.; Xi, L.; Yao, Y.; Yang, Q.; Chung, C. Y.; Lee, C.-S. Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. Journal of Nanoparticle Research 2012, 14 (6), 931.
(152) Jiang, Q.; Chen, X.; Gao, H.; Feng, C.; Guo, Z. Synthesis of Cu2ZnSnS4 as Novel Anode material for Lithium-ion Battery. Electrochimica Acta 2016, 190, 703-712.
(153) Wan, H.; Peng, G.; Yao, X.; Yang, J.; Cui, P.; Xu, X. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Materials 2016, 4, 59-65.
(154) Lin, J.; Guo, J.; Liu, C.; Guo, H. Three-Dimensional Cu2ZnSnS4 Films with Modified Surface for Thin-Film Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (31), 17311-17317.
(155) Chiu, J.-M.; Chou, T.-C.; Wong, D. P.; Lin, Y.-R.; Shen, C.-A.; Hy, S.; Hwang, B.-J.; Tai, Y.; Wu, H.-L.; Chen, L.-C.; Chen, K.-H. A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium ion storage. Nano Energy 2018, 44, 438-446.
(156) Chiu, J.-M.; Chen, E. M.; Lee, C.-P.; Shown, I.; Tunuguntla, V.; Chou, J.-S.; Chen, L.-C.; Chen, K.-H.; Tai, Y. Geogrid-Inspired Nanostructure to Reinforce a CuxZnySnzS Nanowall Electrode for High-Stability Electrochemical Energy Conversion Devices. Advanced Energy Materials 2017, 7 (12), 1602210.
(157) An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76.
(158) Schulz, N.; Hausbrand, R.; Dimesso, L.; Jaegermann, W. XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part I. Investigation of Initial Surface Chemistry. Journal of The Electrochemical Society 2018, 165 (5), A819-A832.
(159) Lee, J. T.; Nitta, N.; Benson, J.; Magasinski, A.; Fuller, T. F.; Yushin, G. Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy. Carbon 2013, 52, 388-397.
(160) Bree, G.; Geaney, H.; Stokes, K.; Ryan, K. M. Aligned Copper Zinc Tin Sulfide Nanorods as Lithium-Ion Battery Anodes with High Specific Capacities. The Journal of Physical Chemistry C 2018, 122 (35), 20090-20098.
(161) Choi, S.; Cho, Y.-G.; Kim, J.; Choi, N.-S.; Song, H.-K.; Wang, G.; Park, S. Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. Small 2017, 13 (13), 1603045.
(162) Zhang, Y.; Luo, Y.; Chen, Y.; Lu, T.; Yan, L.; Cui, X.; Xie, J. Enhanced Rate Capability and Low-Temperature Performance of Li4Ti5O12 Anode Material by Facile Surface Fluorination. ACS Applied Materials & Interfaces 2017, 9 (20), 17145-17154.
(163) Zou, H. L.; Xiang, H. F.; Liang, X.; Feng, X. Y.; Cheng, S.; Jin, Y.; Chen, C. H. Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. Journal of Alloys and Compounds 2017, 701, 99-106.
(164) Wang, Y.; Ma, C.; Ma, W.; Fan, W.; Sun, Y.; Yin, H.; Shi, X.; Liu, X.; Ding, Y. Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination. 2D Materials 2019, 6 (4), 045025.
(165) Li, Y.; Wong, K. W.; Dou, Q.; Zhang, W.; Ng, K. M. Improvement of Lithium-Ion Battery Performance at Low Temperature by Adopting Ionic Liquid-Decorated PMMA Nanoparticles as Electrolyte Component. ACS Applied Energy Materials 2018, 1 (6), 2664-2670.
(166) Huang, C.; Zhao, S.-X.; Peng, H.; Lin, Y.-H.; Nan, C.-W.; Cao, G.-Z. Hierarchical porous Li4Ti5O12–TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. Journal of Materials Chemistry A 2018, 6 (29), 14339-14351.
(167) Li, J.; Wen, W.; Xu, G.; Zou, M.; Huang, Z.; Guan, L. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. Electrochimica Acta 2015, 153, 300-305.
(168) Elia, G. A.; Nobili, F.; Tossici, R.; Marassi, R.; Savoini, A.; Panero, S.; Hassoun, J. Nanostructured tin–carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. Journal of Power Sources 2015, 275, 227-233.
(169) Li, K.; Lin, D.; Huang, H.; Liu, D.; Li, B.; Shi, S.-Q.; Kang, F.; Zhang, T.-Y.; Zhou, L. Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries. Nano Energy 2020, 75, 104977.
(170) Cook, J. B.; Kim, H.-S.; Yan, Y.; Ko, J. S.; Robbennolt, S.; Dunn, B.; Tolbert, S. H. Mesoporous MoS2 as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li and Na-Ion Charge Storage. Advanced Energy Materials 2016, 6 (9), 1501937.
(171) Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials 2013, 12 (6), 518-522.
(172) Li, S.; Zhao, W.; Zhou, Z.; Cui, X.; Shang, Z.; Liu, H.; Zhang, D. Studies on Electrochemical Performances of Novel Electrolytes for Wide-Temperature-Range Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (7), 4920-4926.
(173) Liao, L. X.; Zuo, P. J.; Ma, Y. L.; An, Y. X.; Yin, G. P.; Gao, Y. Z. Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode. Electrochimica Acta 2012, 74, 260-266. |