參考文獻 |
[1] Tian, M., Hu, K., Ma, C., & Lei, F., “Effect of bed sediment entrainment on debris-flow resistance” Journal of Hydraulic Engineering, 140(1), pp.115-120, 2014.
[2] 大規模崩塌災害,科技部災害管理資訊研發應用平台。
http://dmip.tw/Lone/basicdata/historycase.aspx
[3] Louge, M.Y., Valance, A., Lancelot, P., Delannay, R., & Arti`eres, O., “Granular flows on a dissipative base” Physical Review E, 92, 022204, 2015.
[4] Lube, G., Huppert, H.E., Sparks, R.S.J., & Freundt, A., “Collapses of two-dimensional granular columns” Physical Review E, 72, 041301, 2005.
[5] Takagi, D., McElwaine, J.N., & Huppert, H.E., “Shallow granular flows” Physical Review E, 83, 031306, 2011.
[6] Lube, G., Huppert, H.E., Sparks, R.S.J., & Freundt, A., “Granular column collapses down rough, inclined channels” Journal of Fluid Mechanics, 675, pp.347-368, 2011.
[7] Ancey, C., “Dry granular flow down an inclined channel: Experimental investigations on the frictional-collisional regime” Physical Review E, 65, 011304, 2001.
[8] Pudasaini, S.P., Hutter, K., Hsiau, S.S., Tai, S.C, Wang, Y., & Katzenbach, R., “Rapid flow of dry granular materials down inclined chutes impinging on rigid walls” Physics of Fluids, 19, 053302, 2007.
[9] Chou, S. H., Lu, L. S., Hsiau, S. S., “DEM simulation of oblique shocks in gravity-driven granular flows with wedge obstacles” Granular Matter, 14, 719-732, 2012.
[10] Bi, Y., He, S., Li, X., Ouyang, C., and Wu, Y., “Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures” Environmental Earth Sciences, 75, 263, 2016.
[11] Ikari, H., & Gotoh, H., “SPH-based simulation of granular collapse on an inclined bed” Mechanics Research Communications, 73, pp.12-18, 2016.
[12] Martin, N., Ionesue, I.R., Mangeney, A.,Bouchut, F., & Farin, M., “Continuum viscoplastic simulation of a granular column collapse on large slopes: μ(I) rheology and lateral wall effects” Physics of Fluids, 29, 013301, 2017.
[13] Phillips, J.C., Hogg, A.J., Kerswell, R.R., & Thomas, N.H., “Enhanced mobility of granular” Earth and Planetary Science Letters, 246, pp.466-480, 2006.
[14] Haas, T.D., Braat, L., Leuven, J.R.F.W., Lokhorst, I.R., & Kleinhans, M.G.,"Effects of debris-flow composition on runout, depositional mechanisms and deposit morphology in laboratory experiments" Journal of Geophysical Research: Earth Surface, 120(9), pp.1949-1972, 2015.
[15] Hu, Y.X., Li, H.B., Qi, S.C., Fan, G., & Zhou, J.W., "Granular Effects on Depositional Processes of Debris Avalanches" KSCE Journal of Civil Engineering, 24, pp.1116-1127, 2020.
[16] Fei, J., Jie, Y., Sun, X., & Chen, X., “Particle size effects on small-scale avalanches and a μ(I) rheology-based simulation” Computers and Geotechnics, 126, 103737, 2020.
[17] Lube, G., Huppert, H.E., Sparks, R.S.J., & Freundt, A., “Static and flowing regions in granular collapses down channels” Physics of Fluids, 19, 043301, 2007.
[18] Lacaze, L., Phillips, J.C., & Kerswell, R.R., “Planar collapse of a granular column: Experiments and discrete element simulations” Physics of Fluids, 20, 063302, 2008.
[19] Lee, C.H., Huang, Z., & Chiew, Y.M., “A three-dimensional continuum model incorporating static and kinetic effects for granular flows with applications to collapse of a two-dimensional granular column” Physics of Fluids, 27, 113303, 2015.
[20] Xu, X., Sun, Q., Jin, F., & Chen, Y., “Measurements of velocity and pressure of a collapsing granular pile” Powder Technology, 303, pp.147-155, 2016.
[21] Farin, M., Mangeney, A., & Roche, O., “Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angle: Insights from laboratory experiments” Journal of Geophysical Research: Earth Surface, 119(3), pp.504-532, 2014.
[22] Staron, L., & Hinch, E.J., “Study of the collapse of granular columns using two-dimensional discrete-grain simulation” Journal of Fluid Mechanics, 545, pp.1-27, 2005.
[23] Mériaux, C., "Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall" Physics of Fluids, 18(9), 093301, 2006.
[24] Cabrera, M., & Estrada, N., "Granular column collapse: analysis of grain-size effects" Physical Review E, 99, 012905, 2019.
[25] Mangeney, A., Roche, O., Hungr., O., Mangold, N., Faccanoni, G., & Lucas, A., “Erosion and mobility in granular collapse over sloping beds” Journal of Geophysical Research, 115, F03040, 2010.
[26] Barbolini, M., Biancardi, A., Cappabianca, F., Natale, L., & Pagliardi, M., “Laboratory study of erosion processes in snow avalanches” Cold Regions Science and Technology, 43(1-2), pp.1-9, 2005.
[27] Crosta, G.B., Imposimato, S., & Roddeman, D., “Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface” Journal of Geophysical Research, 114, F03020, 2009.
[28] Wu, Y., Li, P., & Wang, D., “Erosion-deposition regime formation in granular column collapse over an erodible surface” Physical Review E, 98, 052909, 2018.
[29] Iverson, R.M., Reid, M.E., Logan, M., Lahusun, R.G., Godt, J.W., & Griswold, J.P., “Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment” Nature Geoscience, 4, pp.116-121, 2011.
[30] Lu, P., Yang, X., Hou, T., & Zhou, J., “An analysis of the entrainment effect of dry debris avalanches on loose bed materials” Springerplus, 5(1):1621, 2016.
[31] He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., & Chao, Y., “The connected-component labeling problem: A review of state-of -the-art algorithms” Pattern Recognition, 70, pp.25-43, 2017.
[32] Nixon, M. S., & Aguado, A. S., “Low-level feature extraction (including edge detection)” Feature Extraction & Image Processing for Computer Vision, pp.137-216, 2012.
[33] Trinh, T., Boltenhagen, P., Delannay, R., & Valance, A., “Erosion and deposition processes in surface granular flows” Physical Review E, 96, 042904, 2017. |