博碩士論文 108328001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.119.107.161
姓名 王稚元(Chih-Yuan Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 加濕效應對加壓型甲烷固態氧化物燃料電池碳沉積影響
(Effect of Humidification on Carbon Deposition of A Pressurized Solid Oxide Fuel Cell)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文量測加濕效應與壓力效應對甲烷固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)電化學性能、碳沉積與電池穩定性之影響。採用實驗室已建立之加壓型SOFC測試平台,使用鈕扣型陽極支撐電池(Ni-YSZ/ YSZ/ LSC-GDC),於操作壓力p = 1 atm 與3 atm和操作溫度750°C,進行四種不同濕度比例之甲烷作為陽極燃料,以steam to carbon ratio (S/C)定義,分別為(1) S/C = 0 (50 sccm CH4 + 150 sccm N2)、(2) S/C = 0.25 (50 sccm CH4 + 12.5 sccm H2O + 137.5 sccm N2) 、 (3) S/C = 0.5 (50 sccm CH4 + 25 sccm H2O + 125 sccm N2) 以及(4) S/C = 1 (50 sccm CH4 + 50 sccm H2O + 100 sccm N2),陽極總體積流率為200 sccm;陰極則是通入200 sccm的空氣。實驗結果顯示:在p = 1 atm下,甲烷加濕效應可使SOFC功率密度提升14% ~ 26%,最大提升值發生在S/C = 0.25,這是因為甲烷蒸氣重組反應將CH4轉換成H2,得以有效地降低活化極化與濃度極化。再者,壓力效應與加濕效應結合明顯降低SOFC極化阻抗,例如加濕甲烷在p = 3 atm和S/C = 0.5條件下,其電池性能比起常壓和S/C = 0.5條件下之性能高出62%。在p = 3 atm和S/C = 0條件下,於 SEM與XRD影像觀測到有大量的碳沉積聚集於燃料進口處,這是因壓力效應加劇了甲烷與陽極鎳觸媒直接裂解的速率,提高S/C可藉由甲烷蒸氣重組,與水煤氣轉換反應抑制於燃料進口處之碳沉積,達到延長電池壽命的目的。綜合以上結果,顯示加壓型甲烷SOFC配合適度加濕,未來可與直接燃燒甲烷(天然氣主要成份)之微氣渦輪機結合,發展分散式高效率複合式發電系統。
摘要(英) This study meassures the effect of humidification on carbon deposition for a pressurized methane-fueled solid oxide fuel cell (SOFC) using anode-supported button full cell (ASC: NiO-YSZ/ YSZ/ LSC-GDC). Experiments are conducted in high-pressure SOFC testing platform. The experimental conditions are two operating pressures p = 1 atm and p = 3 atm at T = 750 °C. The anode fuel is supplied by methane with four different steam to carbon ratio (S/C): (1) S/C = 0 (50 CH4 + 150 N2), (2) S/C = 0.25 (50 CH4 + 12.5 H2O + 137.5 N2), (3) S/C =0.5 (50 CH4 + 25 H2O + 125 N2), (4) S/C =1 (50 CH4 + 50 H2O + 100 N2) at a total flow rate of 200 ml min-1, and the cathode is supplied by air at a total flow rate of 200 ml min-1 for all four cases . Results show that steam-methane reforming can improve power density and reduce both activation and concentration polarization noticeably. Moreover, the maximum power density is formed to be at S/C = 0.5 with p = 3 atm, which significantly increase of 62% as compared with that at p = 1 atm and S/C = 0.5. The scanning electron microscope (SEM) and X-ray diffraction (XRD) images show great amount of carbon deposition at S/C = 0 with p = 3 atm. The carbon deposition can be suppressed by increasing S/C under steam-methane reforming and water-gas shift reaction, which is turn extends the cell durability. This suggests that the pressurized methane-fueled SOFC is feasible for the future development of the hybrid power system integrating with micro gas turbines.
關鍵字(中) ★ 加壓型甲烷固態氧化物燃料電池
★ 甲烷蒸氣重組
★ 水煤氣轉換
★ 穩定性測試
★ 碳沉積
關鍵字(英) ★ Pressurized Methane-fueled Solid Oxide Fuel Cell
★ Methane Steam Reforming
★ Water-gas Shift Reaction
★ Stability Test
★ Carbon Deposition
論文目次 目錄
摘 要 i.
Abstract ..... iii
致謝.... ivii
目錄..... vii
圖表目錄.. viii
符號說明x
第一章 前言 1
1.1 研究動機 ..1
1.2 問題所在 ..3
1.3 解決方法 ..4
1.4 論文綱要 ..5
第二章 文獻回顧 ....7
2.1 SOFC介紹與運作原理 ..7
2.1.1 陽極、電解質與陰極 .7
2.1.2 SOFC運作機制 ...10
2.2 SOFC之極化現象 ..15
2.2.1 活化極化 15
2.2.2 歐姆極化 16
2.2.3 濃度極化 17
2.3 甲烷SOFC性能、阻抗與電池耐久性相關文獻 ..18
2.3.1 甲烷SOFC耐久性測試與碳沉積現象相關研究 .....19
2.3.2 甲烷SOFC中添加H2O之相關研究 .....25
2.4 SOFC壓力效應 .27
2.4.1壓力效應對於SOFC性能與電化學反應機制之影響 .27
2.4.2 壓力效應對於甲烷SOFC影響 ..29
第三章 實驗設備與量測方法 35
3.1 高壓SOFC實驗量測平台 .35
3.2 實驗流程與量測操作參數設定 .....38
3.3 實驗流程與量測操作參數設定 .....41
3.3.1 SOFC標準作業流程 ....41
3.3.2 甲烷SOFC 實驗量測流程 ..42
第四章 結果與討論 ....46
4.1 一大氣壓甲烷SOFC加濕效應與氫氣SOFC性能與OCV 比較 .....46
4.1.1 甲烷 SOFC加濕效應OCV量測 .....46
4.1.2 甲烷SOFC加濕效應I-V極化曲線量測 .....47
4.2 一大氣壓甲烷SOFC加濕效應與氫氣SOFC電化學阻抗頻譜比較 .....51
4.2.1 一大氣壓甲烷SOFC之加濕效應對於歐姆、活化極化的影響 .....51
4.2.2 一大氣壓甲烷SOFC之加濕效應對於濃度極化的影響 .....51
4.3 壓力效應對於加濕甲烷SOFC性能影響 .53
4.4 壓力效應對於加濕甲烷SOFC電化學阻抗頻譜比較 .....56
4.5 壓力效應對於加濕甲烷SOFC碳沉積現象與電池壽命 60
4.5.1 一大氣壓甲烷 SOFC之加濕效應對於電池壽命的影響 60
4.5.2 一大氣壓甲烷 SOFC之加濕效應耐久性測試 SEM影像 與 XRD圖 譜 61
4.5.3 壓力效應對於加濕甲烷 SOFC電池壽命之影響 62
4.5.4 壓力效應對於加濕甲烷 SOFC耐久性測試 SEM影像 與 XRD圖譜 63
第五章 結論與未來工作 ..71
參考文獻....74
圖表目錄
圖2.1 SOFC 陽極觸媒Ni/YSZ 剖面圖之Triple Phase Boundaries反應位置[27]。 .....9
圖2.2 ZrO2添加Y2O3產生電荷補償效應,形成氧空洞[7]。 .10
圖2.3 SOFC陽極使用氫氣之基本運作機制[7]。 ...13
圖2.4 SOFC 極化曲線圖及各電流密度區間所造成的電壓損失[7]。 .14
圖2.5 在不同操作溫度下使用CH4或CO經過4小時後,Ni-YSZ 顆粒表面上碳沉積的量[8]。 ....22
圖2.6 使用加濕3%甲烷在(a)初始陽極Ni-YSZ、(b) 500°C、(c) 600°C(表面)、(d) 600°C、(e) 700°C,與(f) 800°C經過4小時穩定性測試後之陽極中心SEM影像[44]。..23
圖2.7 在不同溫度、負載條件下使用加濕3%甲烷進行3-6小時的穩定性測試;(a) 650°C、(b) 700°C、(c) 750°C,與(d) 800°C [9]。 ..24
圖2.8 模擬平板型ASC(NiO-YSZ/YSZ /LSCF)溫度範圍在650°C~850°C工作壓力1 atm~10 atm甲烷蒸氣重組反應之甲烷與氫氣的濃度變化[17]。 ...30
圖2.9 壓力效應對於甲烷碳沉積之影響,於溫度750°C和負載0.8V下,不同壓力下的性能穩定性分析[22]。 .31
圖2.10 壓力效應對於甲烷碳沉積之影響,於溫度800°C和負載0.9V下,不同壓力下的性能穩定性分析[22]。 ...32
表2.1表一. 各團隊甲烷SOFC性能、阻抗與電池耐久性相關文獻 ...33
表2.2各團隊甲烷SOFC中添加H2O之相關研究 ..34
圖 3.1 高壓高溫雙腔體SOFC實驗量測平台。 .37
圖3.2 (a) SOFC陶瓷鈕扣型載具實際圖與平片剖視圖。 ..39
圖 3.2 (b) Elcogen ASC-400B實際照片(左)、電池材料厚度和尺寸示意圖(左下)和SEM拍攝圖(右)。 40
圖3.3 高壓甲烷SOFC實驗流程圖。 .....44
圖4.1 (a) 加濕效應之甲烷SOFC 與氫氣SOFC 極化曲線比較圖。 ...49
圖4.1 (b) 加濕效應對於性能與OCV 比較圖。 49
圖4.2 加濕效應之甲烷SOFC與氫氣SOFC電化學阻抗頻譜: Nyquist(下方), Bode(上方)比較圖。 ....52
圖4.3 (a)壓力效應之加濕甲烷SOFC 與氫氣SOFC 極化曲線比較圖 54
圖4.3 (b) 加濕甲烷SOFC 壓力與加濕效應對於與常壓性能比較圖 ..55
表4.1 壓力效應對於加濕甲烷SOFC 與氫氣SOFC 對電池功率密度增益。 55
圖 4.4 (a) 壓力效應之加濕甲烷SOFC 與氫氣SOFC 電化學阻抗頻譜: Nyquist(下方), Bode(上方)比較圖。 ..58
圖 4.4 (a) 壓力效應之加濕甲烷SOFC 與氫氣SOFC 電化學阻抗頻譜: 依照不同頻率所造成之相位角偏差Theta (θ)與Zreal 間所繪製之Bode 比較圖;θ 為電壓所對應初始相位角φ 與電流響應初始相位角ψ 之差(θ= φ - ψ)。 .....59
表4.2壓力效應對於加濕甲烷SOFC與氫氣SOFC對電池總極化阻抗之增益。 .....60
圖4.5 在750°C、1 atm 的實驗條件,以800 mA/cm2 定電流密度量測陽極燃料為: S/C ratio = 0 (CH4/H2O/N2= 50/0/150 sccm 電池壽命13 hr),與S/C ratio = 0.5 (CH4/H2O/N2= 50/25/125 sccm, 電池壽命48 hr) 電池耐久性測試結果。 .65
圖4.6 在為(a)通入H2 還原後之Ni-YSZ 陽極表面;(b)、(c)分別是在在750°C、1 atm,與800 mA/cm2 定電流密度條件下;為 S/C ratio = 0 (CH4/H2O/N2= 50/25/150 sccm)加濕甲烷在48 小時耐久性測試後,(b) 陽極側視剖面圖,(c) 陽極表面俯視圖。(d)、(e)則分別是S/C ratio = 0.5 (CH4/H2O/N2= 50/0/125 sccm)乾甲烷在13小時耐久性後,(d) 陽極側視剖面圖與(e) 陽極表面俯視圖。 ....66
圖4.7 SOFC 陽極表面XRD 圖譜其電池片樣本取自: (a) 通入H2 還原後之Ni-YSZ、(b) 在750°C、1 atm 的實驗條件,以800 mA/cm2 定電流密度量測陽極燃料為: S/C = 0 (CH4/ H2O/ N2= 50/ 0/ 150 sccm 電池壽命13 hr),以及(c) S/C = 0.5 (CH4/ H2O/ N2= 50/ 25/ 125 sccm, 電池壽命48 hr)穩定性測試後的電池片。 ...67
圖4.8 在750°C、3 atm 的實驗條件,以800 mA/cm2 定電流密度量測陽極燃料為: S/C ratio = 0 (CH4/H2O/N2= 50/0/150 sccm 電池壽命2 hr)、S/C ratio = 0.5
(CH4/H2O/N2= 50/25/125 sccm, 電池壽命5 hr) ,與S/C ratio = 1 (CH4/H2O/N2= 50/50/100 sccm, 電池壽命9 hr)電池耐久性測試結果。 .....68
圖4.9 (a)為通入H2 還原後之Ni-YSZ 陽極表面;(b)、(c)分別是在在750°C、3 atm,與800 mA/cm2 定電流密度條件下;(b)、(c)分別是 S/C ratio = 0.5 (CH4/H2O/N2= 50/25/150 sccm)加濕甲烷在5 小時耐久性測試後,(b) 陽極表面中心處俯視圖、(c) 陽極表面邊緣處俯視圖。(d)、(e)則分別是S/C ratio = 0 (CH4/H2O/N2= 50/0/125 sccm)乾甲烷在2 小時耐久性後, (d) 陽極表面中心處俯視圖,以及(e) 陽極表面邊緣處俯視圖。..69
圖4.10 SOFC 陽極表面XRD 圖譜其電池片樣本取自: (a) 通入H2 還原後之Ni-YSZ、(b) 在750°C、3atm 的實驗條件,以800 mA/cm2 定電流密度量測陽極燃料為: S/C = 0 (CH4/ H2O/ N2= 50/ 0/ 150 sccm 電池壽命13 hr),以及(c) S/C = 0.5 (CH4/ H2O/ N2= 50/ 25/ 125 sccm, 電池壽命48 hr)穩定性測試後的電池片。 ...70
參考文獻 參考文獻
[1] U.S. Energy Information Administration, Annual Energy Outlook 2021 Narrative, (2021) 9-10. (https://www.eia.gov/outlooks/aeo/)
[2] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, 1st Ed. , Elsevier, United Kingdom, 2003.
[3] Q.L. Ma, J.J. Ma, S. Zhou, R.Q. Yan, J.F. Gao, G.Y. Meng, A High-Performance Ammonia-Fueled SOFC Based on a YSZ Thin-Film Electrolyte, J. Power Sources 164 (2007) 86-89. (10.1016/j.jpowsour.2006.09.093)
[4] Y. Jiao, L. Zhang, W. An, W. Zhou, Y. Sha, Z. Shao, J. Bai, S.D. Li, Controlled Deposition and Utilization of Carbon on Ni-YSZ Anodes of SOFCs Operating on Dry Methane, Energy 113 (2016) 432-443.
(10.1016/j.energy.2016.07.063)
[5] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Equchi, Development of Ni-Ba(Zr,Y)O3 Cermet Anodes for Direct Ammonia-Fueled Solid Oxide Fuel Cells, J. Power Sources 365 (2017) 148-154. (https://doi.org/10.1016/j.jpowsour.2017.08.085)
[6] A. Ideris, E. Croiset, M. Pritzker, Ni-Samaria-Doped Ceria (Ni-SDC) Anode-Supported Solid Oxide Fuel Cell (SOFC) Operating with CO, Int. J. Hydrogen Energy 42 (2017) 9180-9187.
(https://doi.org/10.1016/j.ijhydene.2016.05.203)
[7] T.M. Gür, Comprehensive Review of Methane Conversion in Solid Oxide Fuel Cells: Prospects for Efficient Electricity Generation from Natural Gas, Prog. Energy Combust. Sci. 54 (2016) 1-64. (https://doi.org/10.1016/j.pecs.2015.10.004)
[8] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of Nickel-Based Anode in Solid Oxide Fuel Cells Operated on Carbon-Containing Fuels, J. Power Sources 268 (2014) 508-516.
(https://doi.org/10.1016/j.jpowsour.2014.06.082)
75
[9] Y. Lin, Z. Zhan, J. Liu, S.A. Barnett, Direct Operation of Solid Oxide Fuel Cells with Methane Fuel, Solid State Ion. 176 (2005) 1827-1835. (https://doi.org/10.1016/j.ssi.2005.05.008)
[10] A. Gunji, C. Wen, J. Otomo, T. Kobayashi, K. Ukai, Y. Mizutani, H. Takahashi, Carbon Deposition Behaviour on Ni–ScSZ Anodes for Internal Reforming Solid Oxide Fuel Cells, J. Power Sources, 131 (2004) 285-288.
(10.1016/j.jpowsour.2003.11.086)
[11] H. Sumi, K. Ukai, Y. Mizutani, H. Mori, C.J. Wen, H. Takahashi, O. Yamamoto, Performance of Nickel–Scandia-Stabilized Zirconia Cermet Anodes for SOFCs in 3% H2O–CH4, Solid State Ion. 174 (2004) 151-156.
(https://doi.org/10.1016/j.ssi.2004.06.016)
[12] W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels, Chem. Rev. 113 (2013) 8104-8151. (https://doi.org/10.1021/cr300491e)
[13] S.C. Singhal, Advances in Solid Oxide Fuel Cell Technology, Solid State Ion. 135 (2000) 305-313. (10.1016/S0167-2738(00)00452-5)
[14] P.C. Wu, S.S. Shy, Cell Performance, Impedance, and Various Resistances Measurements of an Anode-Supported Button Cell Using a New Pressurized Solid Oxide Fuel Cell Rig at 1-5 atm and 750-850 oC, J. Power Sources 362 (2017) 105-114.
(https://doi.org/10.1016/j.jpowsour.2017.07.030)
[15] S.S. Shy, S.C. Hsieh, H.Y. Chang, A Pressurized Ammonia-Fueled Anode-Supported Solid Oxide Fuel Cell: Power Performance and Electrochemical Impedance Measurements, J. Power Sources 396 (2018) 80-87. (https://doi.org/10.1016/j.jpowsour.2018.06.006)
[16] Y.T. Hung, S.S. Shy, A Pressurized Ammonia-Fed Planar Anode-Supported Solid Oxide Fuel Cell at 1-5 atm and 750-850 oC and its Loaded Short Stability Test, Int. J. Hydrogen Energy 45 (2020) 27597-27610. (https://doi.org/10.1016/j.ijhydene.2020.07.064)
[17] K.P. Recknagle, E.M. Ryan, B.J. Koeppel, L.A. Mahoney, M.A. Khaleel, Modeling of Electrochemistry and Steam–Methane Reforming
76
Performance for Simulating Pressurized Solid Oxide Fuel Cell Stacks, J. Power Sources 195 (2010) 6637-6644.
(https://doi.org/10.1016/j.jpowsour.2010.04.024)
[18] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, Influence of Pressurisation on SOFC Performance and Durability: A Tho-retical Study, Fuel Cells 11 (2011) 581-591. (https://doi.org/10.1002/fuce.201000098)
[19] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,桃園,台灣,2013。
[20] 李雪茹,加壓型SOFC陰極半電池實驗研究,碩士論文,國立中央大學,桃園,台灣,2013。
[21] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,桃園,台灣,2014。
[22] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,桃園,台灣,2015。
[23] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,桃園,台灣,2015。
[24] 洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,桃園,台灣,2016。
[25] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,碩士論文,國立中央大學,桃園,台灣,2018。
[26] V.A.C. Haanappel, M. J. Smith, A Review of Standardising SOFC Measurement and Quality Assurance at FZJ, J. Power Sources 171 (2007) 169-178. (https://doi.org/10.1016/j.jpowsour.2006.12.029)
[27] A.K. Mishra, Sol-gel Based Nanoceramic Materials: Prepration, Properties and Applications, 1st Ed., Springer, South Africa, 2017.
(https://link.springer.com/book/10.1007/978-3-319-49512-5)
[28] R.O. Hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons, Inc., New York, 2009.
77
(https://www.amazon.com/Fuel-Cell-Fundamentals-Ryan-OHayre/dp/04702-58438)
[29] N.P. Brandon, E. Ruiz-Trejo, P. Boldrin, Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells, First ed., Elsevier, London, United Kingdom, 2017.
[30] Z. Lyu, H. Li, M. Han, Electrochemical Properties and Thermal Neutral State of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane, Int. J. Hydrogen Energy 44 (2019) 12151-12162. (https://doi.org/10.1016/j.ijhydene.2019.03.048)
[31] L. Chen, J. Ni, J. Zhao, J. lin, S. Kawi, Lewis Acid Sites Stabilized Nickel Catalysts for Dry (CO2) Reforming of Methane, ChemCatChem 8 (2016) 3732-3739. (https://doi.org/10.1002/cctc.201601002)
[32] D. Shang, S. Zeng, X. Zhang, L. Bai, Highly Efficient and Reversible Absorption of NH3 by Dual Functionalised Ionic Liquids with Protic and Lewis Acidic Sites, J. Mol. Liq. 312 (2020), 113411.
(https://doi.org/10.1016/j.molliq.2020.113411) [33] P.C. Stair, The Concept of Lewis Acids and Bases Applied to Surfaces, J. Am. Chem. Soc. 104 (1982) 4044-4052. (https://doi.org/10.1021/ja00379a002)
[34] W. Liu, J. Sang, Y. Wang, X. Chang, L. Lu, J. Wang, X. Zhou, Q. Zhai, W. Guan, S. C. Singhal, Durability of Direct-Internally Reformed Simulated Coke Oven Gas in an Anode-Supported Planar Solid Oxide Fuel Cell Based on Double-Sided Cathodes, J. Power Sources 465 (2020) 228284-22829. ( https://doi.org /10.1016/j.jpowsour.2020.228284)
[35] V. Suboti’c, C. Schluckner, H. Schroettner, C. Hochenauer, Analysis of Possibilities for Carbon Removal from Porous Anode of Solid Oxide Fuel Cells after Different Failure Modes, J. Power Sources 302 (2016) 378-386. (https://doi.org /10.1016/j.jpowsour.2015.10.071 )
[36] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo, K.A. Friedrich, Effect of Pressure Variation on Power Density and Efficiency of Solid Oxide Fuel Cells, Electrochim. Acta, 66 (2012) 158-163. (https://doi.org /10.1016/j.electacta.2012.01.075)
[37] Y.D. Hsieh, Y.H. Chan, S.S. Shy, Effects of Pressurization and Temperature on Power Generating Characteristics and Impedances of
78
Anode-Supported and Electrolyte-supported Planar Solid Oxide Fuel Cells, J. Power Sources, 299 (2015) 1-10. (https://doi.org /10.1016/j.jpowsour.2015.08.080)
[38] B.S. Prakash, S.S. Kumar, S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renew. Sustain. Energy Rev. 36 (2014) 149-179.
(https://doi.org/10.1016/j.rser.2014.04.043)
[39] S. Bebelis, A. Zeritis, C. Tiropani, S.G. Neophytides, Intrinsic Kinetics of Internal Steam Reforming of CH4 Over a Ni YSZ Cermet Catalyst-electrode, Ind. Eng. Chem. Res. 39 (2000) 4920-4927. (https://doi.org/10.1021/ie000350u).
[40] A.L. Dicks, K.D. Pointon, A. Siddle, Intrinsic Reaction Kinetics of Methane Steam Reforming on a Nickel/Zirconia Anode, J. Power Sources 86 (2000) 523-530. ( https://doi.org/10.1016/S0378-7753(99)00447-4)
[41] K. Ahmed, K. Foger, Kinetics of Internal Steam Reforming of Methane on Ni/YSZ Based Anodes for Solid Oxide Fuel Cells, Catal. Today 63 (2000) 479-487.
(https://doi.org/10.1016/S0920-5861(00)00494-6)
[42] C.H. Bartholomew, Carbon Deposition in Steam Reforming and Methanation, Catal. Rev. 24 (2007) 67-112.
(https://doi.org/10.1080/03602458208079650)
[43] P.G. Menon, Coke on Catalysts Harmful, Harmless, Invisible and Beneficial Types. J. Mol. Catal. 59 (1990) 207-220.
(https://doi.org/10.1016/0304-5102(90)85053-K)
[44] H. Hongpeng, M.H. Josephine, Carbon Deposition on Ni/YSZ Composites Exposed to Humidified Methane, Appl. Catal. A: Gen. 317 (2007) 284-292. (https://doi.org/10.1016/j.apcata.2006.10.040)
[45] A. Leonide, Y. Apel, E.I. Tiffee, SOFC Modeling and Parameter Identification by Means of Impendance Specrroscopy, ECS Trans. 19 (2009) 81-109. (https://doi.org/10.1149/1.3247567)
79
[46] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric Study of Solid Oxide Fuel Cell Performance, Energy Convers. Manag. 48 (2007) 1525-1535. (https://doi.org/10.1016/j.enconman.2006.11.016)
[47] S.H. Chan, K.A. Khor, Z.T. Xia, A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness, J. Power Sources, 93 (2001) 130-140 2001. (https://doi.org/10.1016/S0378-7753(00)00556-5)
[48] S.H. Chan, Z.T. Xia, Polarization Effects in Electrolyte/electrode-Supported Solid Oxide Fuel Cells, J. Appl. Electrochem. , 32 (2002) 339-347.
[49] K. Kendall, C.M. Finnerty, G. Saunders, J.T. Chung, Effects of Dilution on Methane Entering an SOFC Anode, J. Power Sources 106 (2002) 323-327. (https://doi.org/10.1016/s0378-7753(01)01066-7)
[50] T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Study on Steam Reforming of CH4 and C2 Hydrocarbons and Carbon Deposition on Ni–YSZ Cermets, J Power Sources 112 (2002) 588-595. (https://doi.org/10.1016/s0378-7753(02)00471-8)
[51] W.G. Bessler, Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes I. Stagnation Point Flow Geometry, J. Electrochem. Soc. 153 (2006) 1492-1504.( https://doi.org/10.1149/1.2205150)
[52] W.G. Bessler, S. Gewies, Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes II. Channel Geometry, J. Electrochem. Soc. 154 (2006) 548-559.( https://doi.org/10.1149/1.2720639)
[53] S. Primdahl, M. Mogensen, Primdahl, S., Mogensen, M., Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes, J. Electrochem. Soc. 145 (1998) 2431-2438. (https://doi.org/10.1149/1.1838654)
[54] S. Primdahl, M. Mogensen, Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes, J. Electrochem. Soc. 146 (1999) 2827-2833. ( https://doi.org/10.1149/1.1392015)
[55] C. Su, R. Ran, W. Wang, Z. Shao, Coke Formation and Performance of an Intermediate-temperature Solid Oxide Fuel Cell Operating on Dimethyl Ether Fuel, J. Power Sources 196 (2011) 2827-2833.
指導教授 施聖洋(Shenqyang Shih) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明