博碩士論文 103328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.139.107.131
姓名 何世明(Shih-Ming He)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 二維半導體材料合成及其電子特性調控之研究
(The investigation of 2-D semiconductor synthesis and tunable electrical properties)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年矽基電子元件 (Si-based electronics) 隨著元件尺寸微縮 (scaling down) ,除了改良電晶體結構之外,尋找高效能次世代電子元件材料也是積極開發的目標;而二維材料因厚度只有幾個的原子層以及多樣且優異的材料特性吸引各大領域爭相研究。其中石墨烯 (graphene) 雖然具有優異的電子特性但是本質上為無能隙 (gapless) 材料以及高品質石墨烯合成技術產能仍需改善。為了解決前述問題,在此將多孔隙 (porosity) 材料與銅箔堆疊繞捲於一吋傳統水平爐管,能有效提升爐管空間使用率。並且藉由孔隙材料幫助氣體擴散至整個結構中,使產率 (yield) 達到2348 cm2/h為一般水平堆疊的四倍;而當加熱爐管系統延伸至八吋大小,產率能達到至少18 m2/h。為了研究異質原子參雜石墨烯的電性調控,利用高能量離子佈植技術 (keV ion implantation) ,將磷離子 (phosphorous-ion) 注入於金薄膜披覆的大面積石墨烯上,藉由此保護層減少注入離子的能量以及降低石墨烯的損傷程度,更能使用此保護層將摻雜石墨烯直接轉印到目標基板上;並且藉由後退火 (post-annealing) 修復晶格結構得到乾淨且低缺陷以及2 – 4個原子百分比的磷摻雜石墨烯。其載子遷移率 (mobility) 仍然可以維持450 cm2/V·s以及4.85 – 4.15 eV的功函數 (work function) 調控;並且在大氣環境下其摻雜效果以及電子特性可以維持至少數個月。此外,由於大多二維材料因能隙小於2 eV因此較難於高電壓元件;而新興的二維材料 – 銻烯 (antimonene) ,因具有2.28 eV寬能隙、優異的電子傳輸特性以及長時間的大氣穩定性,也被譽為下世代元件材料之一。然而,目前所發表的文獻大多以模擬分析為主;合成方法則以分子束磊晶 (molecular beam epitaxy) 以及液相剝離 (liquid-phase exfoliation) 較為廣泛使用,因此所能觀察到的單層銻烯面積過小 (< 1 µm) 較難用以後續探討材料特性。因此,此研究將藉由調控氣相傳輸沉積法 (vapor transport deposition) 的環境參數並研究各條件對銻烯生長的影響以及機制的探討。從合成的銻烯厚度和面積呈現面積變大也增厚的正相關 (positive correlation) 變化,可以推測銻烯的成長模式偏好為Volmer-Weber的島狀成長;而提升氫氣比例時能有效降地Sb2O3蒸氣比例並增加銻烯的成長密度,但是過多的氫氣也會抑制銻烯的成長。後續使用雙層石墨烯封裝銻烯,藉由封裝退火 (encapsulated annealing) 發現銻烯在400 – 600℃範圍內具有高熱穩定性 (thermal stability) 。本研究中提出的高產率繞捲合成方式以及穩定的離子佈植摻雜方法,可延伸至其他二維材料進行高產率合成以及可控性摻雜,並相容現有的半導體製程;以及二維半導體材料的合成機制探討,有利於未來新穎奈米電子材料以及元件製程開發。
摘要(英) Due to the upcoming physical limit in the scaling down of semiconductor components, the killer material is necessary and urgent. Hundreds of two-dimensional (2D) materials expect to apply in various applications with their specific outstanding properties. Among them, graphene has been considered the promising material of electronic and optoelectronic components due to its excellent material properties. However, even graphene has outstanding electrical properties, tuning the electronic structures is an urgent issue due to the essential gapless. More important, the high-yield synthesis technology of high-quality graphene still needs to be developed. Herein, high porosity material is helically stacked with Cu foil for increasing furnace tube utilization. Also, with the computational fluid dynamics simulation, the porosity material is the critical component for reaction gas to diffuse inside the whole helical structure. Thus, the yield of a traditional 1-inch furnace is 2348 cm2/h is almost 4 times higher than the vertically stacked method. When the size of the furnace system is up to 8-inch, the yield can be up to at least 18 m2/h. Next, the industrial-level ion implantation approach was proposed to implant phosphorous ions, where phosphorus doping can provide more effective n-type behavior in graphene. Also, the gold protecting layer is employed to decline the keV implant energy and reduce the damage caused by the ions together with the post-annealing to heal the crystal defect. Thus, the low-damaged graphene with 2 – 4 at% doping concentration can obtain. In addition, the doped graphene with tunable work functions (4.85 – 4.15 eV) and stable n-type doping while keeping high carrier mobility, 450 cm2/V·s, are realized. Besides, the emerging two-dimensional material, antimonene, has attracted intensive attention because of the 2.28 eV bandgap, excellent electrical properties, and high atmospheric environmental stability. Due to the lack of a reliable synthesis method, the current reports focused on the theoretical calculation. Therefore, in this study, the vapor transport deposition was applied to exploiting the synthesis mechanism of antimonene film by the comprehensive parametric investigation, including the pressure, temperature, powder weight, and growth time. This study contributes essential results to advance the growth mechanism based on vapor transport deposition. It found out that antimonene tends to form the single-crystal structure than the layered structure; the adatom cohesive between Sb atoms is considered to be stronger than surface adhesive force. Therefore, the growth model of Sb thin-film growth belongs to the Volmer-Weber mode, where it limits the increase of lateral size when extending growth time and blocks the continuous synthesis of monolayer films. Also, the density of the single-crystal antimonene could suppress by regulating the hydrogen flow, which increases the Sb vapor by reducing the Sb2O3. Besides, the overflowing hydrogen could limit the synthesis of single-crystal antimonene due to the abundant by-product (H2O) reacting and etching or saturating the edge of Sb flake at down steam. In addition, the synthesized single-crystal antimonene encapsulated in bilayer graphene can observe the stability of antimonene near the vaporized temperature, 400 to 600℃. This work contributes to tailoring 2D materials′ electrical properties with an exceptional low defect density, suggests surpassing potential for integrating with modern semiconductor technology for next-generation 2D-based nanoelectronics, and provides the investigation of synthesis mechanism on the novel semiconductor materials.
關鍵字(中) ★ 二維材料
★ 低缺陷
★ 石墨烯
★ 磷摻雜
★ 離子佈植
★ 銻烯
關鍵字(英) ★ 2D material
★ phosphorous doped
★ graphene
★ antimonene
★ ion implantation
論文目次 中文摘要 i
英文摘要 iii
致謝 v
總目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2-1 石墨烯特性及應用上的瓶頸 3
2-2 石墨烯摻雜方法 7
2-3 離子佈植技術應用於石墨烯摻雜 10
2-4 其他二維材料的發展 14
2-5 銻烯的基本特性 19
2-6 銻烯的合成方法 20
2-7 銻烯的Raman光譜:厚度與特徵峰位置的變化 24
2-8 銻烯的潛在應用 26
第三章 研究動機 28
3-1 離子佈植摻雜石墨烯 28
3-2 大面積銻烯合成以及成長機制探討 28
第四章 研究架構與實驗流程 29
4-1 離子佈植摻雜石墨烯 29
4-1-1 實驗藥品以及材料 29
4-1-2 實驗儀器 29
4-1-3 分析儀器 29
4-1-4 實驗流程 30
4-2 藉由氣相傳輸沉積合成大面積銻烯 34
4-2-1 實驗藥品 34
4-2-2 實驗儀器 34
4-2-3 分析儀器 35
4-2-4 實驗流程 35
第五章 結果與討論 36
5-1 批量繞捲合成大面積石墨烯 36
5-2 離子佈植摻雜石墨烯 41
5-2-1 離子佈植摻雜以及退火後石墨烯結晶性分析 41
5-2-2 離子佈植摻雜以及退火後原子鍵結結構分析 45
5-2-3 離子佈植摻雜以及退火後功函數變化分析 47
5-2-4 離子佈植摻雜以及退火後片電阻與載子遷移率變化 48
5-2-5 上閘極場效電晶體元件電性量測 49
5-3 調整環境參數對於合成銻烯結構的影響 51
5-3-1 使用Raman光譜分析銻金屬塊材以及銻金屬粉末 51
5-3-2 不同銻金屬粉末重量對銻烯合成於天然雲母及轉印石墨烯上的影響 52
5-3-3 不同壓力對於銻烯合成的影響 55
5-3-4 不同氣體比例對於銻烯合成的影響 57
5-3-5 不同成長時間對於銻烯合成的影響 59
5-3-6 不同基板溫度對於銻烯合成的影響 60
5-3-7 不同基板於銻烯合成的影響 61
5-4 後退火對於合成銻烯結構的影響 63
第六章 結論 68
第七章 未來工作 69
參考文獻 70
附錄 100
博士班期間的學術發表與獲獎 100
參考文獻 1. IEEE, The International Roadmap for Devices and Systems: 2020 update. More Moore. (2020).
2. Robinson, J. A. Perspective: 2D for beyond CMOS. APL Mater. 6, 058202 (2018).
3. Pop, E. What are 2D Materials Good For? CarbonOnlineHagen 2021. (2021)
4. Novoselov, K. S. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669 (2004).
5. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
6. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
7. Pop, E. Energy Dissipation at the Nanoscale: from graphene to phase-change materials. (2011).
8. Barkan, T. Graphene: the hype versus commercial reality. Nat. Nanotechnol. 14, 904–906 (2019).
9. Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).
10. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
11. Xu, X. et al. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 47, 3059–3099 (2018).
12. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).
13. Chen, Z., Narita, A. & Müllen, K. Graphene Nanoribbons: On‐Surface Synthesis and Integration into Electronic Devices. Adv. Mater. 32, 2001893 (2020).
14. Houtsma, R. S. K., de la Rie, J. & Stöhr, M. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chem. Soc. Rev. 10.1039.D0CS01541E (2021) doi:10.1039/D0CS01541E.
15. Yano, Y., Mitoma, N., Ito, H. & Itami, K. A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. J. Org. Chem. 85, 4–33 (2020).
16. Ago, H. et al. Lattice-Oriented Catalytic Growth of Graphene Nanoribbons on Heteroepitaxial Nickel Films. ACS Nano 7, 10825–10833 (2013).
17. Saraswat, V., Jacobberger, R. M. & Arnold, M. S. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano 15, 3674–3708 (2021).
18. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).
19. Syu, J.-Y. et al. Wide-range work-function tuning of active graphene transparent electrodes via hole doping. RSC Adv. 6, 32746–32756 (2016).
20. Farmer, D. B. et al. Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 9, 388–392 (2009).
21. Kasry, A., Kuroda, M. A., Martyna, G. J., Tulevski, G. S. & Bol, A. A. Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. ACS Nano 4, 3839–3844 (2010).
22. Pinto, H. & Markevich, A. Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J. Nanotechnol. 5, 1842–1848 (2014).
23. Zhang, W., Wu, L., Li, Z. & Liu, Y. Doped graphene: synthesis, properties and bioanalysis. RSC Adv. 5, 49521–49533 (2015).
24. Jena, D. et al. Electron transport in 2D crystal semiconductors and their device applications. in 2014 Silicon Nanoelectronics Workshop (SNW) 1–2 (IEEE, 2014). doi:10.1109/SNW.2014.7348543.
25. Schmidt, H., Giustiniano, F. & Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem. Soc. Rev. 44, 7715–7736 (2015).
26. Sun, L. et al. Chemical vapour deposition. Nat. Rev. Methods Primers 1, 5 (2021).
27. Xin, H., Zhao, Q., Chen, D. & Li, W. Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene. J. Micro Nanomanuf. 6, 031004 (2018).
28. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).
29. Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112 (2013).
30. Yamada, T., Ishihara, M. & Hasegawa, M. Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films 532, 89–93 (2013).
31. Xu, J. et al. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small 13, 1700651 (2017).
32. Zhang, Y. et al. Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. Nanotechnology 32, 105603 (2021).
33. Huet, B., Zhang, X., Redwing, J. M., Snyder, D. W. & Raskin, J.-P. Multi-wafer batch synthesis of graphene on Cu films by quasi-static flow chemical vapor deposition. 2D Mater. 6, 045032 (2019).
34. Lin, L., Peng, H. & Liu, Z. Synthesis challenges for graphene industry. Nat. Mater. 18, 520–524 (2019).
35. Al-Shurman, K. M. & Naseem, H. CVD Graphene Growth Mechanism on Nickel Thin Films. 7 (2014).
36. Li, X., Colombo, L. & Ruoff, R. S. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition. Adv. Mater. 28, 6247–6252 (2016).
37. Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312–1314 (2009).
38. Wang, M., Luo, D., Wang, B. & Ruoff, R. S. Synthesis of Large-Area Single-Crystal Graphene. Trends Chem. 3, 15–33 (2021).
39. Zhao, G. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 46, 4417–4449 (2017).
40. Liang, X. et al. Toward Clean and Crackless Transfer of Graphene. ACS Nano 5, 9144–9153 (2011).
41. Pirkle, A. et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011).
42. Zhang, Z. et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 8, 14560 (2017).
43. Zhang, G. et al. Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Appl. Mater. Interfaces 8, 8008–8016 (2016).
44. Chen, Z., Qi, Y., Chen, X., Zhang, Y. & Liu, Z. Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms. Adv. Mater. 31, 1803639 (2019).
45. Pham, V. P., Jang, H.-S., Whang, D. & Choi, J.-Y. Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges. Chem. Soc. Rev. 46, 6276–6300 (2017).
46. Sun, J., Zhang, Y. & Liu, Z. Direct Chemical Vapor Deposition Growth of Graphene on Insulating Substrates. ChemNanoMat 2, 9–18 (2016).
47. Wei, D. et al. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9, 1752–1758 (2009).
48. Wan, J. X. et al. Synthesis of nitrogen-doped graphene via pentachloropyridine as the sole solid source. Appl. Phys. Lett. 111, 033106 (2017).
49. He, B., Ren, Z., Qi, C., Yan, S. & Wang, Z. Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties. J. Mater. Chem. C 3, 6172–6177 (2015).
50. Zhang, C. et al. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources. Adv. Mater. 23, 1020–1024 (2011).
51. Bong, J. H., Sul, O., Yoon, A., Choi, S.-Y. & Cho, B. J. Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale 6, 8503 (2014).
52. Xu, W. et al. Controllable n-Type Doping on CVD-Grown Single- and Double-Layer Graphene Mixture. Adv. Mater. 27, 1619–1623 (2015).
53. Jo, I. et al. Stable n-type doping of graphene via high-molecular-weight ethylene amines. Phys. Chem. Chem. Phys. 17, 29492–29495 (2015).
54. Shin, D.-W., Kim, T. S. & Yoo, J.-B. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments. Mater. Res. Bull. 82, 71–75 (2016).
55. Xue, Y. et al. Direct synthesis of phosphorus and nitrogen co-doped monolayer graphene with air-stable n-type characteristics. Phys. Chem. Chem. Phys. 16, 20392–20397 (2014).
56. Some, S. et al. Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors. Adv. Mater. 24, 5481–5486 (2012).
57. Bangert, U. et al. Ion Implantation of Graphene—Toward IC Compatible Technologies. Nano Lett. 13, 4902–4907 (2013).
58. Åhlgren, E. H., Kotakoski, J. & Krasheninnikov, A. V. Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene. Phys. Rev. B 83, (2011).
59. Wu, X., Zhao, H., Yan, D. & Pei, J. Doping of graphene using ion beam irradiation and the atomic mechanism. Comput. Mater. Sci. 129, 184–193 (2017).
60. Bai, Z., Zhang, L. & Liu, L. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles. Nanoscale 8, 8761–8772 (2016).
61. Xu, Y., Zhang, K., Brüsewitz, C., Wu, X. & Hofsäss, H. C. Investigation of the effect of low energy ion beam irradiation on mono-layer graphene. AIP Adv. 3, 072120 (2013).
62. Willke, P. et al. Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene. Appl. Phys. Lett. 105, 111605 (2014).
63. Willke, P. et al. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties. Nano Lett. 15, 5110–5115 (2015).
64. Kepaptsoglou, D. et al. Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of p- and n-Type Doping. ACS Nano 9, 11398–11407 (2015).
65. Susi, T. et al. Single-atom spectroscopy of phosphorus dopants implanted into graphene. 2D Mater. 4, 021013 (2017).
66. Ryu, M., Lee, P., Kim, J., Park, H. & Chung, J. Band gap engineering for single-layer graphene by using slow Li+ ions. Nanotechnology 27, 31LT03 (2016).
67. Tripathi, M. et al. Implanting Germanium into Graphene. ACS Nano 12, 4641–4647 (2018).
68. Lin, P.-C. et al. Doping Graphene with Substitutional Mn. ACS Nano 15, 5449–5458 (2021).
69. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
70. Puthirath Balan, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).
71. Zhang, S., Yan, Z., Li, Y., Chen, Z. & Zeng, H. Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angew. Chem. Int. Ed. 54, 3112–3115 (2015).
72. Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photonics 10, 202–204 (2016).
73. Wang, J. et al. Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. Small 13, 1700894 (2017).
74. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
75. Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015).
76. Choi, W. et al. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017).
77. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).
78. Akhtar, M. et al. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Mater. Appl. 1, (2017).
79. Nan, H. et al. Producing air-stable InSe nanosheet through mild oxygen plasma treatment. Semicond. Sci. Technol. 33, 074002 (2018).
80. Hu, Y., Wu, Y. & Zhang, S. Influences of Stone–Wales defects on the structure, stability and electronic properties of antimonene: A first principle study. Phys. B: Condens. Matter 503, 126–129 (2016).
81. Tsai, H.-S. et al. Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons. Chem. Mater. 28, 425–429 (2016).
82. Shah, J., Wang, W., Sohail, H. M. & Uhrberg, R. I. G. Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material. 2D Mater. 7, 025013 (2020).
83. Zhang, S. et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem. Soc. Rev. 47, 982–1021 (2018).
84. Huh, W., Lee, D. & Lee, C. Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Adv. Mater. 32, 2002092 (2020).
85. Pumera, M. & Sofer, Z. 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Adv. Mater. 29, 1605299 (2017).
86. Du, H., Lin, X., Xu, Z. & Chu, D. Recent developments in black phosphorus transistors. J. Mater. Chem. C 3, 8760–8775 (2015).
87. Woomer, A. H. et al. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy. ACS Nano 9, 8869–8884 (2015).
88. Duong, D. L., Yun, S. J. & Lee, Y. H. van der Waals Layered Materials: Opportunities and Challenges. ACS Nano 11, 11803–11830 (2017).
89. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
90. Zhang, S. et al. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angew. Chem. Int. Ed. 55, 1666–1669 (2016).
91. Zeng, M., Xiao, Y., Liu, J., Yang, K. & Fu, L. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 118, 6236–6296 (2018).
92. Kecik, D., Durgun, E. & Ciraci, S. Stability of single-layer and multilayer arsenene and their mechanical and electronic properties. Phys. Rev. B 94, (2016).
93. Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).
94. Aktürk, O. Ü., Özçelik, V. O. & Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Phys. Rev. B 91, (2015).
95. Wang, G., Pandey, R. & Karna, S. P. Atomically Thin Group V Elemental Films: Theoretical Investigations of Antimonene Allotropes. ACS Appl. Mater. Interfaces 7, 11490–11496 (2015).
96. Chen, J. et al. Monolayer-Trilayer Lateral Heterostructure Based Antimonene Field Effect Transistor: Better Contact and High On/Off Ratios. Phys. Status Solidi - Rapid Res. Lett. 12, 1800038 (2018).
97. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011).
98. Nan, H. Y. et al. The thermal stability of graphene in air investigated by Raman spectroscopy: The thermal stability of graphene in air. J. Raman Spectrosc. 44, 1018–1021 (2013).
99. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).
100. De Padova, P. et al. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 96, 261905 (2010).
101. Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).
102. Grazianetti, C. & Molle, A. Silicene in the Flatland. in GraphITA (eds. Morandi, V. & Ottaviano, L.) 137–152 (Springer International Publishing, 2017). doi:10.1007/978-3-319-58134-7_10.
103. Molle, A. et al. Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163–169 (2017).
104. Chen, K.-C. et al. Multi-layer elemental 2D materials: antimonene, germanene and stanene grown directly on molybdenum disulfides. Semicond. Sci. Technol. 34, 105020 (2019).
105. Gablech, I. et al. Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. Trends Analyt. Chem. 105, 251–262 (2018).
106. Sengupta, A., Dominguez, A. & Frauenheim, T. Photo-absorption properties of van der Waals heterostructure of monolayer InSe with silicene, germanene and antimonene. Appl. Surf. Sci. 475, 774–780 (2019).
107. Guo, Y. et al. Interfacial properties of stanene–metal contacts. 2D Mater. 3, 035020 (2016).
108. Yuhara, J. et al. Large area planar stanene epitaxially grown on Ag(111). 2D Mater. 5, 025002 (2018).
109. Cao, W. et al. 2-D Layered Materials for Next-Generation Electronics: Opportunities and Challenges. IEEE Trans. Electron Devices 65, 4109–4121 (2018).
110. Yakovkin, I. Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2. Crystals 6, 143 (2016).
111. Splendiani, A. et al. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).
112. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
113. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
114. Gao, J. et al. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 10, 2628–2635 (2016).
115. Chang, H.-C. et al. Synthesis of Large-Area InSe Monolayers by Chemical Vapor Deposition. Small 14, 1802351 (2018).
116. Zheng, T. et al. Layer-number dependent and structural defect related optical properties of InSe. RSC Adv. 7, 54964–54968 (2017).
117. Arora, H. & Erbe, A. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe. InfoMat 3, 662–693 (2021).
118. Song, C., Huang, S., Wang, C., Luo, J. & Yan, H. The optical properties of few-layer InSe. J. Appl. Phys. 128, 060901 (2020).
119. Ansari, L. et al. Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C. npj 2D Mater. Appl. 3, 33 (2019).
120. Ghasemi, F., Taghavimendi, R. & Bakhshayeshi, A. Electronic and optical properties of monolayer and bulk of PtSe2. Opt. Quantum Electron 52, 492 (2020).
121. Jiang, W. et al. Large-area high quality PtSe2 thin film with versatile polarity. InfoMat 1, 260–267 (2019).
122. Kandemir, A. et al. Structural, electronic and phononic properties of PtSe2 : from monolayer to bulk. Semicond. Sci. Technol. 33, 085002 (2018).
123. Zhao, Y. et al. High-Electron-Mobility and Air-Stable 2D Layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).
124. Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).
125. Fang, H. et al. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 12, 3788–3792 (2012).
126. Cheng, R. et al. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes. Nano Lett. 14, 5590–5597 (2014).
127. Gutiérrez, H. R. et al. Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 13, 3447–3454 (2013).
128. Kuc, A. Low-dimensional transition-metal dichalcogenides. in Chemical Modelling (eds. Springborg, M. & Joswig, J.-O.) vol. 11 1–29 (Royal Society of Chemistry, 2014).
129. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
130. Falin, A. et al. Mechanical Properties of Atomically Thin Tungsten Dichalcogenides: WS2 , WSe2 , and WTe2. ACS Nano 15, 2600–2610 (2021).
131. Di, X., Zhu, L. & Zhang, T. Effective thickness and mechanical properties of β-phases of two-dimensional pnictogen nanosheets. J. Nanoparticle Res. 21, 139 (2019).
132. Torbatian, Z., Alidoosti, M., Novko, D. & Asgari, R. Low-loss two-dimensional plasmon modes in antimonene. Phys. Rev. B 101, 205412 (2020).
133. Sharma, S., Kumar, S. & Schwingenschlögl, U. Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit. Phys. Rev. Appl. 8, (2017).
134. Wu, Y. et al. Effects of intervalley scatterings in thermoelectric performance of band-convergent antimonene. arXiv:2001.07499 [cond-mat] (2020).
135. Lu, L. et al. Broadband Nonlinear Optical Response in Few-Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability. Adv. Opt. Mater. 5, 1700301 (2017).
136. Song, Y. et al. Nonlinear Few-Layer Antimonene-Based All-Optical Signal Processing: Ultrafast Optical Switching and High-Speed Wavelength Conversion. Adv. Opt. Mater. 6, 1701287 (2018).
137. Kistanov, A. A. et al. A first-principles study on the adsorption of small molecules on antimonene: oxidation tendency and stability. J. Mater. Chem. C 6, 4308–4317 (2018).
138. Touski, S. B. & Ghobadi, N. Interplay Between Stacking Order and In-plane Strain on the Electrical Properties of Bilayer Antimonene. arXiv:2007.10258 [cond-mat] (2020).
139. Shi, Z.-Q. et al. Tuning the Electronic Structure of an α-Antimonene Monolayer through Interface Engineering. Nano Lett. 20, 8408–8414 (2020).
140. Wang, Y. & Ding, Y. The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study. Phys. Chem. Chem. Phys. 17, 27769–27776 (2015).
141. Kripalani, D. R., Kistanov, A. A., Cai, Y., Xue, M. & Zhou, K. Strain Engineering of Antimonene by a First-principles Study: Mechanical and Electronic Properties. Phys. Rev. B 98, (2018).
142. Pizzi, G. et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun. 7, 12585 (2016).
143. Singh, D., Gupta, S. K., Sonvane, Y. & Lukačević, I. Antimonene: a monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 4, 6386–6390 (2016).
144. Wang, M., Zhang, F., Wang, Z., Wu, Z. & Xu, X. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber. Opt. Express 26, 4085 (2018).
145. Shu, H., Li, Y., Niu, X. & Guo, J. Electronic structures and optical properties of arsenene and antimonene under strain and an electric field. J. Mater. Chem. C 6, 83–90 (2018).
146. Wang, Y. et al. Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chem. Mater. 29, 2191–2201 (2017).
147. Ares, P., Palacios, J. J., Abellán, G., Gómez-Herrero, J. & Zamora, F. Recent Progress on Antimonene: A New Bidimensional Material. Adv. Mater. 30, 1703771 (2018).
148. Lu, H., Gao, J., Hu, Z. & Shao, X. Biaxial strain effect on electronic structure tuning in antimonene-based van der Waals heterostructures. RSC Adv. 6, 102724–102732 (2016).
149. Abid, M. et al. Edge magnetism and electronic structure properties of zigzag nanoribbons of arsenene and antimonene. J. Phys. Chem. Solids 110, 167–172 (2017).
150. Zhang, A.-X., Liu, J.-T., Guo, S.-D. & Li, H.-C. Strain effects on phonon transport in antimonene investigated using a first-principles study. Phys. Chem. Chem. Phys. 19, 14520–14526 (2017).
151. Zhang, S. et al. Antimonene Oxides: Emerging Tunable Direct Bandgap Semiconductor and Novel Topological Insulator. Nano Lett. 17, 3434–3440 (2017).
152. Chu, F. et al. A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy. J. Mater. Chem. C 6, 2509–2514 (2018).
153. Fortin-Deschênes, M. & Moutanabbir, O. Recovering the Semiconductor Properties of the Epitaxial Group V 2D Materials Antimonene and Arsenene. J. Phys. Chem. C 122, 9162–9168 (2018).
154. van Veen, E., Yu, J., Katsnelson, M. I., Roldan, R. & Yuan, S. Electronic structure of monolayer antimonene nanoribbons under out-of-plane and transverse bias. arXiv:1807.04597 [cond-mat] (2018).
155. Zhang, L. & Liang, W. Atomically Thin p–n/p–n Nanodevices by Surface Charge Transfer Doping of Arsenene/Antimonene Heterostructures. ACS Appl. Mater. Interfaces 10, 23851–23857 (2018).
156. Xie, M., Zhang, S., Cai, B., Zou, Y. & Zeng, H. N- and p-type doping of antimonene. RSC Adv. 6, 14620–14625 (2016).
157. Ares, P. et al. Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Adv. Mater. 28, 6332–6336 (2016).
158. Abellán, G. et al. Noncovalent Functionalization and Charge Transfer in Antimonene. Angew. Chem. Int. Ed. 56, 14389–14394 (2017).
159. Zhang, G. et al. 2D group-VA fluorinated antimonene: synthesis and saturable absorption. Nanoscale 11, 1762–1769 (2019).
160. Marzo, A. M. L., Gusmão, R., Sofer, Z. & Pumera, M. Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chem. Eur. J. 26, 6583–6590 (2020).
161. Peng, L., Ye, S., Song, J. & Qu, J. Solution-Phase Synthesis of Few-Layer Hexagonal Antimonene Nanosheets via Anisotropic Growth. Angew. Chem. Int. Ed. 58, 9891–9896 (2019).
162. Zhang, Y. et al. In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Research 2020, 1–11 (2020).
163. Gibaja, C. et al. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem. Int. Ed. 55, 14345–14349 (2016).
164. Zuo, X. et al. Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J. Mater. Chem. A 4, 51–58 (2016).
165. Gu, J. et al. Liquid-Phase Exfoliated Metallic Antimony Nanosheets toward High Volumetric Sodium Storage. Adv. Energy Mater. 7, 1700447 (2017).
166. Lin, W. et al. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. (2018) doi:10.1007/s12274-018-2110-0.
167. Luo, H. et al. Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region. Photonics Res. 6, 900 (2018).
168. Tao, W. et al. Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics. Adv. Mater. 30, 1802061 (2018).
169. Tian, W. et al. Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries. ACS Nano 12, 1887–1893 (2018).
170. Wang, G. et al. Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region. Appl. Opt. 57, E147 (2018).
171. Wang, X. et al. Bandgap-Tunable Preparation of Smooth and Large Two-Dimensional Antimonene. Angew. Chem. Int. Ed. 57, 8668–8673 (2018).
172. Ren, X. et al. Few-Layer Antimonene Nanosheet: A Metal-Free Bifunctional Electrocatalyst for Effective Water Splitting. ACS Appl. Energy Mater. 2, 4774–4781 (2019).
173. Wu H. & Yan Z. Antimonene Quantum Dots: Large-scale Synthesis via Liquid-phase Exfoliation. Acta. Phys. Sin. 35, 1052–1057 (2019).
174. Xue, T. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 10, 28 (2019).
175. Yu, J. et al. Antimonene Engineered Highly Deformable Freestanding Electrode with Extraordinarily Improved Energy Storage Performance. Adv. Energy Mater. 9, 1902462 (2019).
176. Assebban, M. et al. Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets. 2D Mater. 7, 025039 (2020).
177. Bat-Erdene, M. et al. Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. J. Mater. Chem. A 8, 4735–4739 (2020).
178. García-Mendiola, T. et al. Functionalization of a Few-Layer Antimonene with Oligonucleotides for DNA Sensing. ACS Appl. Nano Mater. 3, 3625–3633 (2020).
179. Kang, Y. et al. Antimonene Nanosheets‐Based Z‐Scheme Heterostructure with Enhanced Reactive Oxygen Species Generation and Photothermal Conversion Efficiency for Photonic Therapy of Cancer. Adv. Healthcare Mater. 2001835 (2020) doi:10.1002/adhm.202001835.
180. Liu, Y. et al. Antimonene Quantum Dots as an Emerging Fluorescent Nanoprobe for the pH-Mediated Dual-Channel Detection of Tetracyclines. Small 16, 2003429 (2020).
181. Gibaja, C. et al. Liquid Phase Exfoliation of Antimonene: Systematic Optimization, Characterization and Electrocatalytic Properties. 14.
182. Fortin-Deschênes, M. et al. Synthesis of Antimonene on Germanium. Nano Lett. 17, 4970–4975 (2017).
183. Wu, X. et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2. Adv. Mater. 29, 1605407 (2017).
184. Chen, H.-A. et al. Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Appl. Mater. Interfaces 10, 15058–15064 (2018).
185. Mao, Y.-H. et al. Epitaxial growth of highly strained antimonene on Ag (111). arXiv:1803.09865 [cond-mat] (2018).
186. Shao, Y. et al. Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. Nano Lett. 18, 2133–2139 (2018).
187. Jałochowski, M. & Krawiec, M. Antimonene on Pb quantum wells. 2D Mater. 6, 045028 (2019).
188. Niu, T. et al. Large‐Scale Synthesis of Strain‐Tunable Semiconducting Antimonene on Copper Oxide. Adv. Mater. 8 (2019).
189. Shi, Z.-Q. et al. Van der Waals Heteroepitaxial Growth of Monolayer Sb in a Puckered Honeycomb Structure. Adv. Mater. 31, 1806130 (2019).
190. Gu, M. et al. Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy. Appl. Sci. 10, 639 (2020).
191. Rathore, J. & Mahapatra, S. Formation of antimonene nanoribbons by molecular beam epitaxy. 2D Mater. 7, 045003 (2020).
192. Kim, S. H. et al. Topological phase transition and quantum spin Hall edge states of antimony few layers. Sci. Rep. 6, 33193 (2016).
193. Märkl, T. et al. Engineering multiple topological phases in nanoscale Van der Waals heterostructures: realisation of α -antimonene. 2D Mater. 5, 011002 (2017).
194. Sun, X. et al. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene. ACS Nano 12, 6100–6108 (2018).
195. Hogan, C. et al. Temperature Driven Phase Transition at the Antimonene/Bi2Se3 van der Waals Heterostructure. ACS Nano 13, 10481–10489 (2019).
196. Kuriakose, S. et al. Monocrystalline Antimonene Nanosheets via Physical Vapor Deposition. Adv. Mater. Interfaces 2001678 (2020) doi:10.1002/admi.202001678.
197. Gupta, T. et al. Resolving few-layer antimonene/graphene heterostructures. npj 2D Mater. Appl. 5, 53 (2021).
198. Cecchini, R. et al. Vapor phase epitaxy of antimonene-like nanocrystals on germanium by an MOCVD process. Appl. Surf. Sci. 535, 147729 (2021).
199. Wu, Q. & Song, Y. J. The environmental stability of large-size and single-crystalline antimony flakes grown by chemical vapor deposition on SiO2 substrates. Chem. Commun. 54, 9671–9674 (2018).
200. Tsai, H.-S., Chen, C.-W., Hsiao, C.-H., Ouyang, H. & Liang, J.-H. The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun. 52, 8409–8412 (2016).
201. Fortin‐Deschênes, M. et al. Dynamics of Antimonene–Graphene Van Der Waals Growth. Adv. Mater. 31, 1900569 (2019).
202. Fortin-Deschênes, M. et al. Pnictogens Allotropy and Phase Transformation during van der Waals Growth. 30.
203. Zhu, S.-Y. et al. Evidence of Topological Edge States in Buckled Antimonene Monolayers. Nano Lett. 19, 6323–6329 (2019).
204. Yang, X. et al. Application and prospect of antimonene: A new two-dimensional nanomaterial in cancer theranostics. J. Inorg. Biochem. 212, 111232 (2020).
205. Lu, G. et al. Antimonene with two-orders-of-magnitude improved stability for high-performance cancer theranostics. Chem. Sci. 10.1039.C9SC00324J (2019) doi:10.1039/C9SC00324J.
206. Martínez-Periñán, E. et al. Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. Adv. Energy Mater. 8, 1702606 (2018).
207. Zhang, F. et al. Semimetal-Semiconductor Transitions for Monolayer Antimonene Nanosheets and Their Application in Perovskite Solar Cells. Adv. Mater. 30, 1803244 (2018).
208. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).
209. Ferrari, A. C. et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, (2006).
210. Ho, K.-I. et al. Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Sci. Rep. 4, 5893 (2015).
211. Qin, B. et al. Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chem. Mater. 32, 10321–10347 (2020).
212. Deng, B., Liu, Z. & Peng, H. Toward Mass Production of CVD Graphene Films. Adv. Mater. 31, 1800996 (2019).
213. Bruna, M. et al. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 8, 7432–7441 (2014).
214. Hesjedal, T. Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Appl. Phys. Lett. 98, 133106 (2011).
215. Wang, Y. et al. Synthesis of large-area graphene films on rolled-up Cu foils by a “breathing” method. Chem. Eng. J. 405, 127014 (2021).
216. Nagai, Y., Sugime, H. & Noda, S. 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chem. Eng. Sci. 201, 319–324 (2019).
217. Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W. & John Hart, A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 10257 (2015).
218. Zhong, G. et al. Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Appl. Phys. Lett. 109, 193103 (2016).
219. Wang, H. et al. Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow. Adv. Mater. 28, 8968–8974 (2016).
220. He, S.-M. et al. Toward large-scale CVD graphene growth by enhancing reaction kinetics via an efficient interdiffusion mediator and mechanism study utilizing CFD simulations. J. Taiwan Inst. Chem. Engrs. S1876107021005113 (2021) doi:10.1016/j.jtice.2021.08.035.
221. Shin, Y. C., Dresselhaus, M. S. & Kong, J. Preparation of Graphene with Large Area. in Carbon Nanotubes and Graphene 39–76 (Elsevier, 2014). doi:10.1016/B978-0-08-098232-8.00004-8.
222. Song, L., Ci, L., Gao, W. & Ajayan, P. M. Transfer Printing of Graphene Using Gold Film. ACS Nano 3, 1353–1356 (2009).
223. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 10, 751–758 (2010).
224. Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).
225. Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, (2012).
226. Armano, A. et al. Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon 127, 270–279 (2018).
227. Ahn, G. et al. Optical Probing of the Electronic Interaction between Graphene and Hexagonal Boron Nitride. ACS Nano 7, 1533–1541 (2013).
228. Bendiab, N. et al. Unravelling external perturbation effects on the optical phonon response of graphene: External perturbation effects on graphene optical phonons. J. Raman Spectrosc. 49, 130–145 (2018).
229. Li, Y. et al. Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys. Chem. Chem. Phys. 19, 11631–11638 (2017).
230. Wang, F. et al. Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries. RSC Adv. 7, 4174–4178 (2017).
231. Zhao, L. Natural phosphorus-doped honeycomb carbon materials as oxygen reduction catalysts derived from Pulsatilla chinensis (Bunge) Regel. RSC Adv. 7, 13904–13910 (2017).
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2021-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明