博碩士論文 104690601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.147.56.105
姓名 柯雅妮(Kalyani Nayak)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 台灣周遭近代深海細粒沉積物之源岩區研究
(Provenance of Recent Deep-water Detrital Fine-grained Sediments around Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用採自台灣河流河口以及台灣周遭深海區之沉積物,研究其黏土礦物與元素組成以及鍶釹同位素變化,探討細粒矽質沉積物由源至匯之傳輸過程。在海洋沉積物中,我們除了分析海床沉積物之黏土礦物、主要元素與微量元素以及鍶釹同位素變化之外,針對海床下50公分厚沉積物,分別採集半遠洋泥以及濁流岩,了解黏土礦物於不同沉積相的變化,進而探討其傳輸機制。
研究結果顯示半遠洋泥以及濁流岩的黏土礦物介於伊萊石+綠泥石、膨潤石等二個端成分之間。其中伊萊石+綠泥石之源岩區為台灣、膨潤石則來自呂宋島。然而,採自台灣海岸山脈河流的沉積物也有膨潤石,顯示海岸山脈也是膨潤石的源岩區之一。在琉球弧溝系統的波照間弧前盆地,含有大量的膨潤石,可能源自於琉球群島。在鄰近海岸山脈的外海獨立高區、海域的呂宋島弧高區、上部馬尼拉增積岩體以及南中國海東北部等地區,其黏土礦物組成,皆以膨潤石為主,顯示黑潮將源自呂宋島的膨潤石搬運至此堆積。然而,在琉球弧溝系統的和平海盆與南澳海盆等弧前盆地,以及台灣東南方的北呂宋海槽、台灣西南外海的高屏峽谷,以上區域含有大量的伊萊石+綠泥石,顯示這些地區常有源自台灣的濁流沉積。研究結果顯示,在同一站位岩心的半遠洋泥以及濁流岩,具有類似的黏土礦物組成,顯示兩種沉積相具有相同的源岩區。另外,在與河流相連的峽谷沉積物,其膨潤石明顯減少,顯示源自台灣的濁流沉積物,稀釋了膨潤石的含量。
在海床表層沉積物的研究中,我們結合黏土礦物指數(伊萊石結晶度與伊萊石化學指標)、主量元素指數(如化學活動性、CIX指數、K2O/(Na2O + CaO)分子比例、風化趨勢三角圖等),以及銣、鍶、鍶-釹同位素分析結果,顯示源自台灣的沉積物歷經中等的化學風化作用。研究結果也顯示台灣鄰近深海沉積物主要源自台灣島。
摘要(英) Clay mineralogy, element geochemistry, and Sr and Nd isotopic study of recent deep-water seafloor sediments collected in different tectonic settings around Taiwan, as well as surrounding Taiwanese river-mouth sediments and Tainan shelf edge sediments, have been investigated to know the source-to-sink of the detrital fine-grained sediments. We determine the clay mineralogy, major and trace element geochemistry along with Sr and Nd isotopes in surface sediments around offshore Taiwan, as well as the clay mineralogy in both hemipelagites and turbidites up to the top 50 cm of the deep-sea sediment cores to infer the source and transportation of detrital fine-grained sediments.
Our findings demonstrate that the clay mineral assemblages in both hemipelagites and turbidites from various provinces gradually shift between two major end-members: illite+chlorite and smectite. They are primarily sourced from Taiwan and Luzon, respectively. Besides, the presence of more smectite in river sediments sourced from the Coastal Range indicates that smectite is an additional characteristic clay mineral for sediments derived from eastern Taiwan. The high smectite content in the Hateruma forearc basin of the Ryukyu subduction system in eastern offshore Taiwan, interpreted as derived mainly from the Ryukyu Islands. The sediment cores in a bathymetric high near offshore Coastal Range, the Luzon volcanic arc, the upper-slope perched basins of the Manila accretionary wedge, and few cores in the northeastern South China Sea off southwestern Taiwan show dominantly of smectite, indicating strong influence by Kuroshio Current pathways. Whereas, the Hoping Canyon, the Nanao Basins, the Southern Longitudinal Trough off eastern Taiwan, and the Gaoping Canyon off southwestern Taiwan consist dominantly of illite and chlorite, interpreted as derived mainly from Taiwanese rivers through the river-canyon system. Our study also indicates that the clay mineral assemblage around Taiwan is mainly controlled by supply from major provenance and current transport. In most of the cores, the relative abundance of clay minerals in turbidites and hemipelagites is very comparable. As a result, we argue that the neighboring turbidites and hemipelagites of a core share common detrital sources. Besides, less smectite is found in the river-connected canyon systems, especially for coarse fraction of turbidites, indicating that the smectite brought about by the Kuroshio Current is diluted by river-fed turbidity currents.
Clay mineral indices (illite crystallinity and illite chemistry index), as well as major element indices (chemical mobility, CIX index, K2O/(Na2O + CaO) molar ratio, and weathering trend ternary diagrams), in combination with Rb, Sr, and Sr-Nd isotopic results for surface sediments around Taiwan, indicate moderate chemical weathering in the Taiwan river sediments. Also suggest that the seafloor sediments around offshore Taiwan are highly correlated to Taiwan river sediments, indicating the high influence of Taiwan-derived sediments on the bulk fraction of offshore surface sediments around Taiwan.
關鍵字(中) ★ 源岩區
★ 黏土礦物
★ 主要與微量元素
★ 化學風化
★ 台灣
★ 呂宋
★ 黑潮
關鍵字(英) ★ Provenance
★ Clay minerals
★ Major and trace elements
★ Chemical weathering
★ Taiwan
★ Luzon
★ Kuroshio current
論文目次 Abstract in Chinese .......................................................................................................................... i
Abstract in English .......................................................................................................................... ii
Acknowledgements ........................................................................................................................ iv
List of Tables ................................................................................................................................. ix
List of Figures ................................................................................................................................. x
Chapter 1: Introduction ................................................................................................................... 1
1.1 Research motivations and objectives .................................................................................... 1
1.2 An introduction to the geological setting and environmental background of Taiwan .......... 6
1.3 Thesis plan .......................................................................................................................... 13
Chapter 2: Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes ................................................................................................... 15
2.1 Introduction and environmental background ...................................................................... 15
2.2 Materials and methods ........................................................................................................ 18
2.2.1 Sample collection ......................................................................................................... 18
2.2.2 Analytical methods ...................................................................................................... 21
2.3 Results ................................................................................................................................. 27
2.3.1 Sediment facies for seafloor sediments........................................................................ 27
2.3.2 Distribution of clay minerals in Taiwanese river sediments and Tainan Shelf sediments............................................................................................................................................... 28
2.3.3 Distribution of clay minerals in different provinces .................................................... 29
2.4 Discussion ........................................................................................................................... 47
2.4.1 Characteristic clay minerals at sediment sources......................................................... 47
2.4.2 Ages of studied sediment cores.................................................................................... 51
2.4.3 Depositional mechanism of clay minerals for different sedimentary facies around offshore Taiwan .................................................................................................................... 53
2.4.4 Summary of source and transport mechanism of clay minerals around Taiwan ......... 64
Chapter 3: Geochemical and clay-mineral characterization of deep-sea surface sediments around Taiwan........................................................................................................................................... 69
3.1 Introduction and background .............................................................................................. 69
3.2 Materials and methods ........................................................................................................ 70
3.2.1 Sample collection ......................................................................................................... 70
3.2.2 Analytical methods ...................................................................................................... 72
3.3 Results and discussion: ....................................................................................................... 74
3.3.1 Clay minerals ............................................................................................................... 74
3.3.2 Geochemical Analysis ................................................................................................. 88
Chapter 4: Conclusions and outlook ........................................................................................... 109
Vita .............................................................................................................................................. 112
Publications ................................................................................................................................. 113
Bibliography ............................................................................................................................... 114
Appendices .................................................................................................................................. 121
參考文獻 1. Peizhen, Z., P. Molnar, and W.R. Downs, Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001. 410(6831): p. 891-7.
2. Burbank, D.W., et al., Decoupling of erosion and precipitation in the Himalayas. Nature, 2003. 426(6967): p. 652-655.
3. Reiners, P.W., et al., Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 2003. 426(6967): p. 645-7.
4. Dadson, S.J., et al., Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 2003. 426(6967): p. 648-651.
5. Molnar, P., LATE CENOZOIC INCREASE IN ACCUMULATION RATES OF TERRESTRIAL SEDIMENT: How Might Climate Change Have Affected Erosion Rates? Annual Review of Earth and Planetary Sciences, 2004. 32(1): p. 67-89.
6. Clift, P., et al., Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry Geophysics Geosystems, 2006. 7.
7. Liu, Z., et al., Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry, Geophysics, Geosystems, 2007. 8(5).
8. Milliman, J.D. and J.P.M. Syvitski, Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. 1992.
9. Milliman, J.D., K.L. Farnsworth, and C.S. Albertin, Flux and fate of fluvial sediments leaving large islands in the East Indies. Journal of Sea Research, 1999. 41(1): p. 97-107.
10. Huang, J., et al., Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016. 441: p. 871-881.
11. McLennan, S.M., Weathering and Global Denudation. The Journal of Geology, 1993. 101(2): p. 295-303.
12. Summerfield, M. and N. Hulton, Natural controls of fluvial denudation in major world basins. Journal of Geophysical Research, 1994. 99: p. 13871.
13. Canfield, D.E., The geochemistry of river particulates from the continental USA: Major elements. Geochimica et Cosmochimica Acta, 1997. 61(16): p. 3349-3365.
14. Gaillardet, J., et al., Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999. 159(1): p. 3-30.
15. Singh, M., M. Sharma, and H. Tobschall, Weathering of the Ganga alluvial plain, northern India: Implications from fluvial geochemistry of the Gomati River. Applied Geochemistry, 2005. 20: p. 1-21.
16. Kandasamy, S. and C.-T.A. Chen, Moderate Chemical Weathering of Subtropical Taiwan: Constraints from SolidPhase Geochemistry of Sediments and Sedimentary Rocks. Journal of Geology - J GEOL, 2006. 114: p. 101-116.
17. Hsu, S.-C., et al., Observed sediment fluxes in the southwesternmost Okinawa Trough enhanced by episodic events: flood runoff from Taiwan rivers and large earthquakes. Deep Sea Research Part I: Oceanographic Research Papers, 2004. 51(7): p. 979-997.
18. Li, C., et al., Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 2012. 57(6): p. 673-681.
19. Nayak, K., et al., Clay-mineral distribution in recent deep-sea sediments around Taiwan: Implications for sediment dispersal processes. Tectonophysics, 2021. 814: p. 228974.
20. Collot, J., et al., The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: Result of oblique seamount subduction. Journal of Geophysical Research, 2001. 106: p. 19271-19297.
21. Lehu, R., et al., Deep-sea sedimentation offshore eastern Taiwan: Facies and processes characterization. Marine Geology, 2015. 369: p. 1-18.
22. Mulder, T. and P. Cochonat, Classification of Offshore Mass Movements. Journal of Sedimentary Research, 1996. 66: p. 43-57.
23. Mulder, T. and J. Alexander, The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 2001. 48: p. 269-299.
24. Bouma, A., P. Kuenen, and F.P. Shepard. Sedimentology of some Flysch deposits : a graphic approach to facies interpretation. 1962.
25. Einsele, G., Event deposits: the role of sediment supply and relative sea-level changes—overview. Sedimentary Geology, 1996. 104(1): p. 11-37.
26. Locat, J. and H.J. Lee, Submarine landslides: advances and challenges. Canadian Geotechnical Journal, 2002. 39(1): p. 193-212.
27. Shanmugam, G.s.T., Bioturbation and trace fossils in deep-water contourites, turbidites, and hyperpycnites: A cautionary note. 2018. 35: p. 13-32.
28. Huang, C.-Y., et al., Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for late neogene evolution of the coastal range. Marine Geology, 1992. 107(3): p. 183-212.
29. Dadson, S., et al., Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research (Earth Surface), 2005. 110: p. F04016.
30. Ramsey, L.A., et al., Topographic characteristics of the submarine Taiwan orogen. Journal of Geophysical Research (Earth Surface), 2006. 111: p. F02009.
31. Liu, Z., et al., Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 2010. 277: p. 48-60.
32. Liu, Z., et al., Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 2008. 255: p. 149-155.
33. Wan, S., et al., Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007. 254(3): p. 561-582.
34. Hsu, M.T., Seismicity of Taiwan (Formosa). Bulletin Earthquake Research institute Tokyo University, 1961. 39: p. 831–847.
35. Ramsey, L.A., R.T. Walker, and J. Jackson, Geomorphic constraints on the active tectonics of southern Taiwan. Geophysical Journal International, 2007. 170(3): p. 1357-1372.
36. Lin, A., A. Watts, and S. Hesselbo, Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 2003. 15: p. 453-478.
37. Huang, C.-Y., P.B. Yuan, and S.-J. Tsao, Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 2006. 118: p. 274.
38. Davis, D., J. Suppe, and F.A. Dahlen, Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research: Solid Earth, 1983. 88(B2): p. 1153-1172.
39. Chen, C., et al., Geologic Map of Taiwan (Scale 1: 500000). Central Geological Survey, MOEA, Taiwan, 2000.
40. Kao, S.-J.I. and J. Milliman, Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. Journal of Geology - J GEOL, 2008. 116: p. 431-448.
41. Liu, J.P., et al., Flux and Fate of Small Mountainous Rivers Derived Sediments into the Taiwan Strait. Marine Geology, 2008. 256: p. 65-76.
42. Liu, J.T., K.-j. Liu, and J.C. Huang, The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 2002. 181(4): p. 357-386.
43. Yu, S.-W., et al., Sea level and climatic controls on turbidite occurrence for the past 26kyr on the flank of the Gaoping Canyon off SW Taiwan. Marine Geology, 2017. 392: p. 140-150.
44. Sparkes, R.B., et al., Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system. Marine Geology, 2015. 363: p. 191-201.
45. Selvaraj, K., et al., Stable isotopic and biomarker evidence of terrigenous organic matter export to the deep sea during tropical storms. Marine Geology, 2015. 364: p. 32-42.
46. Liu, J.T., et al., From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system. Earth-Science Reviews, 2016. 153: p. 274-300.
47. Zhang, Y., et al., Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 2018. 46.
48. Yuan, D., W. Han, and D. Hu, Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 2006. 111(C11).
49. Liu, J., et al., Clay mineral distribution in surface sediments of the South China Sea and its significance for sediment sources and transport. Chin. J. Oceanol. Limnol., 2010. 28: p. 407-415.
50. Kaifu, Y., et al., Palaeolithic voyage for invisible islands beyond the horizon. Scientific Reports, 2020. 10.
51. Caruso, M., G. Gawarkiewicz, and R. Beardsley, Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography, 2006. 62: p. 559-575.
52. Huh, C.-A., et al., Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems - J MARINE SYST, 2009. 76: p. 405-416.
53. Liu, Z., et al., Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea. Chinese Science Bulletin, 2007. 52: p. 1101-1111.
54. Wang, Y., et al., Clay-mineral compositions of sediments in the Gaoping River-Sea system: Implications for weathering, sedimentary routing and carbon cycling. Chemical Geology, 2016. 447: p. 11-26.
55. Su, C.-C., et al., Sedimentological characteristics and seafloor failure offshore SW Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 2018. 29: p. 65-76.
56. Lin, C.-C., et al., Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research, 2014. 35(1): p. 21-35.
57. Gong, C., Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, 2012.
58. Lehu, R., et al., An attempt to reconstruct 2700years of seismicity using deep-sea turbidites offshore eastern Taiwan. Tectonophysics, 2016. 692: p. 309-324.
59. Lallemand, S., et al., A ∼3000 years-old sequence of extreme events revealed by marine and shore deposits east of Taiwan. Tectonophysics, 2015.
60. Guyot, J.-L., et al., Clay mineral composition of river sediments in the Amazon Basin. Catena, 2007. 71: p. 340-356.
61. Hu, B., et al., Clay mineralogy of the riverine sediments of Hainan Island, South China Sea: Implications for weathering and provenance. Journal of Asian Earth Sciences, 2014. 96: p. 84-92.
62. Kuo, L.-W., et al., Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault, Taiwan: Implication for faulting mechanism. Journal of Asian Earth Sciences, 2012. 59: p. 208-218.
63. Liu, Z., et al., Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 2003. 201(1): p. 133-146.
64. Jeans, C.V., H. Chamley Clay Sedimentology. Springer-Verlag, Berlin, 1989. xx + 623 pp., 243 Figs., 65 Tables. Price DM 128. ISBN: 3.540.50889.9. Clay Minerals, 1990. 25(2): p. 243-243.
65. Wilson, M.J., The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 1999. 34(1): p. 7-25.
66. Limmer, D.R., et al., Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties. Marine Geology, 2012. 326-328: p. 101-115.
67. Thamban, M., V. purnachandra Rao, and R.R. Schneider, Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India. Marine Geology, 2002. 186: p. 527-539.
68. de Visser, J.P. and H. Chamley, Clay mineralogy of the Pliocene and Pleistocene of Hole 653A, western Tyrrhenian Sea (ODP Leg 107). Proceedings of the Ocean Drilling Program, Tyrrhenian Sea, covering Leg 107 of the cruises of the Drilling Vessel JOIDES Resolution, Malaga, Spain to Marseille, France, sites 650-656, 20 December 1985-18 February 1986, 1990. 107: p. 323.
69. Pandarinath, K., Clay minerals in SW Indian continental shelf sediment cores as indicators of provenance and palaeomonsoonal conditions: a statistical approach. International Geology Review, 2009. 51(2): p. 145-165.
70. Diekmann, B. and H. Wopfner, Petrographic and diagenetic signatures of climatic change in peri- and postglacial Karoo Sediments of SW Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996. 125(1): p. 5-25.
71. Gingele, F., P. Deckker, and C.-D. Hillenbrand, Clay mineral distribution in surface sediments between Indonesia and NW Australia - Source and transport by ocean currents. Marine Geology, 2001. 179: p. 135-146.
72. Gingele, F.X., Holocene climatic optimum in Southwest Africa—evidence from the marine clay mineral record. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996. 122(1): p. 77-87.
73. Wan, S., et al., Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma. Marine Geology - MAR GEOLOGY, 2010. 278.
74. BISCAYE, P.E., Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. GSA Bulletin, 1965. 76(7): p. 803-832.
75. Holtzapffel, T., Les minéraux argileux: préparation, analyse diffractométrique et détermination. 1985: Société géologique du Nord.
76. Liu, Z., et al., Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Applied Geochemistry, 2009. 24(11): p. 2195-2205.
77. Wan, S., et al., Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3Ma. Marine Geology, 2010. 278(1): p. 115-121.
78. Liu, Z., et al., Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Science Reviews, 2016. 153: p. 238-273.
79. Lallemand, S., et al., Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments. Tectonophysics, 2013. 594: p. 60-79.
80. Hsiung, K.-H., et al., Morpho-sedimentary features and sediment dispersal systems of the southwest end of the Ryukyu Trench: a source-to-sink approach. Geo-Marine Letters, 2017. 37(6): p. 561-577.
81. Diekmann, B., et al., Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Marine Geology, 2008. 255(1): p. 83-95.
82. Dou, Y., et al., Clay mineral evolution in the central Okinawa Trough since 28ka: Implications for sediment provenance and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010. 288(1): p. 108-117.
83. Malavieille, J., et al., Arc-continent collision in Taiwan: New marine observations and tectonic evolution, in Geology and geophysics of an arc-continent collision, Taiwan. 2002, Geological Society of America. p. 0.
84. Huang, C.-Y., et al., The Lichi Mélange: A collision mélange formation along early arcward backthrusts during forearc basin closure, Taiwan arc-continent collision. 2008. p. 127-154.
85. Nan, F., H. Xue, and F. Yu, Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 2015. 137: p. 314-333.
86. BAKER, E.T., Distribution, composition, and transport of suspended particulate matter in the vicinity of Willapa submarine canyon, Washington. GSA Bulletin, 1976. 87(4): p. 625-632.
87. Raymo, M., W. Ruddiman, and P. Froelich, Influence of Late Cenozoic mountain building on ocean geochemical cycles. Geology, 1988. 16: p. 649-653.
88. Clark, M., et al., Surface uplift, tectonics, and erosion of eastern Tibet from larg… scale drainage patterns. Tectonics, 2004. 23.
89. Liu, Z., et al., Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quaternary Research, 2005. 63: p. 316 - 328.
90. Schoenbohm, L., et al., Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geological Society of America Bulletin - GEOL SOC AMER BULL, 2004. 116.
91. Clift, P., J. Blusztajn, and D. Nguyen, Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 2006. 33.
92. Summerfield, M.A. and N.J. Hulton, Natural controls of fluvial denudation rates in major world drainage basins. Journal of Geophysical Research: Solid Earth, 1994. 99(B7): p. 13871-13883.
93. Milliman, J.D. and R.H. Meade, World-Wide Delivery of River Sediment to the Oceans. The Journal of Geology, 1983. 91(1): p. 1-21.
94. Milliman, J. and J. Syvitski, Geomorphic Tectonic Control of Sediment Discharge to Ocean – The Importance of Small Mountainous Rivers. Journal of Geology, 1991. 100: p. 525-544.
95. Fedo, C., Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy & Geochemistry - REV MINERAL GEOCHEM, 2003. 53: p. 277-303.
96. Piper, D.Z., et al., Geochemistry of bed and suspended sediment in the Mississippi river system: Provenance versus weathering and winnowing. Science of The Total Environment, 2006. 362(1): p. 179-204.
97. Zhang, M., et al., Clay Mineralogy and Geochemistry of the Pockmarked Surface Sediments from the Southwestern Xisha Uplift, South China Sea: Implications for Weathering and Provenance. Geosciences, 2020. 11: p. 8.
98. Huang, E., J. Tian, and S. Steinke, Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon. Quaternary Research, 2011. 75(1): p. 196-204.
99. Liu, J., et al., Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport. Chinese Journal of Oceanology and Limnology, 2010. 28(2): p. 407-415.
100. Shao, L., et al., Nd isotopic variations and its implications in the recent sediments from the northern South China Sea. Chinese Science Bulletin, 2008. 54(2): p. 311.
101. Wei, G., et al., Nd, Sr isotopes and elemental geochemistry of surface sediments from the South China Sea: Implications for Provenance Tracing. Marine Geology, 2012. 319-322: p. 21-34.
102. Garzanti, E., et al., Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 2014. 366: p. 61-74.
103. Pin, C., A. Gannoun, and A. Dupont, Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014. 29.
104. Wei, G., et al., Separation of Sr, Sm and Nd in mineral and rock samples using selective specific resins. Rock and Mineral Analysis, 2004. 23: p. 11-14.
105. Pin, C. and A. Gannoun, Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences. Analytical Chemistry, 2017. 89.
106. Jacobsen, S.B. and G.J. Wasserburg, Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 1980. 50(1): p. 139-155.
107. Chesworth, W., J. Dejou, and P. Larroque, The weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochimica et Cosmochimica Acta, 1981. 45: p. 1235-1243.
108. Fritz, S.J. and D.W. Mohr, Chemical alteration in the micro weathering environment within a spheroidally-weathered anorthosite boulder. Geochimica et Cosmochimica Acta, 1984. 48: p. 2527.
109. Nath, B.N., V.P. Rao, and K.P. Becker, Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the Central Indian Basin. Marine Geology, 1989. 87(2): p. 301-313.
110. Nesbitt, H.W. and G.M. Young, Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 1989. 97(2): p. 129-147.
111. Nesbitt, H.W. and G.M. Young, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982. 299(5885): p. 715-717.
112. Nesbitt, H.W., Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 1979. 279(5710): p. 206-210.
113. McLennan, S., et al. Geochemical approaches to sedimentation, provenance, and tectonics. 1993.
114. Taylor, S. and S. McLennan. The continental crust : its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks. 1985.
115. Borg, L.E. and J.L. Banner, Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochimica et Cosmochimica Acta, 1996. 60(21): p. 4193-4206.
116. Tütken, T., et al., Glacial–interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Marine Geology, 2002. 182(3): p. 351-372.
117. Goldstein, S.J. and S.B. Jacobsen, Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth and Planetary Science Letters, 1988. 87(3): p. 249-265.
118. Grousset, F.E., et al., Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth and Planetary Science Letters, 1988. 87(4): p. 367-378.
119. Colin, C., et al., Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth and Planetary Science Letters, 1999. 171(4): p. 647-660.
120. Dou, Y., et al., Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences. Chemical Geology, 2016. 425.
121. Defant, M.J., et al., The geochemistry and tectonic setting of the northern section of the Luzon arc (The Philippines and Taiwan). Tectonophysics, 1990. 183(1): p. 187-205.
指導教授 林殿順 黃國芳(Andrew Tien-Shun Lin Kuo-Fang Huang) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明