博碩士論文 102622604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:54.166.170.195
姓名 費索(Feisal Dirgantara)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 臺灣西南海域深水區褶皺逆衝斷層帶:以震測成像、地層演育、天然氣水合物及地熱特徵觀點探討
(Deepwater Fold-and-Thrust Belts off Southwestern Taiwan: A View on Seismic Imaging, Stratigraphic Development, Gas Hydrates, and Associated Thermal Signatures)
相關論文
★ 台灣西南部中新世井下地層之沉積環境與層序地層研究★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵
★ 台灣車籠埔斷層鑽井計畫岩心的岩性地層及沉積相研究★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化
★ 台灣海峽及台灣西部平原之沈積層速度構造★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動
★ 台灣中部早期前陸盆地的地層紀錄★ 台灣西南部前陸地區演育與古應力分析
★ 台灣西北部漸新世至更新世盆地演化及層序地層★ 煤岩材料與沉積環境綜合研判
★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究
★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵
★ 台灣西南外海高屏峽谷沉積物及沉積機制研究★ 台灣西南海域天然氣水合物地質控制因素與資源量評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 臺灣西南海域位於馬尼拉隱沒帶的北緣,為一地體活動的過渡帶,地體活動由南往北逐漸由隱沒作用轉變為弧陸碰撞。因特殊的地體架構,使得此區域關於震測影像處理與解釋、深水層序演化,以及天然氣水合物系統與其相關熱流特徵的研究有諸多挑戰。本研究重新處理兩條2009年收集,通過南中國海北坡張裂大陸邊緣深水區與台灣增積岩體的2維多頻道反射震測剖面MGL0905-10與MGL0905-27。此外,亦配合深鑽資料、震測層序地層與震測相分析,解析南中國海北部的層序演化。除上述MGL0905-10 與 MGL0905-27兩條測線外,本研究亦使用了MGL0905-05與MGL0905-20這兩條2維多頻道反射震測時間剖面,進行研究區域地層與構造演育的研究。本研究依據震測訊號的特徵,劃分出6個關鍵層面與11個震測相,並建立新的年代地層以解釋南中國海東北部深水區層序的演化。結果顯示,古近紀張裂活動形成的半地塹系統,以分離不整合為面為界,與晚漸新世的淺海沉積物接觸。於後張裂早期之晚期漸新世至早中新世之間,有局部的海底火山與岩床發育。於晚期中新世,有廣泛的海底峽谷發育,在中新世最晚期,弧陸碰撞開始發育。在更新世時期,有許多的崩積物與沉積物波堆積。張裂大陸邊緣之外緣,因弧陸碰撞作用,廣泛發育褶皺逆衝斷層帶和斜坡盆地。以前陸基底不整合面為界,可分開下伏的後張裂時期地層與上覆的前陸盆地堆積。相較於張裂大陸邊緣區域,於台灣增積岩體區之斜坡盆地,多為各自獨立且少有水道發育,以半遠洋沉積物為主。除上述特徵外,在增積岩體上有可能為活動斷層的分岐斷層(其常切穿海床並且造成明顯的坡折),以及位於海床下約3 - 12公里深處、角度平均在 4–6 度之間的滑脫面。在距離海床深度約 300–600公尺處,廣泛的海底仿擬反射,顯示了無論是張裂大陸邊緣或台灣增積岩體上皆有天然氣水合物富集,可能受控於活躍的流體活動。弧陸碰撞的聚合作用則造成了增積岩體內泥貫入體的發育與墾丁高原基盤岩的隆起。
根據震測解釋的結果,發現在增積岩體的上部斜坡區域,有廣泛的海底仿擬反射及泥貫入體分布,暗示這區域存在許多天然氣水合物及游離氣。下枋寮盆地為增積岩體上部斜坡區的一個半封閉盆地,由3維 MCS937與2維MGL0908-TST震測資料得知,下枋寮盆地的海底仿擬反射大多橫切此區域傾斜的地層與泥貫入體,而海底仿擬反射可能代表著天然氣水合物穩定帶的底部界面。由3維震測屬性顯示,海底仿擬反射的上方有天然氣水合物與游離氣的富集,而海底仿擬反射的下方則富集游離氣。泥貫入體及其相關的斷層可能為深處熱成熟甲烷氣的通道,甲烷氣可沿著此通道向上移棲至天然氣水合物穩定帶 (GHSZ)。本研究以蒙特卡羅模擬為估算的基礎,初步估計在 60 平方公里的研究區域內,天然氣總體積為 2,048 Bcf。
海底仿擬反射在增積岩體上通常位於較淺的深度,而下枋寮盆地的海底仿擬反射深度與其他上部增積楔斜坡區域相比則較深。地溫梯度和熱流估計值分別為 33 oC.km-1 和 41 mW.m-2,顯示熱毯作用仍為控制當今盆地溫度的主因;此外,以熱探測器和紅外成像儀對淺層活塞岩心密集量測的結果,顯示此區域地溫梯度和熱流平均值分別為 55 °C.km-1 和 62 mW.m-2,此一量測結果與上述估計的結果有明顯的差異。造成此一差異的原因,可能與直接熱測量對淺層流體通量的敏感度有關,區域性的淺層地溫梯度會隨著流體向上移棲而增加。由高解析度的海底地形、震測相解釋(包含有3維的MCS937,以及2維的 MW9006-01與 MW9006-02測線),以及熱異常分佈的資料顯示,古高屏峽谷曾流經現在的下部枋寮盆地,並堆積了一系列的砂質濁流沉積物。由於沉積物快速的堆積,可能會導致古高屏峽谷區域沉積物的孔隙水來不及排出,造成了孔隙壓力處於超壓的狀態,因而導致了此區域有較低的熱流與地溫梯度,有助於加深天然氣水合物穩定帶 (GHSZ)的底部界面。另外,古高屏峽谷由於後來的泥貫入體入侵與區域海床的抬升改變了原本的流向,逐漸往南遷移演變成現今的高屏峽谷,而原本的古高屏峽谷則被廢棄。
摘要(英) Offshore southwestern Taiwan lies in the northern end of Manila Subduction System (MSS) where normal subduction progressively evolves into initial arc-continent collision. The tectonic configuration offers the area with challenges pertaining to the comprehension of subsurface imaging, deepwater stratigraphic development, gas hydrates systems, and associated thermal signatures. Two legacy 2D multichannel seismic data (MGL0905-10 and MGL0905-27), crossing the deepwater rifted Chinese continental margin to submarine Taiwan accretionary wedge, were re-processed to image the depth-domain subsurface. Together with age-controlled deep drilling, seismic stratigraphy and seismic facies analyses were utilized to redefine the stratigraphic development in the northeastern South China Sea (SCS). Additional 2D MCS time-domain data (MGL0905-05 and MGL0905-20) were included to better constraint the key stratigraphic correlation from the rifted continental margin. Six key horizons and eleven seismic facies were identified. A new chronostratigraphic column was established to explain the stratigraphic development in the study area. Paleogene fault-bounded half graben systems underlie the break-up unconformity, followed by late Oligocene shallow-marine sediments. Localized buried seamounts and sills developed during the early post-rift in late Oligocene to early Miocene. Deepwater canyons extensively developed in late Miocene, followed by the inception of arc-continent collision. Mass transport deposits (MTDs) and sediment waves deposited during the Pleistocene. In the distal rifted margin, arc-continent collision commenced in late Miocene, promoting the extensive development of fold-and-thrust belts and slope basins. Basal foreland unconformity (BFU) marks the transition from the underlying post-rift sequences to the overlying foreland sequences. As opposed to the rifted-margin domain, modern stratigraphy in the accreted slope basins of Taiwan accretionary wedge suggested isolated, hemipelagic-dominant sediments, and less of channel development. Splay fault cutting through the seafloor and the fault lying at the toe of steep slope with significant slope break, indicating that the splay fault is most likely an active fault. Decollement in the lower accretionary wedge is estimated at depths of 3 – 12 km beneath the seafloor with average angles between 4 – 6 degrees. Bottom simulating reflectors (BSRs) at depth around 300 – 600 m from the seafloor suggests active fluid expulsion controlling the gas-hydrate accumulations in the rifted margin and the offshore Taiwan fold-and-thrust belts. The convergence also promotes the development of mud diapirs and uplifted bedrocks in the Kenting Plateau of the upper accretionary wedge.
Regional seismic interpretation suggests dispersed distribution of BSRs and mud diapir in the upper slope domain, inferring pervasive gas-hydrate systems and associated free-gas distribution, including in the Quaternary Lower Fangliao Basin (LFB), a semi-enclosed slope basin in the upper wedge slope of Taiwan. BSRs are present to cross-cut both inclined stratigraphy and intruding diapirs as hinted from 3D MCS937 and 2D MGL0908-TST seismic data. The BSRs are interpreted to represent the basal phase boundary of the gas hydrate stability zone (GHSZ). 3D seismic attributes suggest that free gas and gas hydrates may be located above BSRs, and free gas below BSRs. Mud diapirs and associated faults may act as pathways along which thermogenic methane from a deep and as-yet unidentified source may migrate up into the GHSZ. First order volumes of free gas and gas-hydrates in place were estimated on the basis of geobody extraction, geophysical approximations, and Monte Carlo simulation and suggest 2,048 Bcf of total gas volume over a study area of 60 km2.
As the depth of BSRs are generally shallowing towards the accretionary wedge, the depth of BSRs in the LFB suggests anomalously deeper BSRs depth compared to other region in the upper wedge slope domain. The low geothermal gradient and heat-flow estimation, 33 oC.km-1 and 41 mW.m-2, respectively, suggest the role of thermal blanketing in controlling the present-day basin temperature. Closely spaced thermal probes and infrared imaging from piston cores revealed average values for geothermal gradients and heat flows of 55 °C.km−1 and 62 mW.m−2, respectively. Discrepancies between both measurements are related to the sensitivity of direct thermal measurements over shallow fluid flux, where shallow geothermal gradients increase locally as the fluid migrates upward. An array of data, including high-resolution seafloor bathymetry, seismic facies interpretation (from 3D MCS937, 2D MW9006-01, and 2D MW9006-02), and distribution of thermal anomaly, reveal that a paleo-Gaoping canyon had flowed through the LFB and deposited a stacked series of turbidite sands. Rapid deposition and sediment burial in offshore southwestern Taiwan had caused insufficient dewatering process in the paleo-Gaoping canyon sediments, leaving high water saturation within pore spaces and overpressured sediments. These, together, lead to lower heat flows and thermal gradients and contribute to deepen the base of GHSZ. Further mud diapiric intrusions and uplifting of seafloors had blocked the course of paleo-Gaoping canyon. The LFB was abandoned following the channel course shifted to the south along the present-day Gaoping Canyon course.
關鍵字(中) ★ 深水
★ 海洋地質
★ 海洋地球物理學
★ 地層學
★ 天然氣水合物
★ 地震成像
★ 熱性能
★ 造山帶
★ 台灣
★ 折疊推力帶
★ 折疊推力帶
關鍵字(英) ★ deepwater
★ marine geology
★ marine geophysics
★ stratigraphy
★ gas hydrates
★ seismic imaging
★ thermal properties
★ orogen
★ Taiwan
★ fold-and-thrust belts
★ Feisal Dirgantara
論文目次 中文摘要 vii
Abstract ix
Table of Content xii
List of Figures xvi
List of Tables xx
CHAPTER 1: EXORDIUM 1
1.1. Research motivation 1
1.2. Related literatures review 5
1.3. Organization 10
CHAPTER 2: SEISMIC IMAGING OF MULTI-CHANNEL SEISMIC DATASET, OFFSHORE SOUTHWESTERN TAIWAN 19
2.1. Introduction 19
2.2. Methodology 21
2.2.1. Data acquisition 21
2.2.2. Data processing 22
2.2.2.1. Preconditioning 22
2.2.2.1.1. Data reformatting 22
2.2.2.1.2. Data resampling 22
2.2.2.1.3. Geometry definition 23
2.2.2.1.4. CDP sorting 23
2.2.2.1.5. Trace editing 23
2.2.2.1.6. Preliminary band-pass filter 23
2.2.2.1.7. Time-variant noise suppression 24
2.2.2.1.8. Spherical divergence correction 24
2.2.2.1.9. Missing trace interpolation 24
2.2.2.2. Deconvolution 25
2.2.2.3. Velocity analysis 26
2.2.2.4. Normal move out (NMO) 27
2.2.2.5. Multiple attenuation 28
2.2.2.5.1. 2D Wave-Equation Multiple Attenuation (WEMA) 29
2.2.2.5.2. Surface-Related Multiple Elimination (SRME) 29
2.2.2.5.3. Radon Filter 29
2.2.2.5.4. F-K Filter 30
2.2.2.6. Stacking 31
2.2.2.7. Time migration 31
2.2.2.8. Depth migration 32
2.3. Results 32
2.4. Discussions 33
2.5. Conclusions 38
CHAPTER 3: CENOZOIC STRATIGRAPHY DEVELOPMENT FROM RIFTED MARGIN TO ACCRETIONARY WEDGE SLOPE IN THE NORTHEASTERN SOUTH CHINA SEA 62
3.1. Introduction 62
3.2. Methodology 63
3.2.1. Multi-channel seismic data 63
3.3. Results 65
3.3.1. Correlation of stratigraphy horizons 65
3.3.2. Seismic facies 65
3.4. Discussions 66
3.4.1. Key stratigraphic correlation 66
3.4.2. Description of geological units 68
3.4.2.1. Mesozoic unit 68
3.4.2.2. Paleogene unit 68
3.4.2.3. Miocene unit 69
3.4.2.4. Pliocene unit 70
3.4.2.5. Pleistocene unit 70
3.4.2.6. Undifferentiated unit 71
3.4.3. Chronostratigraphy development 72
3.5. Conclusions 75
CHAPTER 4: GAS HYDRATE SYSTEM AND FIRST-ORDER RESERVES ESTIMATION IN THE LOWER FANGLIAO BASIN, TAIWAN ACCRETIONARY WEDGE 90
4.1. Introduction 90
4.2. Methodology 92
4.2.1. Seismic data and analyses 92
4.2.2. Geobody extraction 93
4.2.3. Volumetric estimation 93
4.3. Results 96
4.3.1. Morphology 96
4.3.2. Seismic facies 96
4.3.3. BSRs characteristics 97
4.3.4. Geobody extraction 97
4.3.5. Reservoir parameters 98
4.4. Discussions 99
4.4.1. Gas-hydrate and free gas systems 99
4.4.2. Volumetric evaluation 103
4.5. Conclusions 104
CHAPTER 5: DEPOSITIONAL INFLUENCE OF PALEO-GAOPING CANYON ON THERMAL BLANKETING EFFECT IN THE LOWER FANGLIAO BASIN, OFFSHORE SOUTHWESTERN TAIWAN 119
5.1. Introduction 119
5.2. Methodology 122
5.2.1. Seismic data and analyses 122
5.2.2. Heat flows derived from BSRs-depths 123
5.2.3. Heat flow measurement from heat probe and infrared camera imaging 125
5.2.4. Geothermal gradient corrections 126
5.3. Results 127
5.3.1. BSRs distribution 127
5.3.2. Heat flow estimation based on BSRs depth 127
5.3.3. Heat flow based on contact measurement and infrared camera imaging 128
5.3.4. Thermobaric model of hydrate stability zone 129
5.3.5. Seismic interpretation 129
5.4. Discussions 130
5.4.1. Parameter errors 130
5.4.2. Discrepancies between BSRs-derived thermal properties and direct thermal measurements 131
5.4.3. Geological constraints of thermal estimation from direct measurements 131
5.4.4. Geological constraints of thermal estimation from BSRs 133
5.4.5. Evolution of the LFB off southwestern Taiwan 136
5.5. Conclusions 139
CHAPTER 6 156
BIBLIOGRAPHY 159
APPENDIX A 174
參考文獻 Aboonasr, S. F. G., Zamani, A., Razavipour, F., and R. Boostani., 2017. Earthquake hazard assessment in the Zagros orogenic belt of Iran using a fuzzy rule-based model. Acta Geophysica, 65, 589-605a.
Allen, P. A., and J. R. Allen., 2013. Basin analysis - principles and application to petroleum play Assessment. Wiley, Oxford.
Angelier, J., 1986. Geodynamics of the Eurasia-Philippine Sea Plate boundary: Preface. Tectonophysics, 125, IX-X.
Anstey, N. A., 1982. Simple Seismics. International Human Resources Development and Co., Boston.
Ashi, J., and A. Taira., 1993. Thermal structure of the Nankai accretionary prism as inferred from the distribution of gas hydrate BSRs. Special Paper of the Geological Society of America, 273, 137–149.
Bagirov, E., and I. Lerche., 1997. Hydrates represent gas source, drilling hazard. Oil and Gas Journal, 95, 99-101.
Bahk, J. J., Kim, D. H., Chun, J. H., Son, B.K., Kim, J. H, Ryu, B. J., Torres, M. E., Riedel, M., and P. Schultheiss., 2013. Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin gas hydrate drilling expedition, East Sea. Mar. Pet. Geol., 47, 21–29.
Barber, A. J., Tjokrosapoetro, S., and T. R. Charlton., 1986. Mud volcanoes, shale diapir, wrench fault and melanges in accretionary complexes, eastern Indonesia. Bull Am. Assoc. Pet. Geol., 70, 1729-1741
Barber, A.J., 2013. The origin of mélanges: Cautionary tales from Indonesia, Journal of Asian Earth Sciences, 76, 428-438.
Basov, E. I., van Weering, T. C. E., Gaedike, C., Barano, B. V., Lelikov, E. P., Obzhirov, A. I, and I. N. Belykh., 1996. Seismic facies and specific character of the bottom simulating reflector on the western margin of Paramushir Island, Sea of Okhotsk. Geo-Marine Letters, 16, 297- 304.
Bjorlykke, K., 2010. Petroleum geoscience: from sedimentary environments to rock physics. Springer, London
Blackwell, D. D., and J. L. Steele., 1989. Thermal conductivity sedimentary rocks: Measurement and significance. In: Naeser, N. D, and T. H. McCulloh, (Eds): Thermal history of sedimentary basins: Methods and case histories. Springer-Verlag, New York, 13-36.
Blinova, M., Faleide, J. I., Gabrielsen, R. H., and R. Mjelde., 2013. Analysis of structural trends of sub-sea-floor strata in the Isfjorden area of the West Spitsbergen Fold-and-Thrust Belt based on multichannel seismic data. Journal of the Geological Society, 170, 657-668.
Briais, A., Patriat, P., and P. Tapponnier., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research, 98, 6299-6328.
Brooks, J. M., Cox, H. B., Bryant, W. R., Kennicutt, M. C., Mann, R. G., and T. J. McDonald., 1988. Association of gas hydrate sand oil seepage in the Gulf of Mexico. Organic Geochemistry, 10, 221-234.
Brown, D., 2009. The growth and destruction of the continental crust during arc-continent collision in the southern Urals. Tectonophysics, 479, 185–196.
Brown, K., and G.K. Westbrook., 1988. Mud diapirism and subcretion in the Barbados Ridge accretionary complex: the role of fluids in accretionary processes, Tectonics, 7, 613–640.
Brown, L. F., and W. L., Fisher, 1982. Seismic stratigraphic interpretation and petroleum exploration. AAPG Continuing Education Course Note Series 16.
Bullard, E. C., 1954. The flow of heat through the floor of the Atlantic Ocean. Proceedings of the Royal Society of London, 222, 408-429.
Burke, K., 1988. Tectonic evolution of the Caribbean. Annu Rev Earth Planet Sci., 16, 201–230.
Busk, H. G., 1929. Earth Flexures. Cambridge University Press, London.
Camerlenghi, A., Cita, M. B., Vedova, B. D., Fusi, N., Mirabile, L., and G. Pellis., 1995. Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Marine Geophysical Research, 15, 115-141.
Carslaw, H. S., and J. C. Jaeger., 1959. Conduction of heat in solids. Oxford University Press, London.
Castelltort, S., Nagel, S., Mouthereau, F., Lin, A. T. S., Wetzel, A., Kaus, B., Willet, S., Chiang, S. P., and W. Y. Chiu., 2011. Sedimentology of early Pliocene sandstones in the south-western Taiwan foreland: Implications for basin physiography in the early stages of collision. Journal of Asian Earth Sciences, 40, 52-71.
Catuneanu, O., 2020. Sequence stratigraphy of deepwater systems. Marine and petroleum Geology, 114, 104238.
Chang, C. O., Angelier, J., Lee, T. G., and C. Huang., 2002. From continental margin extension to collision orogen: Structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan. Tectonophysics, 361, 61-82.
Chai, B. H. T., 1972. Structure and tectonic evolution of Taiwan. American Journal of Science, 272, 389-422.
Chen, L., Chi, W. C., Liu, C. S., Shyu, C. T., Wang, Y., and C. Y. Lu., 2012. Deriving regional vertical fluid migration rates offshore southwestern Taiwan using bottom-simulating reflectors. Marine Geophysics Research, 33, 379-388
Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H.S., and Y. W. Lee., 2014. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214.
Chen, N. C., Yang, T. F., Hong, W. L., Chen, H. W, Chen, H. C., Hu, C. Y., Huang, Y. C., Lin, S., Lin, L. H., Su, C. C., Liao, W. Z., Sun, C. H., Wang, P. L., Yang, T., Jiang, S. Y., Liu, C. S., Wang, Y., and S. H. Chung., 2017. Production, consumption, and migration of methane in accretionary prism of southwestern Taiwan, Geochem. Geophys. Geosyst. (18), 2970–2989.
Cheng, W.B., Lin, S.S., Wang, T. K., Lee, C.S., and C.S. Liu., 2010. Velocity structure and gas hydrate saturation estimation on active margin off SW Taiwan inferred from seismic tomography. Marine Geophysics Research, 31, 77-87.
Chi, W. C., Reed, D.L., Liu, C. S, and N. Lundberg, 1998. Distribution of the bottom-simulating reflector in the offshore Taiwan collision zone. Terrestrial, Atmospheric and Ocean Sciences, 9, 779–794.
Chi, W. C., and D. L., Reed., 2008. Evolution of shallow, crustal thermal structure from subduction to collision: An example from Taiwan. GSA Bull., 120, 679-690.
Chiang, H. T., Shyu, C. T., Chang, H. I., Tsao, S. J., and C. X. Chen., 2010. Geothermal monitoring of Kueishantao island offshore of northeastern Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 3, 563-573.
Chiang, C. S., Yu, H.S., Noda, A., TuZino, T., and Su, C.C., 2012. Avulsion of the Fangliao submarine canyon off SW Taiwan as revealed by morphological analysis and numerical simulation. Geomorphology (177-178), 26-37.
Ching, K. S., Rau, R. J., Lee, J. C., and J. C. Hu., 2007. Contemporarary deformation of tectonic escape in SW Taiwan from GPS observations 1995-2005. Earth Planet Sci. Lett., 262. 601-619.
Ching, K. E., Hsieh, M. L., Johnson, K. M., Chen, K. H., Rau, R. J., and M. Yang., 2011. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research, 116, B08406, doi:10.1029/2011JB008242.
Chiu, H., Wang, T. K., and Y. H. Cho., 2021. Crustal underplating and overriding across the collision‑subduction transition in the northern Manila subduction zone ofshore southwestern Taiwan. Marine Geophysical Research, 42, 22.
Chuang, P.C., Yang, T.F., Hong, W.L., Lin, S., Sun, C.H., Lin, A.T.S., Chen, J.C., Wang, Y., and S. H. Chung., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10, 497–510
Chung, S. H., Lin, A. T., Lin, C. C., Liu, C. S., Chen, C. C., Wang, Y., Wei, C.Y., and P. C. Chen., 2016. Geological investigation of gas hydrate resource potential in the offshore areas of south-southwest Taiwan. Special Publications of the Central Geological Survey, Ministry of Economic Affairs, 30, 1-42. (in Chinese).
Clennell., M. B., Hovland, M., Booth, J. S., Henry, P., and W. J. Winters., 1999. Formation of natural gas hydrates in marine sediments: 1. conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research, 104, 22985–23003.
Collett, T. S., 1997. Gas hydrate resources of northern Alaska. Bull. Canadian Petroleum Geol., 45, 317-338.
Collett, T. S., Johnson, A. H., Knapp, C. C., and R. Boswell., 2009. Natural gas hydrates - Energy resource potential and associated geologic hazard. AAPG Memoir, 29, 858–869.
Covey, M., 1984. Lithofacies analysis and basin reconstruction, Plio-Pleistocene Western Taiwan Foredeep. Petroleum Geology of Taiwan, 20, 53–83.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and J. C. Lin., 2003. Links between erosion, run off variability and seismicity in the Taiwan orogeny. Nature, 426, 648-651.
Das, P., Lin, A. T. S, Chen, M. P. P, Miramontes, E., Liu, C. S., Huang, N. W., Kung, J., and S. K. Hsu., 2021. Deep-sea submarine erosion by the Kuroshio Current in the Manila accretionary prism, offshore southern Taiwan. Tectonophysics, 807, 228813.
Davis, D., Suppe, J., and F. A. Dahlen., 1983. Mechanisms of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153-1172.
Davis, D. M., and D. M Hussong., 1984. Geothermal observations during deep sea drilling project leg78A. In: Biju-Duval, B., Moore, J, C., et al. Initial reports of deep sea drilling project. U.S. Government Printing Office, v. 78A, Washington DC, 593-598.
Davis, E. E., Hyndman, R. D., and H. Villinger., 1990. Rates of fluid expulsion across the northern Cascadia accretionary prism: Constraints from new heat flow and multichannel seismic reflection data. Journal of Geophysical Research, 95, 8869-8889.
Deffontaines, B., Liu, C. S., and H. H. Hsu., 2016. Structure and deformation of the Southern Taiwan accretionary prism: The active submarine Fangliao Fault Zone offshore west Hengchun Peninsula. Tectonophysics, 692, 227-240.
Delisle, G., von, Rad. U., Andruleit, H., von, Daniels. C. H., Tabrez, A. R., and A. Inam., 2002. Active mud volcanoes on- and offshore eastern Makran, Pakistan. International Journal of Earth Sciences, 91, 93-110.
Deng, H., Yan, P., Liu, H., and L. Wenzao., 2006. Seismic Data Processing and the Characterization of a Gas Hydrate Bearing Zone Offshore of Southwestern Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 17, 781-797.
Dickens, G. R., and M. S. Quinby-Hunt., 1997. Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications. Journal of Geophysical Research, 102, 773–783.
Ding, L., Spicer, R. A., Yang, J., Xu, Q., Cai, F., Li, S., Lai, Q., Wang, H., Spicer, T. E. V., Yue, Y., Shukla, A., Srivastava, G., Khan, M. A., Bera, S., and R. Mehrotra., 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45, 215-218.
Ding, W., Sun, Z., Mohn, G., Nirrengarten, M., Tugend, J., Manatschal, G., and J. Li., 2020. Lateral evolution in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 dilling results. Earth and Planetary Science Letters, 531, 115932.
Dirgantara, F., Lin, A. T., Liu, C. S., Lin, C. C., and S. C. Chen., 2020a. Gas-hydrate systems and gas volumetric assessment in the Lower Fangliao Basin, Taiwan accretionary wedge. Journal of Petroleum Geology, 43, 27–48.
Dirgantara, F., Chiang, H. T., Lin, A. T., Liu, C. S., and Chen, S. C., 2020b. Depositional infuence of submarine channel migration on thermal properties of the Lower Fangliao Basin, offshore southwestern Taiwan. Marine Geophysical Research, 41, 1–23.
Dix, C. H., 1955. Seismic velocities from surface measurements. Geophysics, 20, 68-86.
Dong, M., Zhang, J., Xu, X., and S. G. Wu., 2018. The differences between the measured heat flow and BSR heat flow in the Shenhu gas hydrate drilling area, northern South China Sea. Energy Exploration and Exploitation, 37, 756-769.
Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., Huang, Y. P., Huang, Y.S., Chiu, S. D., and Y. F. Ma., 2015. Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophysical Journal International, 203, 2089-2098.
Dorsey, R. J., Buchovecky, E. J., and N. Lundberg., 1988. Clay mineralogy of Pliocene‐Pleistocene mudstones, eastern Taiwan: Combined effects of burial diagenesis and provenance unroofing. Geology, 16, 944–947.
Eakin, D. H., McIntosh, K. D., van Avendonk, H, J, A., Lavier, L., Lester, R., Liu, C. S., and C. S. Lee., 2014. Crustal-scale seismic profiles across the Manila subduction zone: the transition from intraoceanic subduction to incipient collision. J. Geophys. Res., 119, 1-17.
Elliott, J. R., and C. T. Lira., 1996. An Introduction to Applied Thermodynamics. (http://www.egr.msu.edu/~lira/thermtxt.htm).
Fossen, H., 2010. Structural geology. Cambridge University Press.
Fruehn, J., White, R. S., and T. A. Minshull., 1997. Internal deformation and compaction of the Makran accretionary wedge. Terra Nova, 9, 101-104.
Fuh, S. C., Liu, C. S., and G. S. Song., 1994. Decoupled transcurrent faults in the offshore area south of Taiwan. Petroleum Geology of Taiwan, 29, 27-46.
Fujii, T., Saeki, T., Kobayashi, T., Inamori, T., Hayashi, M., Takano, O., Takayama, T.,Kawasaki, T., Nagakubo, S., Nakamizu, M., and Yokoi, K., 2009. Resource assessment of methane hydrate by applying a probabilistic approach in the eastern Nankai trough, Japan. Journal of Geography, 118, 814-834.
Ganguly, N., Spence, G. D., Chapman, N. R., and R. D Hyndman., 2000. Heat flow variations from bottom simulating reflectors on the Cascadian margin. Marine Geology, 164, 53-68.
Gayet, O., Dicharry, C., Marion, G., Graciaa, A., Lachaise, J., and A. Nesterov., 2005. Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chemical Engineering Science, 60, 5751-5758.
Goffey, G. P., Craig, J., Needham, T., and R. Scott., 2010. Fold–thrust belts: overlooked provinces or justifiably avoided? In: Goffey, G. P., Craig, J., Needham, T., and R. Scott. Hydrocarbons in Contractional Belts. Geological Society, London, Special Publications, 348, 1-6.
Gong, C. L., Wang, Y. M., Peng, X. C., Li, W. G., Qiu, Y., and S. Xu., 2012. Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Nothern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, 32, 95-109.
Gong, C. L., Wang, Y. M., Xu, S., Pickering, K. T., Peng, X. C., Li, W. G., and Yan, Q., 2015. The northeastern South China Sea margin created by the combined action of downslope and along-slope processes: Processes, products and implications for exploration and paleoceanography. Marine and Petroleum Geology, 64, 233-249.
Hamilton, E. L., 1980. Geoacoustic modeling of the sea-floor. Journal of the Acoustical Society of America, 68, 1313-1340.
Handa, Y. P., and D. Stupin., 1992. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica-gel pores. Journal of Physical Chemistry, 96, 8599-8603.
Hartmann, A., and H. Villinger., 2002. Inversion of marine heat flow measurements by expansion of the temperature decay function. Geophysical Journal International, 148, 628-636.
Harris, R., 2006. Rise and fall of the eastern Great Indonesian Arc recorded by the assembly, dispersion and accretion of the Banda Terrane, Timor. Gondwana Res., 10, 207–231.
Hasiotis, T., Papatheodorou, G., Kastanos, N., and G. Ferentinos., 1996. A pockmark field in the Patras gulf (Greece) and its activation during the 14.7.93 seismic event. Marine Geology, 130, 333–344.
He, T., Li, H. L., and C. C. Zou., 2014. 3D topographic correction of the BSR heat flow and detection of focused fluid flow. Applied Geophysics, 11, 197-206.
He, W., and J. Zhou., 2018. Structural features and formation conditions of mud diapirs in the Andaman Sea Basin. Geological Magazine, 156, 659-668.
Henry, P., Le Pichon, X., Lallemant, S., Foucher, J., Westbrook, G., and M. Hobart., 1990. Mud volcano field seaward of the Barbados accretionary complex: a deep-towed side scan sonar survey. Journal of Geophysical Research, 95, 8917-8929.
Hickman, J. B., Wiltschko, D. V., Hung, J. H., Fang, P., and Y. Bock., 2002. Structure and evolution of the active fold-and-thrust belt of southwestern Taiwan from Global Positioning System analysis. In Byrne, T. B., and C. S. Liu, (Eds): Geology and Geophysics of an Arc-Continent Collision, Taiwan. Geological Society of America Special Paper, 358, 75-92.
Hillman, J. I. T., Cook, A. E., Sawyer, D. E., Küçük, H. M., and D. S. Goldberg., 2017. The character and amplitude of ‘discontinuous’ bottom-simulating reflections in marine seismic data. Earth and Planetary Science Letters, 459, 157–169.
Ho, C. S., 1988. An introduction to the geology of Taiwan: Explanatory text of the geological map of Taiwan. Central Geological Survey of Taipei, Taiwan.
Horng, C. S., Chen, K. H., Lin, C. H., Tseng, C. Y., Wang, Y., Fei, L. Y, Chung, S. H., Chen, S. C., Chen, P. S., and C. Y. Wei., 2016. Rock magnetic properties of sediments in gas hydrate potential area offshore Southwestern Taiwan. Special Publications of the Central Geological Survey, Ministry of Economic Affairs, 30, 89-122. (in Chinese)
Holbrook, W.S., 2001. Seismic studies of the Blake Ridge: Implications for hydrate distribution, methane expulsion, and free gas dynamics. In: Paull, C.K. and W. P. Dillon, (Eds): Natural Gas hydrate: Occurrence, Distribution, and Detection. Geophysical Monograph Series, 124, 235 – 256.
Hovland, M., Hill, A., and D. Stokes., 1997. The structure and geomorphology of the Dashgil mud volcano, Azerbaijan. Geomorphology (21), 1-15.
Hovadik, J., and D. K. Larue., 2007. Static characterizations of reservoirs: refining the concepts of connectivity and continuity. Petroleum Geoscince, 13, 195-211.
Hsiung, K. H., Yu, H. S., and C. S. Chiang., 2014. Seismic characteristics, morphology and formation of the ponded Fangliao Fan off southwestern Taiwan, northern South China Sea. Geo-Marine Letters, 34, 59-74.
Hsu, S. K., Chiang, C. W., Evans, R. L., Chen, C. S., Chiu, S. D., Ma, Y. F., Chen, S. C., Tsai, C. H., Lin, S. S., and Y. Wang., 2014. Marine controlled source electromagnetic method used for the gas hydrate investigation in the offshore area of SW Taiwan. Journal of Asian Earth Sciences, 92, 224-232.
Hsu, H. H., Liu, C. S., Yu, H. S., Chang, J. H., and S. C. Chen., 2013. Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan. Journal of Asian Earth Sciences, 69, 26–38.
Hsu, H. H., Liu, C. S., Chang, Y. T., Chang, J. H., Ko, C. C., Chiu, S. D., and S. C. Chen., 2017. Diapiric activities and intraslope basin development offshore of SW Taiwan: A case study of the Lower Fangliao Basin gas hydrate prospect. Journal of Asian Earth Sciences, 149, 145-159.
Hu, C. Y., Yang, T. F., Chuang, P. C., Chen, H. W., Chen, N. C., Huang, Y. C., Lin, S., Wang, Y., Chung, S. H., Huang, C. D., and C. H. Chen., 2017. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan. Journal of Asian Earth Sciences, 148, 172-183.
Huang, C. Y., Yuan, P. B., and S. J. Tsao., 2006. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society America Bulletin, 118, 274-288.
Huh, C. A., Lin, H. L., Lin, S., and Y. W. Huang., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 76, 405–416.
Hunt, L., and P. Geoph., 2015. Articulating the time, cost, and benefits of a seismic processing project. CSEG Recorder, 4, 28-31.
Husson, L., and S. Moretti., 2002. Thermal regime of fold and thrustbelts – An application to the Bolivian sub Andean zone. Tectonophysics, 345, 253–280.
Hyndman, R. D., Davis, E. E., and J. A. Wright., 1979. The measurement of marine geothermal heat flow by a multi penetration probe with digital acoustic telemetry and insitu thermal conductivity. Marine Geophysical Research, 4, 181-205.
Hyndman, R. D., Foucher, J. P., and M. Yamano., 1992. Deep sea bottom simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates. Earth Planet Science Letter, 109, 289-301.
Isaac, J. H., and D. C. Lawton., 1999. Image mispositioning due to dipping TI media: A physical modeling study. Geophysics, 64, 1230– 1238.
Jagoutz, O., Macdonald, F. A., and L. Royden., 2016. Low-latitude arc–continent collision as a driver for global cooling. Proceedings of the National Academy of Sciences, 113, 4935-4940.
Jemsek, J. P., 1988. Heat flow and tectonics of the Ligurian Sea basin and margins. Massachusetts Institue of Technology and Woods Hole Oceanographic Institution. Ph.D thesis.
Jessop, A. M., 1990. Thermal geophysics. Elsevier Science Publishers, Amsterdam
Jiang, W. T., Chen, J. C., Huang, B. J., Chen, C. J., Lee, Y. T., Huang, P. R., Lung, C. C., and S. W. Huang., 2006. Mineralogy and physical properties of cored sediments from the gas hydrate potential area of offshore SW Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 17, 981-1007.
Johnson, J. E., Mienert, J., Faverola, A. P., Vadakkepuliyambatta, S., Knies, J., Bunz, S., Andreassen, K., and B. Ferre., 2015. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates, Geology, 43, 371-374.
Kaul, N., Rosenberger, A., and H. Villinger., 2000. Comparison of measured and BSR-derived heat flow values, Makran acrretionary prism, Pakistan. Marine Geology, 164, 37-51.
Kappelmeyer, O., and R. Haenel., 1974. Geothermics with special reference to application. Gebrueder Borntraege, Berlin
Kawano, T., Doi, T., Uchida, H., Kouketsu, S., Fukasawa, M., Kawai. Y., and K. Katsumata., 2010. Heat content change in the Pacific Ocean between the 1990s and 2000s. Deep Sea Research Part II, 57, 1141-1151.
Kawano, T., Fukasawa, M., Kouketsu, S., Uchida, H., Doi, T., Kaneko, I., Aoyama, A., and W. Schneider., 2006. Bottom water warming along the pathway of lower circumpolar deep water in the Pacific Ocean, Geophysical Research Letter, 33, L23613.
Kopf, A.J., 2002. Significance of mud volcanism. Review of Geophysics, 40 , 1–52.
Koren, Z., and I. Ravve., 2006. Constrained Dix inversion. Geophysics, 71, R113-R130
Kostecki, A., 2011. Tilted transverse isotropy. Nafta-Gaz, 11, 769-776.
Kvenvolden, K. A., and M. A. McMenamin., 1980. Hydrates of natural gas: A review of their geologic occurrence. US Geol. Surv. Circ., 825, 1-11.
Kvenvolden, K, A., and M. Kastner., 1990. Gas hydrate of the Peruvian outer continental margin. In: Suess E, von Huene R (ed) Proceedings of the ocean drilling program, College Station, Texas, 517–526.
Lacombe, O., Mouthereau, F., Angelier, J., and B. Deffontaines., 2001. Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333, 323-345.
Lacombe, O., Angelier, J., Mouthereau, F., Chu, H. T., Deffontaines, B., Lee, J. C., Rocher, M., Chen, R. F., and L. Siame., 2004. The Liuchiu Hsu island offshore SW Taiwan: tectonic versus diapiric anticline development and comparisons with onshore structures, Geoscience, 336, 815-825.
Langseth, M. G., Westbrook, G. K., and M. A. Hobart., 1988. Geophysical survey of a mud volcano seaward of the Barbados ridge accretionary complex. Journal of Geophysical Research, 93, 1049-1061.
Larsen, H. C., Mohn, G., and L. Zhong., et al., 2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11, 782-789.
Larue, D.K., and J. Hovadik., 2006. Connectivity of channelized reservoirs: a modelling approach. Petroleum Geoscience, 12, 291-308.
Lee, M.W. and T. S. Collett., 2012. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well. Marine and Petroleum Geology, 34, 62–71.
Lee, T. Y., Tang, C. H., Ting, J. S., and Y. Y. Hsu., 1993. Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petroleum Geology of Taiwan, 28, 119-158.
Lester, R., Lavier, L. L., McIntosh, K., van Avendonk., H. J. A. and F. Wu ., 2012a, Active extension in Taiwan′s precollision zone: A new model of plate bending in continental crust, Geology, 40(9), 831–834.
Lester, R., and K. D. McIntosh., 2012b. Multiple attenuation in crustal-scale imaging: examples from the TAIGER marine reflection data set, Mar Geophys Res, 33, 289-305.
Lester, R., McIntosh, K., van Avendonk, H. J. A, Lavier, L., Liu, C. S., and T. K. Wang., 2013. Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan. Earth and Planetary Science Letters, 375, 430–440.
Lester, R., van Avendonk, H. J. A, McIntosh, K., Lavier, L., Liu, C. S., Wang., T. K., and F. Wu., 2014. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging, J. Geophys. Res., 119, 2305-2323.
Lewis, T. J., Hyndman, R, D., and P, Fluck., 2003. Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics. Journal of Geophysical Research, 108(B6), 2316.
Li, C. F., Zhou, Z., Li, J., Hao, H., and J. Geng., 2007. Structures of the northeasternmost South China Sea continental margin and ocean basin – Geophysical constraints and tectonic implications. Marine Geophysical Researches, 28, 59-79.
Li, C.F., X. Shi, Z. Zhou, J. Li, J. Geng, and B. Chen., 2010. Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophysical Journal International, 182, 1229–1247.
Li, C. F., Li, J., Ding, W., et al., 2015. Seismic stratigraphy of the central South China Sea basin and implication for neotectonics. Journal Geophysical Research, 120, 1377-1399.
Li, L., Lei. X., Zhang, X., and Z. Sha., 2013. Gas hydrate and associated free gas in the Dongsha Area of northern south China Sea, Marine and Petroleum Geology, 39, 92-101.
Li, Q., Z. Jian., and X. Su., 2005. Late Oligocene rapid transformations in the South China Sea, Marine Micropaleontology, 54, 5–25.
Liao, W. Z., Lin, A. T., Liu, C. S., Oung, J. N., and Y. Wang., 2014. Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications. Journal of Asian Earth Sciences, 92, 233-244.
Liao, W. Z., Lin, A. T., Liu, C. S., Oung, J. N., and Y. Wang., 2016. A study on tectonic and sedimentary development in the rifted northern continental margin of the South China Sea near Taiwan. Interpretation, 4(3).
Lin, A. T., 2015. Exploration and evaluation of gas hydrates resources: seismic, geothermal, and geochemichal studies (4/4) – The study of tectonic and sedimentary features of gas-hydrate-bearing sediments. Report of Central Geological Survey, 104-11-E. (in Chinese)
Lin, A. T., and A. B. Watts., 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research. 107 (B9) 2185
Lin, A. T., Watts, A. B., and S. P. Hesselbo., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453-478.
Lin A. T., Liu C. S., Lin C. C., Schnurle, P., Chen G. Y., Liao W. Z., Teng L. S., Chuang, H. J., and M. S. Wu., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Marine Geology, 255, 186–203.
Lin, A. T., Yang, C. C, Wang, M. H., and J. C. Wu., 2021. Oligocene-Miocene sequence stratigraphy in the northern margin of the South China Sea: An example from Taiwan. Journal of Asian Earth Sciences, 213, 104765.
Lin, A. T., Yao, B., Hsu, S. K., Liu, C. S., and C. Y. Huang., 2009a. Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479, 28-42.
Lin, C. C., Lin, A.T., Liu, C.S, Chen, G.Y., Liao, W.Z., and P. Schnurle., 2009b, Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan, Marine and Petroleum Geology, 26, 1118–1131.
Lin, C. C., Lin, A. T., Liu, C. S., Horng, C. S., Chen, G. Y., and Y. Wang., 2014. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research, 35, 21-35.
Liu, C. S., Lundberg, N., Reed, D. L., and Y. L. Huang., 1993. Morphological and seismic characteristics of the Kaoping Submarine Canyon. Marine Geology, 111, 93-108.
Liu, C. S., Huang, I. L., and L. S. Teng., 1997. Structural features off southwestern Taiwan. Marine Geology, 137, 305–319.
Liu, C. S., Schnurle, P., Wang Y., Chung, S. H., Chen, S. C., and T. H. Hsiuan., 2006. Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 17, 615 – 644.
Lu, G., Ursin, B., and J. Lutro., 1999. Model-based removal of water layer multiple reflections. Geophysics, 64, 1816–1827.
Lu, H. L., and R. Matsumoto., 2001. Anion plays a more important role than cation in affecting gas hydrate stability in electrolytes solution? - a recognition from experimental results. Fluid Phase Equilibrium, 178, 225-232.
Lucazeau, F., and S. Le Douaran., 1985. The blanketing effect of sediments in basins formed by extension: Numerical model - application to the Gulf of Lion and Viking graben. Earth and Planetary Science Letter, 74, 92-102.
Ludmann, T., Wong, H. K., and Wang, P. X., 2001. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea, Marine Geology, 172, 331 – 358.
Lunberg, N., Reed, D. L., Liu, C. S. and J. Lieske, Jr., 1992. Structural controls on orogenic sedimentation, submarine Taiwan collision. Acta Geol. Taiwan., 30, 131-140
Lundberg, N., Reed, D., Liu, C. S., and J. Lieske., 1997. Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan. Tectonophysics, 274, 5-23.
Majumdar, U., and A. E. Cook., 2018. The volume of gas hydrate‐bound gas in the northern Gulf of Mexico. Geochemistry, Geophysics, Geosystems, 19, 4313-4328.
Mandal, R., Dewangan, P., Ramprasad, T., Kumar, B. J. P., and K. Vishwanath., 2014. Effect of thermal non-equilibrium, seafloor topography and fluid advection on BSR-derived geothermal gradient. Marine and Petroleum Geology, 28, 368-381.
McDonnell, S. L., Max, M. D., Cherkis, N. Z., and M. F. Czamecki., 2000. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Mar. Petrol. Geol., 17, 929-936
McIntosh, K., van Avendonk, H., Lavier, L., Lester, R., Eakin, D., Wu, Francis., Liu, C. S., and C. S. Lee., 2013. Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan. Geology, 41, 871-874.
McIntosh, K., Lavier, L., van Avendonk, H., Lester, R., Eakin, D., and C. S. Liu., 2014. Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 58, 612-626.
McNeill, L., Piper, K. A., Goldfinger, C., Kulm, L. D., and R. S. Yeats., 1997, Listric normal faulting on the Cascadia continental margin. Journal of Geophysical Research, v. 102, p. 12123–12138.
McQuarrie, N., and T. A. Ehlers., 2017. Techniques for understanding fold-and-thrust belt kinematics and thermal evolution, In: Law, R. D., Thigpen, J. R., Merschat, A.J., and H. H. Stowell, (Eds): Linkages and Feedbacks in Orogenic Systems: Geological Society of America Memoir 213, 25–54.
Milkov, A.V., 2000, Worldwide distribution of submarine mud volcanoes and associated gas hydrate. Marine Geology, 167, 29-42.
Mitchum, Jr, R. M., 1977. Seismic stratigraphy and global changes of sea level, Part 11: glossary of terms used in seismic stratigraphy. In Payton, C. E., (Eds): Seismic stratigraphy - applications to hydrocarbon Exploration. AAPG Memoir, 26, 205–212.
Moore, G. F., Taira, A., Klaus, A., Becker, L., Boeckel, B., Cragg, B. A., Dean, A., Fergusson, C. L., Henry, P., Hirano, S., Hisamitsu, T., Hunze, S., Kastner, M., Maltman, A. J., Morgan, J. K., Murakami, Y., Saffer, D. M., Sánchez-Gómez, M., Screaton, E. J., Smith, D. C., Spivack, A. J., Steurer, J., Tobin, H. J., Ujiie, K., Underwood, M. B., and M. Wilson., 2001. New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochemistry, Geophysics, Geosystems, 2, 1058.
Morita, S., Ashi, J., Aoike, K., and S. Kuramoto., 2004. Evolution of Kumano basin and sources of clastic ejecta and pore fluid in Kumano mud volcanoes, Eastern Nanaki Trough. In: Proceedings of the International Symposium on Methane Hydrates and Fluid Flow in Upper Accretionary Prisms, Engineering Geology Laboratory. Department of Civil & Earth Resources Engineering, Kyoto University, Kyoto, 92–99.
Morrel, G. R., Fortier, M., Price, P. R., and R. Polt., 1995. Petroleum exploration in Northern Canada: A guide to oil and gas exploration and potential. Northern Oil and Gas Directorate Indian and Northern Affairs, Canada.
Mourgues, R., and P. R. Cobbold., 2006. Thrust wedges and fluid overpressures: Sandbox models involving pore fluids. Journal of Geophysical Research, 111 (B5), B05404.
Musgrave, R. J., and Y. Hiroki., 2000. Rock magnetism of the diapir sites (sites 991, 992, and 996), Caroline Rise and Blake Ridge, In Paull, C. K., Matsumoto, R., Wallace, P. J., and W. P. Dillon., (Eds): Proceedings of the Ocean Drilling Program, Scientific results, Volume 164: College Station, Texas, Ocean Drilling Program, 401-409.
Nguyen, T. H., 2019. Characterization of mass transport deposits and sediment waves in the NE South China Sea continental margin and the submarine Taiwan accretionary wedge. Master Thesis. National Central University.
Ning, X., Shiguo, W., Buqing, S., Bing, L., Liangqing, X., Xiujuan, W., and J. Ying., 2009. Gas hydrate associated with mud diapir in southern Okinawa Trough. Marine and Petroleum Geology, 26, 1413-1418.
Oung, J. N., Lee, C.Y., Lee, C.S., and C. L. Kuo., 2006. Geochemical study on hydrocarbon gases in seafloor sediments, southwestern offshore Taiwan – implications in the potential occurrence of gas hydrates., Terrestrial, Atmospheric and Ocean Sciences, 17, 921-931.
Pautot, G., Le Cann, C., Coutelle, A., and Y. Mart., 1984. Morphology and extension of the evaporitic structures of the Liguro-Provencal basin, new sea-beam data. Marine Geology, 55, 387–409.
Peng, D. Y., and D. B. Robinson., 1976. A New Two-Constant Equation of State, Ind. Eng. Chem. Eng. Sci., 27, 59-64.
Perez-Gussinye, M., Reston, T. J., and J. P. Morgan., 2001. Serpentinization and magmatism during extension at non-volcanic margins: the effect of initial lithospheric structure, Geological Society, London, Special Publications, 187(1), 551-576.
Reed, D. L., N. Lundberg, C. S. Liu, and B. Y. Kuo., 1992, Structural relations along the margin of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Acta Geol. Taiwan., 30, 105-122.
Reed, D. L., Silver, E. A., Tagudin, J. E., Shipley, T. H., and P. Vrolijk., 1990. Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Marine and Petroleum Geology, 7, 44–54.
Riedel, M., Novosel, I., Spence, G.D., Hyndman, R.D., Chapman, R.N., Solem, R.C., and T. Lewis., 2006. Geophysical and geochemical signatures associated with gas hydrate-related venting in the northern Cascadia margin. Geol. Soc. Am. Bull., 118, 23-28.
Riedel, M., Collett, T.S., Kumar, P., Sathe, A.V., and A. Cook., 2010. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India. Marine and Petroleum Geology, 27, 1476–1493.
Riedel, M., Bahk, J. J., Kim, H. S., Scholz, N. A., Yoo, D. G., Kim, W. S., Ryu, B. J., and S. R. Lee., 2013. Seismic facies analyses as aid in regional gas hydrate assessments. Part II: Prediction of reservoir properties, gas hydrate petroleum system analysis, and Monte Carlo simulation. Marine and Petroleum Geology, 27, 269-290.
Roeder, D., 2010. Fold – thrust belts at peak oil. In: Goffey, G. P., Craig, J., Needham, T. and R. Scott, (Eds): Hydrocarbons in Contractional Belts. Geological Society, London, Special Publications, 348, 7–31.
Rothwell, R. G., and F. R. Rack., 2006. New techniques in sediment core analysis: an introduction. In: Rothwell, R. G., 2006. New techniques in sediment core analysis, Geological Society Special Publication, London, 1-29.
Ryu, J. V., 1982. Decomposition (DECOM) approach applied to wave-field analysis with seismic reflection records. Geophysics, 47, 869-883.
Sangree, J. B., and M. Widmier., 1978. Seismic Stratigraphy and Global Changes of Sea Level, Part 9: Seismic Interpretation of Clastic Depositional Facies. AAPG Bulletin (62) 10.
Satyana, A.H., and Asnidar., 2009. Mud diapirs and mud volcanoes in depressions of Java to Madura: origins, natures, and implications to petroleum system. 32nd Indonesian Petroleum Association Annual Convention Proceedings.
Schluter, H. U., Hinz, K., and M. Block., 1996. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Marine Geology, 1, 39-51.
Schnurle, P., Hsiuan, D. H., and C. S. Liu., 1999. Constraints on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan. Petrol. Geol. Taiwan, 33, 21-42.
Schnurle, P., Liu, C.S., Hsiuan, T.H., and T. K. Wang., 2004. Characteristics of gas hydrate and free gas offshore southwestern Taiwan from a combined MCS/OBS data analysis. Marine Geophysical Researches, 25, 57–180.
Screaton, E., Kimura, G., Curewitz, D., Moore, G., Chester, F., Fabbri, O., Fergusson, C., Girault, F., Goldsby, D., Harris, R., Inagaki, F., Jiang, T., Kitamura, Y., Knuth, M., Li, C.-F., Liljedahl-Claesson, L., Louis, L., Milliken, K., Nicholson, U., Riedinger, N., Sakaguchi, A., Solomon, E., Strasser, M., Su, X., Tsutsumi, A., Yamaguchi, A., Ujiee, K., and X. Zhao., 2009. Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula, Japan: Results from IODP Expedition 316 Sites C0006 and C0007. Geochemistry, Geophysics, Geosystems, 10, Q0AD01.
Searle, M., 2013. Colliding continents: A geological exploration of the Himalaya, Karakoram, and Tibet. Oxford University Press.
Seno, T., 1977. The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42, 209-226.
Sheriff, R. E., and L. P. Geldart., 1995. Exploration Seismology. Cambridge University Press, Cambridge, p. 592.
Shyu, C. T., Hsu, S. K., and C. S. Liu., 1998. Heat flows off southwest Taiwan: measurements over mud diapir and estimated from bottom simulating reflectors. Terrestrial, Atmospheric and Ocean Sciences, 9, 795-812.
Shyu, C. T., and H. I. Chang., 2005. Determination of seafloor temperatures using data from high-resolution marine heat probes. Terrestrial, Atmospheric and Ocean Sciences, 16, 137-153.
Shyu, C.T, Chen, Y. J, Chiang, S. T, and C. S. Liu., 2006. Heat flow measurement over bottom simulating reflectors, offshore southwestern Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 17, 845-869.
Sloan, Jr., E.D., 1998. Clathrate hydrate of natural gases. Marcel Dekker, New York, p. 705.
Smallwood, J. R., 2002. Use of V0-K depth conversion from shelf to deepwater: How deep is that brightspot? First Break, 20, 99-107.
Smith, G.L., McNeill, L.C., Henstock, T.J., Arraiz, D., and V. Spiess., 2014. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran. Earth Planet. Sci. Lett., 403, 131–143.
Soloviev, V. A., and G. D. Ginsburg., 1994. Formation of submarine gas hydrates. Bulletin of the Geological Society of Denmark, 41, 86-94.
Song, T. A., and K. F. Ma., 2002. Estimation of the thermal structure of a young orogenic belt according to a model of whole-crust thickening. In: Byrne, T. B. and C. S. Liu, (Eds): Geology and Geophysics of an Arc-continent Collision, Taiwan. Geological Society of America Special Paper, Boulder, 121–136.
Stolt, R. H., and A. K. Benson., 1986. Seismic migration: theory and practice. Geophysical Press, London. p. 382.
Sun S. C., and C. S. Liu., 1993. Mud diapir and submarine channel deposits in offshore Kaohsiung-Hengchun, southwest Taiwan. Petrol. Geol. Taiwan, 28, 1-14.
Sun, C.H., Chang, S.C., Kuo, C.L., Wu, J.W., Shao, P.H., and J. N. Oung., 2010. Origin of Taiwan’s mud volcanoes: evidence from geochemistry. Journal of Asian Earth Science, 36, 105-116.
Sun, Q., Alves, T. M., Lu, X., Chen, C., and X. Xie., 2018. True volumens of slope failure estimated from a quarternary mass-transport deposit in the northern South China Sea. Geophysical Research Letters, 45, 2642-2651.
Suppe, J.,1981. Mechanics of mountain building and metamorphism in Taiwan. Mem Geol Soc of China, 4, 67–89.
Suppe, J., 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc . Mem Geol Soc of China, 6, 21-33.
Taira, A., Hill, I., Firth J.V., Berner, U., Brueckmann, W., Byrne, T., Chabernaud, T., Fisher, A., Foucher, J. P., Gamo, T., Gieskes, J.M., Hyndman, R. D., Karig, D., Kastner, M., Kato, Y., Lallemant, S., Lu, R., Maltman, A.J., Moore, G., Moran, K., Olaffson, G., Owens, W., Pickering, K., Siena, F., Taylor, E., Underwood, M., Wilkinson, C., Yamano, M., and J. Zhang., 1992. Sediment deformation and hydrogeology of the Nankai Trough accretionary prism; synthesis of shipboard results of ODP Leg 131. Earth and Planetary Science Letters, 109, 431-450.
Taner, M. T., Schuelke, J.S., O’Doherty, R., and E. Baysal., 1994. Seismic attributes revisited. SEG Technical Program Expanded Abstracts, 1104-1106.
Tapponnier, P., Pelzter, G., and R. Armijo., 1986. On the mechanics of the collision between India and Asia. In: Coward, M P., and A. C. Ries., Collision tectonics. Geological Society Special Publication, 19, 115-117.
Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc continent collision in Taiwan. Tectonophysics, 183, 57-76.
Teng, L. S., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology, 24, 949-952.
Tinivella, U., and E. Lodolo., 2000. The Blake Ridge bottom-simulating reflector transect: Tomographic velocity field and theoretical model to estimate methane hydrate quantities. In: Paull, C. K., Matsumoto, R., Wallace, P. J., and W. P. Dillon, (Eds): Proceedings of the Ocean Drilling Program, College Station, Texas, 273–281.
Tiranda, H., and R. Hall., 2021. Structural and stratigraphic development of Offshore NW Sulawesi, Indonesia. EarthArxiv.
Tissot, B. P., and D. H. Welte., 1984. Petroleum formation and occurrence. Springer-Verlag, New York.
Turcotte, D., and G. Schubert., 1982. Geodynamics. John Wiley and Sons Publications, New York.
Ulmer, P., and V. Trommsdorff., 1995. Serpentine stability to mantle depths and subduction-related magmatism, Science, 268 (5212), 858-861.
Vestrum, R., Lawton, D. C., and R. Schmid., 1999. Imaging structures below dipping TI media. Geophysics, 64, 1239–1246.
van Avendonk, H. J. A., Kuo-Chen, H., McIntosh, K. D., Lavier, L. L., Okaya, D. A., Wu, F. T., Wang, C. Y., Lee, C. S., and C. S. Liu., 2014. Deep crustal structure of an arc-continent collision constraints from seismic travel times in central Taiwan and the Philippine Sea. Journal of Geophysical Research, 119, doi:10.1002/2014JB011327.
Veerschuur, D. J., Berkhout, A. J., and C. P. A. Wapenaar., 1992. Adaptive surface-related multiple elimination. Geophysics, 57, 1166-1177.
Veerschuur, D. J., 2013. Seismic multiple removal techniques: past, present and future. EAGE Publiations, p. 211.
Wang, C. Y., and T. C. Shin., 1998. Illustrating 100 years of Taiwan seismicity. Terrestrial, Atmospheric and Ocean Sciences, 9, 589-614.
Wang, C. Y., Hwang, W. T., and G. R. Cochrane., 1994. Tectonic dewatering and mechanics of protothrust zones: example from the Cascadia accretionary margin. Journal of Geophysical Research, 99, 20043–20050.
Wang, H., Liang, J., and Y. Gong., 2005. Estimation of the heat flow in the northern of the South China Sea based on the seismic data of gas hydrate. Geoscience, 19, 67–73.
Wang, K. L., Lo, Y. M., Chung, S. L., Lo, C. H., Hsu, S. K., Yang, H. J., and R. Shinjo., 2012. Age and geochemical features of dredged basalts from offshore SW Taiwan: The coincidence of intra-plate magmatism with the spreading South China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 23 (6), 657-669.
Wang, P., et al. 2000. Proceedings of Ocean Drilling Program, Initial Report, 184, Ocean Drill. Program. College Station, Texas.
Wang, Y. 2004. Multiple prediction through inversion: A fully data-driven concept for surface-related multiple attenuation. Geophysics, 69, 547-553.
Waseda, A., and T. Uchida., 2004. The geochemical context of gas hydrate in the eastern Nankai Trough. Resource Geology, 54, 69-78.
Weimer, P., and R. M. Slatt., 2004. Petroleum systems of deepwater settings. Society of Exploration Geophysicists and the European Association of Geoscientists and Engineers, Tulsa.
Weinberger, J. L., Brown, K. M., and P. E. Long., 2005. Painting a picture of gas hydrate distribution with thermal images. Geophysical Research Letters, 32, L04609.
Westbrook, G.K., and M. J. Smith., 1983. Long decollements and mud volcanoes: Evidence from the Barbados Ridge Complex for the role of high pore-fluid pressure in the development of an accretionary complex. Geology, 11, 279-283.
Wiggins, W., 1988. Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction. Geophysics, 53, 1527-1539.
Wilson, J. T., 1966. Did the Atlantic close and then re-open? Nature, 211, 676-681.
Wipf, M., Zeilinger, G., Seward, D., and F. Schlunegger., 2008. Focused subaerial erosion during ridge subduction: Impact on the geomorphology in south-central Peru. Terra Nova, 20, 1-10.
Wu, S., Wang, X., Wong, H. K., and G. Zhang., 2007. Low-amplitude BSRs and gas hydrate concentration on the northern margin of the South China Sea. Mar. Geophys. Res., 29, 127-138.
Xu, W., and C. Ruppel., 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. Journal of Geophysical Research, 103, 5081-5095.
Yamamoto, K., Nakatsuka, Y., Sato, R., Kvalstad, T. J., Qiu, K., and R. Birchwood., 2015. Geohazard risk evaluation and related data acquisition and sampling program for the methane hydrate offshore production test. Frontiers in Offshore Geotechnics III, 173.
Yan, P., Deng, H., Liu, H. L., Zhang, Z., and Y. Jiang., 2006. The temporal and spatial distribution of volcanism in the South China Sea region, Journal of Asian Earth Sciences, 27, 647–659.
Yan, P., Di, Zhou, and Liu Z. S., 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics, 333, 1-21.
Yan, Q. S., Castillo, P., Shi, X. F., Wang, L. L., Liao, L., and J. B. Ren., 2015. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and theirs tectonic implications. Lithos, 218-219, 117-126.
Yang, T. F., Yeh, G. H., Fu, C. C., Wang, C. C., Lan, T. F., Lee, H. F., Chen, C. H., Walia, V., and Q. C. Sung., 2004. Composition and exhalation flux of gases from mud volcanoes in Taiwan, Environmental Geol., 46, 1003-1011.
Yang, T. F., Yeh, G. H., Chuang, P. C., Hong, W. L., and S. Lin., 2011. Offshore gas hydrates genetically related to on-land mud volcanoes in SW Taiwan: Evidences of fluid geochemistry. In: AAPG Hedberg Conference, China.
Yeh, Y. C., Sibuet, J. C., Hsu, S. K., and C. S. Liu., 2010. Tectonic evolution of the Northeastern South China Sea from seismic interpretation. Journal of Geophysical Research, 115, B06103.
Yeh, Y. C., Hsu, S. K., Doo, W. B., Sibuet, J. C, Liu, C. S., and C. S. Lee., 2012. Crustal features of the northeastern South China Sea: insights from seismic and magnetic interpretations. Marine Geophysical Research, 33, 307-326.
Yilmaz, O., 2008. Seismic data analysis. Society of Exploration Geophysics, Tulsa.
You, C. F., Gieskes, J. M., Lee, T., Yui, T. F., and H. W. Chen., 2004. Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19, 695-707.
Yu, H.S., 2004. An under-filled foreland basin in the northern South China Sea off southwest Taiwan: incipient collision and foreland sedimentation. Geophysical Monogram Series, 149, 159–173.
Yu, S. B., and H. Y. Chen., 1994. Global positioning system measurement of crustal deformation in the Taiwan arc-continent collision zone. Terrestrial, Atmospheric and Ocean Sciences, 5, 477–498.
Yu, H.S. and J. C. Lu., 1995. Development of the shale diapir-controlled Fangliao Canyon on the continental slope off southwestern Taiwan. Journal of Southeast Asian Earth Sciences, 11, 265-276.
Yu, S. B., H. Y. Chen, and L. C. Kuo., 1997. Velocity field of GPS stations in the Taiwan area., Tectonophysics, 274, 41-59.
Yu, H. S., and Z. Y. Huang., 2006. Intraslope basin, seismic facies and sedimentary processes in the Kaoping Slope, offshore southwestern Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 17, 659-677.
Yu, S. W., Tsai, L. L., Talling, P. J., Lin, A. T., Mii, H. S., Chung, S. H., and C. S. Horng., 2017. Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan. Marine Geology, 392, 140-150.
Yu, S. B., and H. Y. Chen., 1998. Strain accumulation in southwestern Taiwan. Terrestrial, Atmospheric and Ocean Sciences, 9, 31-50.
Zhang, Z., and G. A. McMechan., 2006. Elastic inversion for distribution of gas hydrate, with emphasis on structural controls. Journal of Seismic Exploration, 14, 349-370.
Zhang, Z., McConnel, D. R., and D. H. Han., 2012. Rock physics-based seismic trace analysis of unconsolidated sediments containing gas hydrate and free gas in Green Canyon 955, Northern Gulf of Mexico. Marine and Petroleum Geology, 34, 119-133.
Zhou, D., and Yao, B., 2009. Tectonics and sedimentary basins of South China Sea: Challenges and Progress. Journal of Earth Science, 20, 1-12.
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明