博碩士論文 108330607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.145.51.35
姓名 丁晨昕(Iuliia Papina)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 磁控濺射法製備氧氮化釩薄膜的製備和表徵
(Fabrication and Characterization for Vanadium Oxynitride Thin Films by Magnetron Sputtering)
相關論文
★ 凝膠濃度對胎盤幹細胞貼附及分化之影響★ 摻雜銀或銀銅氮氧化鉭薄膜之製備、特性分析及抗菌行為分析
★ 以反應式磁控濺鍍製備Ag2O/TiO2疊層薄膜及其特性之研究★ 以射頻磁控濺鍍法製備銦鋅氧化物(IZO)透明導電薄膜並探討製程參數對其薄膜之影響
★ 以微陽極導引電鍍法沉積奈米氧化鋅薄膜★ 在一些氣候因素的預測和相關性的一些經濟和農業指標
★ Fabrication and Characterization of Polymethylmethacrylate (PMMA) Thin Film by Plasma Polymerization★ Effects of Diluted Ar in H2/SiH4 on Amorphous Hydrogenated Silicon Thin Film (i-layer) by an Inductive Coupled Plasma-Chemical Vapor Deposition (ICP-CVD) System
★ 評估貝里斯Rio Bravo保育管理區內硬木種類之樹高★ 以HFSS 天線模擬程式為設計LTE Band 41設計天線
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ Economic feasibility for recycling crystalline silicon photovoltaics modules★ 電漿聚合系統在不同功率下製成聚吡咯薄膜之特性及微結構分析
★ Structural Study on BaCeO3 Perovskite Thin Film by Sputtering★ 用於表面電漿共振光譜的多層金鋁薄膜的設計與優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 氧氮化釩 (VNxOy, x+y=1) 是一種介於氧化釩 (VO, V2O3, V2O5) 和氮化釩 (VN) 之間的金屬化合物,具有有趣的特性和功能,可用於不同的應用。在這項研究中,使用 V 靶,Ar 作為等離子體載體,N2 和 O2 的混合物作為反應氣體,通過反應磁控濺射獲得了氮化釩和氧氮化物薄膜。在此過程中,兩種氣體之間的質量流量比保持在 N2:O2=20:1 左右。為了獲得氧氮化物的結晶相,在 Ar 氣氛中在 600ºC 和 700ºC 下進行了 5 分鐘的後快速熱退火 (RTP)。研究的目的是確定磁控濺射參數(如反應氣體流速和退火溫度)對所得氧氮化釩薄膜的成分、微觀結構和光學性能的影響。獲得的薄膜的表徵包括通過表面輪廓儀和 SEM 檢測厚度和形態;分別通過 X 射線衍射和拉曼光譜識別晶體結構和分子極化的進一步微觀結構振動模式;通過 XPS 分析評估薄膜的化學成分;通過紫外-可見-近紅外光譜儀評估透光率、反射率和吸光度。實驗數據表明,當氧氣流速低於0.25sccm且氧/氮比≤1/20時,退火膜可以是氮氧化物。退火的氧氮化釩薄膜在其特性方面更接近於氮化釩而不是氧化物:金屬性比半導體性更強,具有暗附屬物,並且在 200 和 900 nm 之間的光譜範圍內具有高吸光度。吸光度在 300 nm 附近幾乎達到 90%,然後在 900 nm 處緩慢降低到 70%。因此,這些薄膜可以是良好的光學屏蔽。在實際使用中,建議使用 O2:N2=1/20、O2<0.25 sccm 和 600ºC 退火的沉積,因為通過薄膜的透射率非常低(<10%)。
摘要(英) Vanadium oxynitride (VNxOy, x+y=1) is a metallic compound between vanadium oxides (VO, V2O3, V2O5) and vanadium nitride (VN) which would have interesting properties and functions that potentially can be supplied for different applications. In this study, vanadium nitride and oxynitride thin films were obtained by reactive magnetron sputtering using the V target, Ar as plasma carrier, and mix of N2 and O2 as reactive gas. The ratio of mass flow between the two gases is maintained around N2:O2=20:1 during the process. To obtain crystalline phases of oxynitrides a post rapid thermal annealing (RTP) in Ar atmosphere at 600ºC and 700ºC for 5 minutes was done. The purpose of the study is to define the effect of the magnetron sputtering parameters, such as reactive gases flow rates, and annealing temperature on the composition, microstructure and optical properties of the obtained vanadium oxynitride thin films. The characterization of obtained films includes the examination of thickness and morphology by the surface profiler and SEM; identifying crystal structures and further microstructural vibration modes of molecular polarizability by X-ray diffraction and Raman spectroscopy, respectively; evaluation of chemical composition of films by XPS analysis; assessing of optical transmittance, reflectance and absorbance by the UV-visible-NIR spectrometer. Experimental data reveal that the annealed films can be oxynitrides when the oxygen flow rate is below 0.25 sccm and ratio of oxygen/nitrogen ≤1/20. The annealed vanadium oxynitride films in terms of their properties are closer to vanadium nitrides than to oxides: more metallic than semi-conductive with dark appurtenance and high optical absorbance across the spectrum between 200 and 900 nm. The optical absorbance reaches almost 90% around 300 nm and then slowly reduces to 70% at 900 nm. Thus, these films could be good optical shields. For practical usage, the deposition of O2:N2=1/20, O2<0.25 sccm and 600ºC annealing are recommended because of the truly low transmittance (<10%) through films.
關鍵字(中) ★ 氧氮化钒
★ 氮化钒
★ 氧化钒
★ 薄膜
★ 磁控溅射
★ 快速热退火
關鍵字(英) ★ Vanadium oxynitride
★ Vanadium nitride
★ Vanadium oxide
★ Thin film
★ Magnetron sputtering
★ Rapid thermal annealing
論文目次 CHINESE ABSTRACT..............................................................................i
ENGLISH ABSTRACT..............................................................................ii
Acknowledgments.................................................................................iii
Table of contents....................................................................................iv
List of figures............................................................................................vi
List of tables..............................................................................................vii
Chapter I Introduction............................................................................1
1-1 Vanadium oxynitride thin films...................................................1
1-2 Scope and objective........................................................................4
1-3 Thesis outline.....................................................................................4
Chapter II Literature review..................................................................6
2-1 Transition metals oxynitrides.......................................................6
2-2 Vanadium oxides and nitrides.....................................................9
2-3 Vanadium oxynitride.......................................................................15
2-4 Reactive magnetron sputtering...................................................21
2-5 Formation Enthalpy..........................................................................27
Chapter III Experiment.............................................................................28
3-1 Experimental outline........................................................................28
3-2 Materials and Methods...................................................................29
3-3 Films characterization......................................................................33
Chapter IV Results and discussion......................................................38
4-1 Deposition rate and surface morphology................................38
4-2 X-ray diffraction..................................................................................44
4-3 Raman spectroscopy........................................................................52
4-4 Elemental analysis..............................................................................61
4-5 Optical properties..............................................................................63
Conclusions..................................................................................................68
Bibliography.................................................................................................69
參考文獻 [1] J.M. Gonçalves, M. Ireno Da Silva, L. Angnes, and K. Araki, “Vanadium-containing electro and photocatalysts for the oxygen evolution reaction: A review,” Journal of Materials Chemistry A, Vol 8(5), pp. 2151–2854, 2020.
[2] R.L. Porto, R. Frappier, J.B. Ducros, et al., “Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors,” Electrochimica Acta, Vol 82, pp. 257–262, 2012.
[3] S. Ghosh, S.M. Jeong, and S.R. Polaki, “A review on metal nitrides/oxynitrides as an emerging supercapacitor electrode beyond oxide,” Korean J. Chem. Eng, Vol 35(7), pp. 1389–1408, 2018.
[4] N.M. Ndiaye, N.F. Sylla, B.D. Ngom, et al., “Nitridation temperature effect on carbon vanadium oxynitrides for a symmetric supercapacitor,” Nanomaterials, Vol 9(12), pp. 1762, 2019.
[5] N.M. Ndiaye, N.F. Sylla, B.D. Ngom, F. Barzegar, D. Momodu, and N. Manyala, “High-performance asymmetric supercapacitor based on vanadium dioxide/activated expanded graphite composite and carbon-vanadium oxynitride nanostructures,” Electrochimica Acta, Vol 316, pp. 19–32, 2019.
[6] M. Harb, “Predicting suitable optoelectronic properties of monoclinic von semiconductor crystals for photovoltaics using accurate first-principles computations,” Physical Chemistry Chemical Physics, Vol 17(38), pp. 25244–25249, 2015.
[7] G.S. Elwin and I.P. Parkin, “Atmospheric-Pressure CVD of Vanadium Oxynitride on Glass: Potential Solar Control Coatings,” Chemical Vapor Deposition, Vol 6(2), pp. 69–63, 2000.
[8] A. Rakshit, K. Islam, A.K. Sinha, and S. Chakraborty, “Insulator-to-metal transition of vanadium oxide-based metal-oxide-semiconductor devices at discrete measuring temperatures,” Semiconductor Science and Technology, Vol 34, pp. 055001, 2019.
[9] A. V. Il’inskiy, M.E. Pashkevich, and E.B. Shadrin, “Stage-by-stage modeling of the mechanism of semiconductor–metal phase transition in vanadium dioxide,” St. Petersburg Polytechnical University Journal: Physics and Mathematics, Vol 3(3), pp. 181–186, 2017.
[10] R. Franchy, “Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces,” Surface Science Reports, 38(6–8), pp. 195–294, 2000.
[11] I.P. Parkin and G.S. Elwin, “Atmospheric pressure chemical vapour deposition of vanadium nitride and oxynitride films on glass from reaction of VCl4 with NH3,” Journal of Materials Chemistry, Vol 11, pp. 3120–3124, 2001.
[12] A. Kafizas, G. Hyett, and I.P. Parkin, “Combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a mixed vanadium oxide and vanadium oxynitride thin film,” Journal of Materials Chemistry, Vol 19, pp. 1399–1408, 2009.
[13] A. Glaser, S. Surnev, F.P. Netzer, N. Fateh, G.A. Fontalvo, and C. Mitterer, “Oxidation of vanadium nitride and titanium nitride coatings,” Surface Science, Vol 601(4), pp. 1153–1159, 2007.
[14] C. Borgianni, V. DiStefano, and R. Grimaldi, “On the oxidation of vanadium nitride in flowing oxygen,” Journal of The Less-Common Metals, Vol 20(4), pp. 299–307, 1970.
[15] D. Choi, G.E. Blomgren, and P.N. Kumta, “Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors,” Advanced Materials, Vol 18(9), pp. 1178–1182, 2006.
[16] J.M. Chappé, P. Carvalho, S. Lanceros-Mendez, et al., “Influence of air oxidation on the properties of decorative NbOxNy coatings prepared by reactive gas pulsing,” Surface and Coatings Technology, Vol 202(11), pp. 2363–2367, 2008.
[17] P.K. Gallagher, W.R. Sinclair, D.D. Bacon, and G.W. Kammlott, “Oxidation of Sputtered Niobium Nitride Films,” Journal of The Electrochemical Society, Vol 130(10), pp. 2054, 1983.
[18] R.F. Voitovich and E.A. Pugach, “High-temperature oxidation of the nitrides of the Groups IV and V transition metals - I. Oxidation of titanium nitride,” Soviet Powder Metallurgy and Metal Ceramics, Vol 7(151), pp. 57-62, 1975.
[19] A.C. García-Wong, D. Pilloud, S. Bruyère, et al., “Surface morphology-optical properties relationship in thermochromic VO2 thin films obtained by air oxidation of vanadium nitride,” Journal of Materiomics, Vol 7(4), pp. 657–664, 2020.
[20] A.C. García-Wong, D. Pilloud, S. Bruyère, et al., “Oxidation of sputter-deposited vanadium nitride as a new precursor to achieve thermochromic VO2 thin films,” Solar Energy Materials and Solar Cells, Vol 210, pp. 110474, 2021.
[21] A.E. Komlev, E.S. Shutova, and M.P. Sypko, “Features of vanadium dioxide films deposition by reactive magnetron sputtering,” Journal of Physics: Conference Series, Vol 1313, pp. 012034, 2019.
[22] X. Wei, S. Li, J. Gou, et al., “Preparation and characteristics of vanadium oxide thin films by controlling the sputtering voltage,” Optical Materials, Vol 36(8), pp. 1419–1423, 2014.
[23] J. Dey and A. Bansod, “Effect of doping on thermo-optical properties of vanadium oxide sputtered thin films,” Materials Today: Proceedings, Vol 37(2) pp. 580–583, 2020.
[24] H. Hajihoseini, M. Kateb, S. Ingvarsson, and J.T. Gudmundsson, “Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films,” Thin Solid Films, Vol 663, 2018.
[25] J. Hirpara and R. Chandra, “Investigation of optical and anti-corrosive properties of reactively sputtered vanadium oxynitride thin films,” Materials Today: Proceedings, Vol 663, pp. 126–130, 2021.
[26] R.J. Xie and H.T. Hintzen, “Optical properties of (oxy)nitride materials: A review,” Journal of the American Ceramic Society, Vol 96(3), pp. 665–687, 2013.
[27] R. Marchand, Y. Laurent, J. Guyader, P. L’Haridon, and P. Verdier, “Nitrides and oxynitrides: Preparation, crystal chemistry and properties,” Journal of the European Ceramic Society, Vol 8(4), pp. 197–213, 1991.
[28] M. Zeuner, S. Pagano, and W. Schnick, “Nitridosilicates and Oxonitridosilicates: From Ceramic Materials to Structural and Functional Diversity,” ChemInform, Vol 50(34), pp. 7754–75, 2011.
[29] M. Ahmed and G. Xinxin, “A review of metal oxynitrides for photocatalysis,” Inorg. Chem. Front., Vol 3, pp. 578-590, 2016.
[30] K. Ibrahim, H. Taha, M.M. Rahman, H. Kabir, and Z.T. Jiang, “Solar selective performance of metal nitride/oxynitride based magnetron sputtered thin film coatings: A comprehensive review,” Inorganic Chemistry Frontiers, Vol 3(5), pp. 578–590, 2018.
[31] R. Pastrana-Fábregas, J. Isasi-Marín, and R. Sáez-Puche, “Synthesis and characterization of inorganic pigments based on transition metal oxynitrides.” Journal of Materials Research, Vol 21(09), pp 2255–2260, 2006.
[32] A.S. Kuprin, A. Gilewicz, T.A. Kuznetsova, et al., “Structure and properties of ZrON coatings synthesized by cathodic arc evaporation,” Materials, Vol 14(6), pp. 1483, 2021.
[33] I. Pana, V. Braic, M. Dinu, et al., “In vitro corrosion of titanium nitride and oxynitride-based biocompatible coatings deposited on stainless steel,” Coatings, Vol 10(8), pp. 710, 2020.
[34] J. Borges, N. Martin, N.P. Barradas, et al., “Electrical properties of AlN xO y thin films prepared by reactive magnetron sputtering,” Thin Solid Films, Vol 520(21), pp. 6709–6717, 2012.
[35] Y. Il Kim, P.M. Woodward, K.Z. Baba-Kishi, and C.W. Tai, “Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb),” Chemistry of Materials, Vol 16(7), pp. 1267–1276, 2004.
[36] A. Fuertes, “Nitride tuning of transition metal perovskites,” Materials, Vol 8(2), pp. 020903, 2020.
[37] M. Sano, Y. Hirose, S. Nakao, and T. Hasegawa, “Strong carrier localization in 3d transition metal oxynitride LaVO3−xNx epitaxial thin films,” Journal of Materials Chemistry C, Vol 5, pp. 1798–1802, 2017.
[38] G. Hitoki, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm),” Chemical Communications, Vol 16, pp. 1698–1699, 2002.
[39] P. Zhang, J. Zhang, and J. Gong, “Tantalum-based semiconductors for solar water splitting,” Chem Soc Rev, Vol 43, pp. 4395–4422, 2014.
[40] J. Gan, X. Lu, and Y. Tong, “Towards highly efficient photoanodes: Boosting sunlight-driven semiconductor nanomaterials for water oxidation,” Nanoscale, Vol 6, pp. 7142–7164, 2014.
[41] Q. Gao, S. Wang, Y. Ma, Y. Tang, C. Giordano, and M. Antonietti, “SiO2-Surface-Assisted Controllable Synthesis of TaON and Ta3N5 Nanoparticles for Alkene Epoxidation,” Angewandte Chemie, Vol 51(4) pp. 961–965, 2012.
[42] A. Fuertes, “Synthetic approaches in oxynitride chemistry.” Progress in Solid State Chemistry, Vol 51, pp. 63–70, 2018.
[43] D.R. Cote, S. V. Nguyen, A.K. Stamper, et al., “Plasma-assisted chemical vapor deposition of dielectric thin films for ULSI semiconductor circuits,” IBM Journal of Research and Development, Vol 43(1.2) pp. 5–38, 1999.
[44] G. Hyett, M.A. Green, and I.P. Parkin, “The use of combinatorial chemical vapor deposition in the synthesis of Ti3-δO4N with 0.06 < δ < 0.25: A titanium oxynitride phase isostructural to anosovite,” Journal of the American Chemical Society, Vol 129(50), pp. 15541–15548, 2007.
[45] S. Iwashita, S. Aoyama, M. Nasu, et al., “Periodic oxidation for fabricating titanium oxynitride thin films via atomic layer deposition.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol 34, pp. 01A145, 2016.
[46] Y. Il Kim, W. Si, P.M. Woodward, E. Sutter, S. Park, and T. Vogt, “Epitaxial thin-film deposition and dielectric properties of the perovskite oxynitride BaTaO2N,” Chemistry of Materials, Vol 19(3), pp. 618–623, 2007.
[47] Y. Il Kim, W. Si, P.M. Woodward, E. Sutter, S. Park, and T. Vogt, “Epitaxial thin-film deposition and dielectric properties of the perovskite oxynitride BaTaO2N,” Chemistry of Materials. p. 2007.
[48] E. Martínez-Ferrero, Y. Sakatani, C. Boissière, et al., “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Advanced Functional Materials, Vol 17(16), pp. 3348–3354, 2007.
[49] V.A. Matylitskaya, O. Brunkahl, G. Kothleitner, W. Bock, and B.O. Kolbesen, “Annealing of evaporated and sputtered niobium films in oxygen and nitrogen rich atmospheres by rapid thermal processing (RTP),” Physica Status Solidi (C) Current Topics in Solid State Physics, Vol 4(6), pp. 1802–1816, 2007.
[50] “Binary Alloy Phase Diagrams” Ed. T.B. Massalski, ASM International, 2018.
[51] Д.А. Давыдов, А.А. Ремпель, “Уточнение фазовой диаграммы системы V-O в области 25-50 ат.% кислорода,” Неорганические материалы, Vol. 45, no. No.1, pp. 50–57, 2009.
[52] O.N. Gruba and J.S. Dvoryashina, “Modeling and calculation of thermochemical characteristics of crystalline vanadium oxides under standard conditions,” Materials Science Forum, Vol 946, pp. 115-122, 2019.
[53] N. Bahlawane and D. Lenoble, “Vanadium oxide compounds: Structure, properties, and growth from the gas phase,” Chemical Vapor Deposition, Vol 20, pp. 299–311, 2014.
[54] N.J. Szymanski, Z.T.Y. Liu, T. Alderson, N.J. Podraza, P. Sarin, and S. V. Khare, “Electronic and optical properties of vanadium oxides from first principles,” Computational Materials Science, Vol 146, pp. 310–318, 2018.
[55] S. Surnev, M.G. Ramsey, and F.P. Netzer, “Vanadium oxide surface studies,” Progress in Surface Science, Vol 73(4–8), pp. 117–165, 2003.
[56] X. Cao, P. Jin, and H. Luo, “VO2-based thermochromic materials and applications,” Nanotechnology in Eco-efficient Construction, Vol 2(9), pp. 1707–1746 , 2019.
[57] C. Diaz, G. Barrera, M. Segovia, M.L. Valenzuela, M. Osiak, and C. O’Dwyer, “Crystallizing Vanadium Pentoxide Nanostructures in the Solid-State Using Modified Block Copolymer and Chitosan Complexes,” Journal of Nanomaterials, Vol 2015, ID 105157, 2015.
[58] S. Autier-Laurent, B. Mercey, D. Chippaux, P. Limelette, and C. Simon, “Strain-induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V2O3,” Physical Review B - Condensed Matter and Materials Physics, Vol 74(19), 2006.
[59] J. Ashkenazi and T. Chuchem, “Band structure of V2O3, and Ti2O3.” Philosophical Magazine, Vol 32, pp. 763–785, 1975.
[60] A. Dey, M.K. Nayak, A.C.M. Esther, et al., “Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties,” Scientific Reports, Vol 6, ID 36811, 2016.
[61] M. Jiang, Y. Li, S. Li, et al., “Room temperature optical constants and band gap evolution of phase pure M1-VO2 thin films deposited at different oxygen partial pressures by reactive magnetron sputtering,” Journal of Nanomaterials, Vol 2014, ID 183954, 2014.
[62] K. Schneider, “Optical properties and electronic structure of V2O5, V2O3 and VO2.” Journal of Materials Science: Materials in Electronics, Vol 31, pp. pages10478–10488, 2020.
[63] E.E. Chain, “Optical properties of vanadium dioxide and vanadium pentoxide thin films,” Applied Optics, Vol 30(19), pp. 2782, 1991.
[64] “Materials Handbook — a concise desktop reference.” Ed. F. Cardarelli, Materials&Design., 2001.
[65] C.W. Zou, X.D. Yan, J. Han, R.Q. Chen, and W. Gao, “Microstructures and optical properties of β-V2O5 nanorods prepared by magnetron sputtering,” Journal of Physics D: Applied Physics, Vol 42, ID 145402, 2009.
[66] S. Yadav, S. Kumari, R. Bala, Gagandeep, R. Thakur, and D. Mohan, “Characterization of Sn doped vanadium oxide thin films for nonlinear optical applications,” Materials Today: Proceedings, 2021.
[67] A. Mehmood, A.A. Haidry, X. Long, and X. Zhang, “Influence of applied voltage on optimal performance and durability of tungsten and vanadium oxide co-sputtered thin films for electrochromic applications,” Applied Surface Science, Vol 563, ID 147873, 2021.
[68] M. Cristopher, P. Karthick, R. Sivakumar, C. Gopalakrishnan, C. Sanjeeviraja, and K. Jeyadheepan, “On the preparation of Tri-vanadium hepta-oxide thin films for electrochromic applications,” Vacuum, Vol. 160, pp. 238–245, 2019.
[69] S. Gavalas, E. Gagaoudakis, D. Katerinopoulou, et al., “Vanadium oxide nanostructured thin films prepared by Aerosol Spray Pyrolysis for gas sensing and thermochromic applications,” Materials Science in Semiconductor Processing, Vol 89, pp. 116–120, 2019.
[70] O. Celik and M. Duman, “High temperature coefficient of resistance and low noise tungsten oxide doped amorphous vanadium oxide thin films for microbolometer applications.” Thin Solid Films, Vol 691, ID 137590, 2019.
[71] K. Prajwal, A. Carmel Mary Esther, and A. Dey, “RF transparent vanadium oxide based single and bi-layer thin films as passive thermal control element for satellite antenna application,” Ceramics International, Vol 44(13), pp. 16088–16091, 2018.
[72] H.M. Jung and S. Um, “Electrical and thermal transport properties of vanadium oxide thin films on metallic bipolar plates for fuel cell applications.” International Journal of Hydrogen Energy, Vol 38, pp. 11591–11599, 2013.
[73] S. A, Analysis of refractory compounds. Moscow, 1962.
[74] B.R. Zhao, L. Chen, H.L. Luo, M.D. Jack, and D.P. Mullin, “Superconducting and normal-state properties of vanadium nitride,” Physical Review B, Vol 29, pp. 6298, 1984.
[75] M. Ghanashyam Krishna and A.K. Bhattacharya, “Optical and electrical properties of vanadium nitride thin films,” International Journal of Modern Physics B, Vol 14(7), pp. 833–839, 1999.
[76] P.J. Hanumantha, M.K. Datta, K. Kadakia, C. Okoli, P. Patel, and P.N. Kumta, “Vanadium nitride supercapacitors: Effect of Processing Parameters on electrochemical charge storage behavior,” Electrochimica Acta, Vol 207, pp. 37–47, 2016.
[77] Y. Liu, Q. Wu, L. Liu, P. Manasa, L. Kang, and F. Ran, “Vanadium nitride for aqueous supercapacitors: a topic review,” J. Mater. Chem. A, Vol 8, pp. 8218–8233, 2020.
[78] A.D. Dwivedi, S.P. Dubey, M. Sillanpää, Y.-N. Kwon, C. Lee, and R.S. Varma, “Fate of engineered nanoparticles: Implications in the environment,” Coordination Chemistry Reviews, Vol. 287, pp. 64–78, 2015.
[79] R. Manjunatha, A. Karajić, H. Teller, K. Nicoara, and A. Schechter, “Electrochemical and Chemical Instability of Vanadium Nitride in the Synthesis of Ammonia Directly from Nitrogen,” ChemCatChem, Vol 12, pp. 438–443, 2020.
[80] O. Bondarchuk, A. Morel, D. Bélanger, E. Goikolea, T. Brousse, and R. Mysyk, “Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance,” Journal of Power Sources, Vol 324, pp. 439–446, 2016.
[81] D. Shu, C. Lv, F. Cheng, et al., “Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors.” International Journal of Electrochemical Science, Vol 8(1), pp. 1209–1225, 2013.
[82] E. Mohimi, Z. V. Zhang, J.L. Mallek, et al., “Low temperature chemical vapor deposition of superconducting vanadium nitride thin films,” Journal of Vacuum Science & Technology A, Vol 37, ID 031509, 2019.
[83] G. Rampelberg, K. Devloo-Casier, D. Deduytsche, M. Schaekers, N. Blasco, and C. Detavernier, “Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers.” Applied Physics Letters, Vol 102(11), pp. 111910, 2013.
[84] R. Lucio-Porto, S. Bouhtiyya, J.F. Pierson, et al., “VN thin films as electrode materials for electrochemical capacitors.” Electrochimica Acta, Vol 141, pp. 203–211, 2014.
[85] A. Achour, R. Lucio-Porto, S. Solaymani, M. Islam, I. Ahmad, and T. Brousse, “Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability.” Journal of Materials Science: Materials in Electronics, Vol 29, pp. 13125–13131, 2018.
[86] N.Y. Kim, J.H. Lee, J.A. Kwon, et al., “Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction.” Journal of Industrial and Engineering Chemistry, Vol 46, pp. 298–303, 2017.
[87] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, and M. Kathrein, “A new low friction concept for high temperatures: Lubricious oxide formation on sputtered VN coatings.” Tribology Letters, Vol 17, pp. 751–756, 2004.
[88] A. Achour, M. Islam, I. Ahmad, K. Saeed, and S. Solaymani, “Electrochemical stability enhancement in reactive magnetron sputtered VN films upon annealing treatment.” Coatings, Vol 9(2), pp. 72, 2019.
[89] H. Hajihoseini and J.T. Gudmundsson, “Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering.,” Journal of Physics D: Applied Physics, Vol 50(50), ID505302, 2017.
[90] G. Farges, E. Beauprez, and D. Degout, “Preparation and characterization of V–N films deposited by reactive triode magnetron sputtering.” Metallurgical Coatings and Thin Films, Vol 54–55, pp. 115–120, 1992.
[91] G.S. Elwin, “Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium.” Doctoral thesis (Ph.D), University College London, 1999.
[92] J. Ding, Z. Du, B. Li, et al., “Unlocking the Potential of Disordered Rocksalts for Aqueous Zinc-Ion Batteries.” Advanced Materials, Vol 31(1), ID 1904369, 2019.
[93] J. Pan, H.A. Hansen, and T. Vegge, “Vanadium oxynitrides as stable catalysts for electrochemical reduction of nitrogen to ammonia: The role of oxygen.” Journal of Materials Chemistry A, Vol 8, pp. 24098–24107, 2020.
[94] C. Zhang, Z. Xu, and Q. Liu, “Synthesis and characterization of vanadium molybdenum oxynitrides nanoparticles in the channels of MCM-41.” Journal Wuhan University of Technology, Materials Science Edition, Vol 20(4), pp. 29–31, 2005.
[95] C.M. Ghimbeu, E. Raymundo-Piñero, P. Fioux, F. Béguin, and C. Vix-Guterl, “Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors.” Journal of Materials Chemistry, Vol 21, pp. 13268–13275, 2011.
[96] J. Musil, P. Baroch, J. Vlček, K.H. Nam, and J.G. Han, “Reactive magnetron sputtering of thin films: Present status and trends.” Thin Solid Films, Vol 475, pp. 208–218, 2005.
[97] G. Durai, P. Kuppusami, T. Maiyalagan, J. Theerthagiri, P. Vinoth Kumar, and H.S. Kim, “Influence of chromium content on microstructural and electrochemical supercapacitive properties of vanadium nitride thin films developed by reactive magnetron co-sputtering process.” Ceramics International, Vol 45, pp. 12643–12653, 2019.
[98] T. Suszko, W. Gulbiński, A. Urbanowicz, and W. Gulbiński, “Preferentially oriented vanadium nitride films deposited by magnetron sputtering.” Materials Letters, Vol 65(13), pp. 2146–2148, 2011.
[99] H. Ju, P. Jia, J. Xu, et al., “The effects of adding aluminum on crystal structure, mechanical, oxidation resistance, friction and wear properties of nanocomposite vanadium nitride hard films by reactive magnetron sputtering.” Materials Chemistry and Physics, Vol 215, pp. 368–375, 2018.
[100] F.C. Thompson, F.M. Kustas, K.E. Coulter, and G.A. Crawford, “Filament-assisted reactive magnetron sputter deposition of VSiN films.” Thin Solid Films, Vol 730, ID 138720, 2021.
[101] W. Wang, S. Zheng, J. Pu, et al., “Microstructure, mechanical and tribological properties of Mo-V-N films by reactive magnetron sputtering.” Surface and Coatings Technology, Vol 387, ID 125532, 2020.
[102] A. Morel, Y. Borjon-Piron, R.L. Porto, T. Brousse, and D. Bélanger, “Suitable Conditions for the Use of Vanadium Nitride as an Electrode for Electrochemical Capacitor.” Journal of The Electrochemical Society, Vol. 163, ID A1077, 2016.
[103] A. Brayek, B. Tlilli, T. Ghrib, and C. Nouveau, “Investigation of vanadium and nitride alloys thin layers deposited by PVD.” EPJ Web of Conferences, Vol 29, ID 00042, 2012.
[104] N. Fateh, G.A. Fontalvo, G. Gassner, and C. Mitterer, “Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings.,” Wear. p. 2007.
[105] C. Li, J.H. Hsieh, and P.H. Hsueh, “Antimicrobial effects by silver–indium–tantalum oxide thin film in visible light.,” Medicine in Novel Technology and Devices. p. 2020.
[106] H. Ji, D. Liu, H. Cheng, L. Yang, C. Zhang, and W. Zheng, “Facile synthesis and electrical switching properties of V2O3 powders,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology. Vol 217, pp. 1-6, 2017.
[107] S.S. Majid, D.K. Shukla, F. Rahman, et al., “Stabilization of metallic phase in V2O3 thin film,” Applied Physics Letters, Vol 110, 173101, 2017.
[108] Y. Zhong, D. Chao, S. Deng, et al., “Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for High-Performance Lithium–Sulfur Batteries,” Advanced Functional Materials, Vol 19, pp. 170639, 2018.
[109] M.B. Smirnov, E.M. Roginskii, K.S. Smirnov, R. Baddour-Hadjean, and J.P. Pereira-Ramos, “Unraveling the Structure-Raman Spectra Relationships in V2O5 Polymorphs via a Comprehensive Experimental and DFT Study,” Inorganic Chemistry. Vol 57, pp. 9190–9204, 2018.
[110] N. Fateh, G.A. Fontalvo, G. Gassner, and C. Mitterer, “The beneficial effect of high-temperature oxidation on the tribological behaviour of V and VN coatings.,” Tribology Letters. Vol 28, pp.1–7, 2007.
[111] H.K. Koduru, H.M. Obili, and G. Cecilia, “Spectroscopic and electrochromic properties of activated reactive evaporated nano-crystalline V2O5 thin films grown on flexible substrates,” International Nano Letters, 2013.
[112] C. Li, J.H. Hsieh, T.Y. Su, and P.L. Wu, “Experimental study on property and electrochromic function of stacked WO3/Ta2O5/NiO films by sputtering,” Thin Solid Films, Vol 660, pp. 373–379, 2018.
[113] P. Schilbe, “Raman scattering in VO2,” Physica B: Condensed Matter, Vol 316-317, pp. 600-602, 2002.
[114] P. Shvets, O. Dikaya, K. Maksimova, and A. Goikhman, “A review of Raman spectroscopy of vanadium oxides,” Journal of Raman spectroscopy, Vol 50(8), pp. 1226-1244, 2019.
[115] K. Shibuya and A. Sawa, “Polarized Raman scattering of epitaxial vanadium dioxide films with low-temperature monoclinic phase.,” Journal of Applied Physics, Vol 122, ID015307, 2017.
[116] P.J. Linstrom and W.G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, (retrieved July 17, 2021).
[117] R. Robie, B. Hemingway, and J. Fisher, “Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1bar Pressure and at Higher Temperatures,” US Geol. Surv., vol. 1452, 1978.
指導教授 李泉(Chuan Li) 審核日期 2021-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明