博碩士論文 105690611 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.191.171.86
姓名 藍杰(Pratul Ranjan)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 關於愛琴海岩石圈的異質性
(On the heterogeneous nature of the Aegean Lithosphere)
相關論文
★ 台灣東北部龜山島的地震活動特性★ 印尼Semeru火山地區之火山顫動非線性動態性質分析
★ Forecasting volcanic eruptions using permutation entropy variations in ambient seismic noise★ Nonlinear Dynamics of Volcanic Tremor Recorded at Mt. Erebus Volcano, Antarctica
★ 模擬在地熱型及佛卡諾型噴發中的火山彈道拋體軌跡,以台灣北部大屯山火山群中的七星山為例★ A reappraisal of seismicity recorded during the 1996 Gjalp eruption in Iceland using modern seismological methods
★ Duration-amplitude scaling of volcanic tremor recorded at Mt. Erebus volcano, Antarctica★ Permutation Entropy Variation of Seismic Noise prior to Eruptive Activity at Shinmoedake Volcano, Japan
★ Seismic Anisotropy of the Upper- and Lower-Crust in the South Aegean Inferred from Shear-Wave Splitting★ 試問2017年比加半島(土耳其)的地震群是否為誘發性地震?從多年地震記錄分析的觀察
★ 由海底地震儀資料探討南沖繩海槽熱液活動★ 日本新茂岳火山三次噴發週期地震噪聲中排列熵的時間變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 愛琴海形成大陸岩石圈,向東地中海地區俯衝的努比亞岩石圈推進。由於努比亞板塊回滾引起的伸展使愛琴海岩石圈變形,並產生了幾個裂谷/斷層帶、複雜的地質結構以及流體運移通道,這些都是傳播地震波的異質介質。除了一些當地的研究外,尚無法對這些介質如何跨越愛琴海影響地震波傳播進行定量估計。 在此論文中,我的目標是研究這些異質特徵並量化它們在愛琴海地區的特性,以了解產生它們的潛在過程。

此研究使用的數據從2002 年秋季至 2020 年春季,在愛琴海運行的主要地震網絡的地震圖和地震相位走時,對非均勻結構進行了三階段建模/成像。首先,使用地震圖中峰值能量到達的延遲時間來模擬地殼和上地幔小尺度速度擾動的光譜特徵。接著,使用地震圖包絡估計並繪製不同頻段地殼結構產生的固有衰減和散射衰減。最後,對愛琴海地殼的 3D 速度結構進行走時層析成像。

透過以上分析,我發現愛琴海殼幔邊界是一個過渡帶,而地殼由三個主要岩性單元組成:極低速沉積物、低速矽質單元和高速變質單元。產生地震包絡加寬以及散射和固有衰減的地殼不均勻性僅限於四個子區域:科林斯裂谷、基克拉澤斯、克里特島和戈科瓦灣。橫跨愛琴海的正常斷層作用和前弧中的逆衝斷層作用可能會在地殼中產生顯著的地震包絡加寬和散射衰減。另一方面,來自火山中心下方以及變質核複合體內的流體移動可能導致地殼中的高固有衰減和高 Vp/Vs比。上地幔不均勻性主要出現在弧後部,很有可能會發生地幔楔形熔化,而南部前弧中的不均勻性較小,與地殼底鍍的板片物質有關。使用斷層掃描模型對孔隙度的預測,火山中心下方有 4-9% 的熔體含量,其中聖托里尼島表現出最高的熔化程度。橫跨愛琴海的大地震發生在低 Vp 和高 Vp/Vs 比的區域,說明流體活動是其觸發機制。
摘要(英) The Aegean forms the continental lithosphere thrusting towards the subducting Nubian lithosphere in the eastern Mediterranean region. The extension induced due to the Nubian slab rollback has deformed the Aegean lithosphere and created several rift/fault zones, complex geological structures as well as pathways for fluid migration, which act as heterogeneous media for the propagating seismic waves. A quantitative estimate of how these features across the Aegean impact seismic wave propagation is not yet available, apart from some localized studies. In my thesis, I aim to identify these heterogeneous features and quantify their properties across the Aegean to understand better the underlying processes that generated them.

I use the seismograms and the seismic phase travel-time data from major seismic networks that operated in the Aegean between autumn 2002 to spring 2020 for a three-stage modeling/imaging of the inhomogeneous structure. First, I model the spectral characteristics of the crustal and upper mantle small-scale velocity perturbations using delay times for peak energy arrival in seismograms. Then, I estimate and map the intrinsic and scattering attenuation produced by the crustal structure in different frequency bands using seismogram envelopes. Finally, I perform the travel-time tomography for the Aegean crust for the 3D velocity structure.

Using the above analyses, I find that the Aegean crust-mantle boundary exists as a transition zone and the crust is composed of three main lithological units: extremely low velocity sediments, low velocity silicic units, and high velocity metamorphic units. The crustal inhomogeneities, which generate seismic envelope broadening as well as scattering and intrinsic attenuation, are restricted to four sub-regions: the Corinth rift, the Cyclades, Crete and the Gulf of Gökova. Normal faulting across the Aegean and thrust faulting in the fore-arc likely generates significant seismic envelope broadening and scattering attenuation in the crust. On the other hand, fluid migration from below the volcanic centers as well as within metamorphic core complexes possibly cause high intrinsic attenuation and high Vp/Vs in the crust. Upper mantle inhomogeneities are mainly prominent in the back-arc, where mantle-wedge melting is expected, with small inhomogeneities in the southern fore-arc linked with slab material underplating the crust. The estimates of porosity using the tomography model suggests 4-9 % melt-fraction beneath the volcanic centers with Santorini exhibiting the highest degree of melting. Large earthquakes across the Aegean occur in low Vp and high Vp/Vs zones, indicating fluid activity as their triggering mechanism.
關鍵字(中) ★ 地震學
★ 愛琴海岩石圈
★ 地震衰減
★ 地震層析成像
★ 俯衝帶
關鍵字(英) ★ seismology
★ The Aegean lithosphere
★ seismic attenuation
★ seismic tomography
★ subduction zone
論文目次 摘要..............................................................................................................................I
ABSTRACT.........................................................................................................................II
ACKNOWLEDGEMENTS................................................................................................................III
TABLE OF CONTENTS.................................................................................................................V
LIST OF FIGURES AND TABLES.....................................................................................................VIII
CHAPTER 1: BACKGROUND STUDIES OF THE AEGEAN LITHOSPHERE...........................................................................1
1.1 Introduction..........................................................................................................1
1.2 Geology and Seismotectonic Setting....................................................................................1
1.2.1 Introduction................................................................................................1
1.2.2 Upper-mantle Structure and mantle flow......................................................................2
1.2.3 Crustal structure and geological features ..................................................................3
1.2.4 Crustal stress field, seismicity and seismic anisotropy.....................................................4
1.3 Volcanic Setting......................................................................................................5
1.3.1 Introduction................................................................................................5
1.3.2 Sousaki-Aegina-Methana-Poros................................................................................6
1.3.3 Milos.......................................................................................................7
1.3.4 Christiana-Santorini-Kolumbo................................................................................8
1.3.5 Kos-Yali-Nisyros............................................................................................9
1.4 Aims of this thesis...................................................................................................9
1.5 Structure of the thesis..............................................................................................11
CHAPTER 2: SEISMIC NETWORKS AND STATIONS.........................................................................................22
2.1 Hellenic Unified Seismic Network (HUSN)..............................................................................22
2.2 Exploring the Geodynamics of Earth’s Lithosphere using Amphibian Deployment Of Seismograph (EGELADOS) network.....23
2.3 CYClades seismic NETwork (CYCNET)....................................................................................23
2.4 Miscellaneous Stations...............................................................................................24

CHAPTER 3: MAPPING THE RANDOM INHOMOGENEITIES IN THE AEGEAN LITHOSPHERE USING PEAK DELAY TIMES...................................32
3.1 Introduction.........................................................................................................32
3.2 Earthquake data and waveform preprocessing...........................................................................33
3.3 Peak delay times and their properties................................................................................34
3.3.1 Measurement methodology....................................................................................34
3.3.2 De-trending, spatial distribution, and frequency relation..................................................35
3.3.2.1 De-trending of hypocentral distance dependence...................................................35
3.3.2.2 Spatial distribution of de-trended peak delay times..............................................36
3.3.2.3 Relation between peak delay times and frequency..................................................38
3.4 Inversion for random inhomogeneities
3.4.1 Background theory..........................................................................................39
3.4.2 Inversion methodology......................................................................................40
3.4.3 Sensitivity Tests..........................................................................................43
3.5 Description of results...............................................................................................45
CHAPTER 4: MAPPING THE INTRINSIC AND SCATTERING ATTENUATION STRUCTURE IN THE CRUST USING S-WAVES.................................56
4.1 Introduction.........................................................................................................57
4.2 Earthquake waveform data and S-wave envelope calculation.............................................................58
4.3 S-envelope Inversion Methodology.....................................................................................60
4.3.1 Forward Model..............................................................................................60
4.3.2 Inversion Method...........................................................................................63
4.3.3 Mapping Method.............................................................................................64
4.4 Results..............................................................................................................68
4.5 Checkerboard Tests...................................................................................................70
CHAPTER 5: HIGH RESOLUTION TOMOGRAPHY OF THE AEGEAN CRUST USING TRAVEL TIMES OF BODY WAVES.......................................77
5.1 Introduction.........................................................................................................77
5.2 Earthquakes and travel-time data.....................................................................................78
5.3 Local Earthquake Travel-time tomography..............................................................................79
5.3.1 Inversion Algorithm........................................................................................79
5.3.2 Minimum 1D velocity model estimation.......................................................................79
5.3.3 Optimization for inversion parameters and 3D inversion.....................................................80
5.3.4 Resolution tests for horizontal and vertical sections......................................................82
5.4 Results..............................................................................................................84
CHAPTER 6: DISCUSSIONS AND CONCLUSIONS...........................................................................................94
6.1 Physical meaning of the PSDF parameters, intrinsic/scattering attenuation, and velocity anomalies....................94
6.1.1 Relation between PSDF parameters and properties of inhomogeneities.........................................94
6.1.2 Relation between structural features and types of seismic attenuation......................................94
6.1.3 Relation between velocity anomalies and lithological structure.............................................95
6.1.4 Relation between tomographic anomalies, seismic attenuation and inhomogeneities............................95
6.2 Demarcation of the Aegean Moho.......................................................................................96
6.3 Lithological composition of the crust................................................................................98
6.4 Lateral differences in the crustal structure........................................................................100
6.4.1 The Corinth Rift..........................................................................................100
6.4.2 The Cyclades..............................................................................................101
6.4.3 Crete.....................................................................................................103
6.4.4 The Gulf of Gökova and the Kos-Yali-Nisyros volcanic field................................................105
6.5 Inhomogeneities in the shallow upper mantle.........................................................................107
6.6 Active Volcanoes and Melt Fraction..................................................................................108
6.7 Large earthquakes and velocity anomalies............................................................................110
6.8 Limitations of current work.........................................................................................114
6.9 Future Directions...................................................................................................115
6.10 Conclusions........................................................................................................117
REFERENCES......................................................................................................................125
APPENDIX........................................................................................................................143
參考文獻 Abers, G. A. (2000). Hydrated subducted crust at 100–250 km depth. Earth and Planetary Science Letters, 176(3–4), 323–330. https://doi.org/10.1016/S0012-821X(00)00007-8
Adimah, N. I., Padhy, S., (2020) Ambient noise Rayleigh wave tomography across the Madagascar island, Geophysical Journal International, 220(3), 1657–1676, https://doi.org/10.1093/gji/ggz542
Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation, and scattering effects. Journal of Geophysical Research (1896-1977), 80(23), 3322–3342. https://doi.org/10.1029/JB080i023p03322
Akinci, A., Pezzo, E. Del, & Malagnini, L. (2020). Intrinsic and scattering seismic wave attenuation in the Central Apennines (Italy). Physics of the Earth and Planetary Interiors, 303, 106498. https://doi.org/https://doi.org/10.1016/j.pepi.2020.106498
Amante, C., & Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, 10, V5C8276M.
Andinisari, R., Konstantinou, K. I., & Ranjan, P. (2019). Seismotectonics of SE Aegean inferred from precise relative locations of shallow crustal earthquakes. Journal of Seismology. https://doi.org/10.1007/s10950-019-09881-8
Andinisari, R., Konstantinou, K. I., & Ranjan, P. (2021). Seismicity along the Santorini-Amorgos zone and its relationship with active tectonics and fluid distribution. Physics of the Earth and Planetary Interiors, 312, 106660. https://doi.org/10.1016/j.pepi.2021.106660
Andújar, J., Scaillet, B., Pichavant, M., & Druitt, T. H. (2016). Generation Conditions of Dacite and Rhyodacite via the Crystallization of an Andesitic Magma. Implications for the Plumbing System at Santorini (Greece) and the Origin of Tholeiitic or Calc-alkaline Differentiation Trends in Arc Magmas. Journal of Petrology, 57(10), 1887–1920. https://doi.org/10.1093/petrology/egw061
Aristotle University Of Thessaloniki Seismological Network. (1981). Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HT
Bachmann, O., Allen, S. R., & Bouvet de Maisonneuve, C. (2019). The Kos–Nisyros–Yali volcanic field. Elements, 15(3), 191–196. https://doi.org/10.2138/gselements.15.3.191
Bachmann, O., Deering, C. D., Ruprecht, J. S., Huber, C., Skopelitis, A., & Schnyder, C. (2012). Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: A petrological cycle associated with caldera collapse. Contributions to Mineralogy and Petrology, 163(1), 151-166. https://doi.org/10.1007/s00410-011-0663-y
Badi, G., Del Pezzo, E., Ibanez, J. M., Bianco, F., Sabbione, N., & Araujo, M. (2009). Depth dependent seismic scattering attenuation in the Nuevo Cuyo region (southern central Andes). Geophysical Research Letters, 36(24). https://doi.org/10.1029/2009GL041081
Becker, D., Meier, T., Rische, M., Bohnhoff, M., & Harjes, H. P. (2006). Spatio-temporal microseismicity clustering in the Cretan region. Tectonophysics, 423(1–4), 3–16. https://doi.org/10.1016/j.tecto.2006.03.022
Beckers, A., Hubert-Ferrari, A., Beck, C., Bodeux, S., Tripsanas, E., Sakellariou, D., & De Batist, M. (2015). Active faulting at the western tip of the Gulf of Corinth, Greece, from high-resolution seismic data. Marine Geology, 360, 55–69. https://doi.org/10.1016/j.margeo.2014.12.003
Benetatos, C., Kiratzi, A., Roumelioti, Z., Stavrakakis, G., Drakatos, G., & Latoussakis, I. (2005). The 14 August 2003 Lefkada Island (Greece) earthquake: Focal mechanisms of the mainshock and of the aftershock sequence. Journal of Seismology, 9(2), 171–190. https://doi.org/10.1007/s10950-005-7092-1
Benetatos, C., Roumelioti, Z., Kiratzi, A., & Melis, N. (2002). Source parameters of the M 6.5 skyros Island (North Aegean Sea) earthquake of July 26, 2001. Annals of Geophysics, 45(3–4), 513–526. https://doi.org/10.4401/ag-3525
Bernard, P., Briole, P., Meyer, B., Lyon-Caen, H., Gomez, J.-M., Tiberi, C., et al. (1997). The Ms = 6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low angle normal faulting in the Corinth rift. Journal of Seismology, 1(2), 131–150. https://doi.org/10.1023/A:1009795618839
Bijwaard, H., Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth, 103(B12), 30055–30078. https://doi.org/https://doi.org/10.1029/98JB02467
Blom, N., Gokhberg, A., & Fichtner, A. (2020). Seismic waveform tomography of the central and eastern Mediterranean upper mantle. Solid Earth, 11(2), 669–690. https://doi.org/10.5194/se-11-669-2020
Bocchini, G. M., Brüstle, A., Becker, D., Meier, T., van Keken, P. E., Ruscic, M., et al. (2018). Tearing, segmentation, and backstepping of subduction in the Aegean: New insights from seismicity. Tectonophysics, 734–735, 96–118. https://doi.org/10.1016/j.tecto.2018.04.002
Bohnhoff, M., Rische, M., Meier, T., Endrun, B., Becker, D., Harjes, H. P., & Stavrakakis, G. (2004). CYC-NET: A temporary seismic network on the Cyclades (Aegean Sea, Greece). Seismological Research Letters, 75(3), 352-359. https://doi.org/10.1785/gssrl.75.3.352
Boschi, E., Giardini, D., & Morelli, A. (1991). MedNet: the very broad-band seismic network for the Mediterranean. Il Nuovo Cimento C, 14(1), 79–99. https://doi.org/10.1007/BF02509260
Briole, P., Rigo, A., Lyon-Caen, H., Ruegg, J. C., Papazissi, K., Mitsakaki, C., et al. (2000). Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995. Journal of Geophysical Research: Solid Earth, 105(B11), 25605–25625. https://doi.org/10.1029/2000JB900148
Brüstle, A. (2013). Seismicity of the eastern Hellenic Subduction Zone. Retrieved from https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/1127
Brüstle, A., Friederich, W., Meier, T., & Gross, C. (2014). Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth, 5(2), 1027–1044. https://doi.org/10.5194/se-5-1027-2014
Burchfiel, B. C., Royden, L. H., Papanikolaou, D., & Pearce, F. D. (2018). Crustal development within a retreating subduction system: The Hellenides. Geosphere, 14(3), 1119–1130. https://doi.org/10.1130/GES01573.1
Calvet, M., & Margerin, L. (2013). Lapse‐Time Dependence of Coda Q: Anisotropic Multiple‐Scattering Models and Application to the Pyrenees. Bulletin of the Seismological Society of America, 103(3), 1993–2010. https://doi.org/10.1785/0120120239
Calvet, M., Sylvander, M., Margerin, L., & Villaseñor, A. (2013). Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: Coda Q and peak delay time analysis. Tectonophysics, 608, 428–439. https://doi.org/https://doi.org/10.1016/j.tecto.2013.08.045
Cambaz, M. D., Turhan, F., Yılmazer, M., Kekovalı, K., Necmioğlu, Ö., & Kalafat, D. (2019). A Review on Kandilli Observatory and Earthquake Research Institute (KOERI) Seismic Network and Earthquake Catalog: 2008–2018. Adv. Geosci., 51, 15–23. https://doi.org/10.5194/adgeo-51-15-2019
Cantner, K., Carey, S., & Nomikou, P. (2014). Integrated volcanologic and petrologic analysis of the 1650AD eruption of Kolumbo submarine volcano, Greece. Journal of Volcanology and Geothermal Research, 269, 28–43. https://doi.org/10.1016/j.jvolgeores.2013.10.004
Caputo, R., Chatzipetros, A., Pavlides, S., & Sboras, S. (2013). The Greek Database of Seismogenic Sources (GreDaSS): state-of-the-art for northern Greece. Annals of Geophysics, 55(5).
Carbonell, R., Levander, A., & Kind, R. (2013, December 8). The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints. Tectonophysics. Elsevier B.V. https://doi.org/10.1016/j.tecto.2013.08.037
Carcolé, E., & Sato, H. (2010). Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophysical Journal International, 180(1), 268-290.
Červený, V., & Soares, J. E. P. (1992). Fresnel volume ray tracing. GEOPHYSICS, 57(7), 902–915. https://doi.org/10.1190/1.1443303
Chambers, E. L., Harmon, N., Keir, D., & Rychert, C. A. (2019). Using ambient noise to image the northern East African Rift. Geochemistry, Geophysics, Geosystems, 20, 2091– 2109. https://doi.org/10.1029/2018GC008129
Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4), 327–335. https://doi.org/10.1080/00031305.1995.10476177
Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139–3156. https://doi.org/10.1029/95JB03446
Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259
Cirella, A., Romano, F., Avallone, A., Piatanesi, A., Briole, P., Ganas, A., et al. (2020). The 2018 Mw 6.8 Zakynthos (Ionian Sea, Greece) earthquake: seismic source and local tsunami characterization. Geophysical Journal International, 221(2), 1043–1054. https://doi.org/10.1093/gji/ggaa053
Clark, A. N., & Lesher, C. E. (2017). Elastic properties of silicate melts: Implications for low velocity zones at the lithosphere-asthenosphere boundary. Science Advances, 3(12), e1701312. https://doi.org/10.1126/sciadv.1701312
Corinth Rift Laboratory Team And RESIF Datacenter. (2013). CL - Corinth Rift Laboratory Seismological Network (CRLNET) [Data set]. RESIF - Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.CL

D’Alessandro, W., Brusca, L., Kyriakopoulos, K., Rotolo, S., Michas, G., Minio, M., & Papadakis, G. (2006). Diffuse and focused carbon dioxide and methane emissions from the Sousaki geothermal system, Greece. Geophysical Research Letters, 33(5), L05307. https://doi.org/10.1029/2006GL025777
D’Alessandro, A., Papanastassiou, D., & Baskoutas, I. (2011). Hellenic Unified Seismological Network: an evaluation of its performance through SNES method. Geophysical Journal International, 185(3), 1417–1430. https://doi.org/10.1111/j.1365-246X.2011.05018.x
De Siena, L., Amoruso, A., Pezzo, E. Del, Wakeford, Z., Castellano, M., & Crescentini, L. (2017). Space-weighted seismic attenuation mapping of the aseismic source of Campi Flegrei 1983–1984 unrest. Geophysical Research Letters, 44(4), 1740–1748. https://doi.org/10.1002/2017GL072507
Del Pezzo, E., Ibañez, J., Prudencio, J., Bianco, F., & De Siena, L. (2016). Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions. Geophysical Journal International, 206(2), 742–756. https://doi.org/10.1093/gji/ggw171
Del Pezzo, E., Giampiccolo, E., Tuvé, T., Di Grazia, G., Gresta, S., & Ibàñez, J. M. (2019). Study of the regional pattern of intrinsic and scattering seismic attenuation in Eastern Sicily (Italy) from local earthquakes. Geophysical Journal International, 218(2), 1456–1468. https://doi.org/10.1093/gji/ggz208
Dimitriadis, I., Papazachos, C., Panagiotopoulos, D., Hatzidimitriou, P., Bohnhoff, M., Rische, M., & Meier, T. (2010). P and S velocity structures of the Santorini-Coloumbo volcanic system (Aegean Sea, Greece) obtained by non-linear inversion of travel times and its tectonic implications. Journal of Volcanology and Geothermal Research, 195(1), 13–30. https://doi.org/10.1016/j.jvolgeores.2010.05.013
Druitt, T. H., Mercier, M., Florentin, L., Deloule, E., Cluzel, N., Flaherty, T., et al. (2016). Magma storage and extraction associated with plinian and interplinian activity at Santorini Caldera (Greece). Journal of Petrology, 57(3), 461–494. https://doi.org/10.1093/petrology/egw015
Druitt, T. H., Pyle, D. M., & Mather, T. A. (2019). Santorini volcano and its plumbing system. Elements, 15(3), 177–184. https://doi.org/10.2138/gselements.15.3.177
Duverger, C., Lambotte, S., Bernard, P., Lyon-Caen, H., Deschamps, A., & Nercessian, A. (2018). Dynamics of microseismicity and its relationship with the active structures in the western Corinth Rift (Greece). Geophysical Journal International, 215(1), 196–221. https://doi.org/10.1093/gji/ggy264
Elburg, M. A., & Smet, I. (2020). Geochemistry of lavas from Aegina and Poros (Aegean Arc, Greece): Distinguishing upper crustal contamination and source contamination in the Saronic Gulf area. Lithos, 358–359, 105416. https://doi.org/10.1016/j.lithos.2020.105416
Emoto, K., Sato, H., & Nishimura, T. (2010). Synthesis of vector wave envelopes on the free surface of a random medium for the vertical incidence of a plane wavelet based on the Markov approximation. Journal of Geophysical Research: Solid Earth, 115(8), B08306. https://doi.org/10.1029/2009JB006955
Endrun, B., Lebedev, S., Meier, T., Tirel, C., & Friederich, W. (2011). Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy. Nature Geoscience, 4(3), 203–207. https://doi.org/10.1038/ngeo1065
Endrun, B., Meier, T., Lebedev, S., Bohnhoff, M., Stavrakakis, G., & Harjes, H. P. (2008). S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophysical Journal International, 174(2), 593–616. https://doi.org/10.1111/j.1365-246X.2008.03802.x
Eulenfeld, T., & Wegler, U. (2016). Measurement of intrinsic and scattering attenuation of shear waves in two sedimentary basins and comparison to crystalline sites in Germany. Geophysical Journal International, 205(2), 744–757. https://doi.org/10.1093/gji/ggw035
Evangelidis, C. P., Liang, W.-T., Melis, N. S., and Konstantinou, K. I. (2011), Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations, J. Geophys. Res., 116, B04314, doi:10.1029/2010JB007884.
Evangelidis, C. P., & Melis, N. S. (2012). Ambient noise levels in Greece as recorded at the Hellenic Unified Seismic Network. Bulletin of the Seismological Society of America, 102(6), 2507-2517. https://doi.org/10.1785/0120110319
Fehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S -wave energy versus hypocentral distance. Geophysical Journal International, 108(3), 787–800. https://doi.org/10.1111/j.1365-246X.1992.tb03470.x
Francalanci, L., Vougioukalakis, G. E., Perini, G., & Manetti, P. (2005). A West-East Traverse along the magmatism of the south Aegean volcanic arc in the light of volcanological, chemical and isotope data. In Developments in Volcanology (Vol. 7, pp. 65–111). Elsevier Ltd. https://doi.org/10.1016/S1871-644X(05)80033-6
Francalanci, L., & Zellmer, G. F. (2019). Magma genesis at the South Aegean volcanic arc. Elements, 15(3), 165–170. https://doi.org/10.2138/gselements.15.3.165
Friederich, W., & Meier, T. (2008). Temporary Seismic Broadband Network Acquired Data on Hellenic Subduction Zone. Eos, Transactions American Geophysical Union, 89(40), 378–378. https://doi.org/10.1029/2008EO400002
Fukao, Y., Widiyantoro, S., & Obayashi, M. (2001). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291–323. https://doi.org/10.1029/1999RG000068
Fytikas, M., & Vougioukalakis, G. (2005). The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives. Elsevier.
Gaebler, P., Eken, T., Bektaş, H. Ö., Eulenfeld, T., Wegler, U., & Taymaz, T. (2019). Imaging of shear wave attenuation along the central part of the North Anatolian Fault Zone, Turkey. Journal of Seismology, 23(4), 913-927. https://doi.org/10.1007/s10950-019-09842-1
Gallen, S. F., Wegmann, K. W., Bohnenstiehl, D. R., Pazzaglia, F. J., Brandon, M. T., & Fassoulas, C. (2014). Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece. Earth and Planetary Science Letters, 398, 11–24. https://doi.org/10.1016/j.epsl.2014.04.038
García, M. A., Vargas, C. A., & Koulakov, I. Y. (2019). Local Earthquake Tomography of the Nevado del Huila Volcanic Complex (Colombia): Magmatic and Tectonic Interactions in a Volcanic-Glacier Complex System. Journal of Geophysical Research: Solid Earth, 124(2), 1688–1699. https://doi.org/https://doi.org/10.1029/2018JB016324
Gassmann, F. (1951). Elastic waves through a packing of spheres. Geophysics, 16(4), 673-685. https://doi.org/10.1190/1.1437718
Gesret, A., Laigle, M., Diaz, J., Sachpazi, M., Charalampakis, M., & Hirn, A. (2011). Slab top dips resolved by teleseismic converted waves in the Hellenic subduction zone. Geophysical Research Letters, 38(20), n/a-n/a. https://doi.org/10.1029/2011GL048996
Giannopoulos, D., Rivet, D., Sokos, E., Deschamps, A., Mordret, A., Lyon-Caen, H., ... & Tselentis, G. A. (2017). Ambient noise tomography of the western Corinth Rift, Greece. Geophysical Journal International, 211(1), 284-299. https://doi.org/10.1093/gji/ggx298
Goldstein, P., Dodge, D., Firpo, M., Minner, L., Lee, W. H. K., Kanamori, H., ... & Kisslinger, C. (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers. The IASPEI international handbook of earthquake and engineering seismology, 81, 1613-1620.
Gómez-Tuena, A., Straub, S. M., & Zellmer, G. F. (2014). An introduction to orogenic andesites and crustal growth. Geological Society Special Publication, 385(1), 1–13. https://doi.org/10.1144/SP385.16
Govers, R., & Fichtner, A. (2016). Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth and Planetary Science Letters, 450, 10–19. https://doi.org/10.1016/j.epsl.2016.06.014
Gusev, A. A., & Abubakirov, I. R. (1999a). Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-I. General approach and the inversion procedure. Geophysical Journal International, 136(2), 295–308. https://doi.org/10.1046/j.1365-246X.1999.00740.x
Gusev, A. A., & Abubakirov, I. R. (1999b). Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-II.Application to Kamchatka data. Geophysical Journal International, 136(2), 309–323. https://doi.org/10.1046/j.1365-246X.1999.00741.x
Halpaap, F., Rondenay, S., & Ottemöller, L. (2018). Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints From Tomography. Journal of Geophysical Research: Solid Earth, 123(4), 3000–3026. https://doi.org/10.1002/2017JB015154
Hansen, S. E., Evangelidis, C. P., & Papadopoulos, G. A. (2019). Imaging Slab Detachment Within the Western Hellenic Subduction Zone. Geochemistry, Geophysics, Geosystems, 20(2), 895–912. https://doi.org/10.1029/2018GC007810
Hatzfeld, D., Karakostas, V., Ziazia, M., Selvaggi, G., Leborgne, S., Berge, C., et al. (1997). The Kozani-Grevena (Greece) earthquake of 13 May 1995 revisited from a detailed seismological study. Bulletin of the Seismological Society of America, 87(2), 463–473.
Heath, B. A., Hooft, E. E. E., Toomey, D. R., Papazachos, C. B., Nomikou, P., Paulatto, M., et al. (2019). Tectonism and Its Relation to Magmatism Around Santorini Volcano From Upper Crustal P Wave Velocity. Journal of Geophysical Research: Solid Earth, 124(10), 10610–10629. https://doi.org/10.1029/2019JB017699
Hickman, S., Sibson, R., & Bruhn, R. (1995). Introduction to Special Section: Mechanical Involvement of Fluids in Faulting. Journal of Geophysical Research: Solid Earth, 100(B7), 12831–12840. https://doi.org/10.1029/95jb01121
Holyoke, C. W., & Rushmer, T. (2002). An experimental study of grain scale melt segregation mechanisms in two common crustal rock types. Journal of Metamorphic Geology, 20(5), 493–512. https://doi.org/10.1046/j.1525-1314.2002.00381.x
Hooft, E. E. E., Heath, B. A., Toomey, D. R., Paulatto, M., Papazachos, C. B., Nomikou, P., et al. (2019). Seismic imaging of Santorini: Subsurface constraints on caldera collapse and present-day magma recharge. Earth and Planetary Science Letters, 514, 48–61. https://doi.org/10.1016/j.epsl.2019.02.033
Hoshiba, M. (1993). Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope. Journal of Geophysical Research, 98(B9). https://doi.org/10.1029/93jb00347
Hua, Y., Zhao, D., Toyokuni, G., & Xu, Y. (2020). Tomography of the source zone of the great 2011 Tohoku earthquake. Nature Communications, 11(1), 1163. https://doi.org/10.1038/s41467-020-14745-8
Huet, B., Le Pourhiet, L., Labrousse, L., Burov, E., & Jolivet, L. (2011). Post-orogenic extension and metamorphic core complexes in a heterogeneous crust: the role of crustal layering inherited from collision. Application to the Cyclades (Aegean domain). Geophysical Journal International, 184(2), 611–625. https://doi.org/10.1111/j.1365-246X.2010.04849.x
Hukushima, K., & Nemoto, K. (1996). Exchange Monte Carlo Method and Application to Spin Glass Simulations. Journal of the Physical Society of Japan, 65(6), 1604–1608. https://doi.org/10.1143/JPSJ.65.1604
Ibáñez, J. M., Castro-Melgar, I., Cocina, O., Zuccarello, L., Branca, S., Del Pezzo, E., & Prudencio, J. (2019). First 2-D intrinsic and scattering attenuation images of Mt Etna volcano and surrounding region from active seismic data. Geophysical Journal International, 220(1), 267–277. https://doi.org/10.1093/gji/ggz450
Ibáñez, J. M., Del Pezzo, E., De Miguel, F., Herraiz, M., Alguacil, G., & Morales, J. (1990). Depth-dependent seismic attenuation in the Granada zone (Southern Spain). Bulletin of the Seismological Society of America, 80(5), 1232–1244.
Ishimaru, A. (1978). Wave propagation and scattering in random media. Academ. Press.
(ITSAK) Institute Of Engineering Seimology Earthquake Engineering. (1981). ITSAK Strong Motion Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HI
Jarchow, C. M., & Thompson, G. A. (1989). The nature of the Mohorovicic discontinuity. Annual Review of Earth and Planetary Sciences, 17(1), 475-506. https://doi.org/10.1146/annurev.ea.17.050189.002355
Ji, S., Shao, T., Michibayashi, K., Long, C., Wang, Q., Kondo, Y., et al. (2013). A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. Journal of Geophysical Research: Solid Earth, 118(9), 4699–4728. https://doi.org/https://doi.org/10.1002/jgrb.50352
Jolivet, L., & Brun, J. P. (2010). Cenozoic geodynamic evolution of the Aegean. International Journal of Earth Sciences, 99(1), 109–138. https://doi.org/10.1007/s00531-008-0366-4
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., et al. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics. Elsevier B.V. https://doi.org/10.1016/j.tecto.2012.06.011
Kapetanidis, V., & Kassaras, I. (2019). Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. Journal of Geodynamics, 123, 55–82. https://doi.org/10.1016/j.jog.2018.11.004
Karagianni, E. E., Papazachos, C. B., Panagiotopoulos, D. G., Suhadolc, P., Vuan, A., & Panza, G. F. (2005). Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophysical Journal International, 160(1), 127–143. https://doi.org/10.1111/j.1365-246X.2005.02354.x
Karakonstantis, A., Papadimitriou, P., Millas, C., Spingos, I., Fountoulakis, I., & Kaviris, G. (2019). Tomographic imaging of the NW edge of the Hellenic volcanic arc. Journal of Seismology, 23(5), 995–1016. https://doi.org/10.1007/s10950-019-09849-8
Karakostas, V., Papadimitriou, E., Mesimeri, M., Gkarlaouni, C., & Paradisopoulou, P. (2015). The 2014 Kefalonia Doublet (Mw 6.1 and Mw 6.0), central Ionian Islands, Greece: Seismotectonic implications along the Kefalonia transform fault zone. Acta Geophysica, 63(1), 1–16. https://doi.org/10.2478/s11600-014-0227-4
Karasözen, E., Nissen, E., Büyükakpinar, P., Cambaz, M. D., Kahraman, M., Ertan, E. K., et al. (2018). The 2017 July 20 Mw 6.6 Bodrum-Kos earthquake illuminates active faulting in the Gulf of Gökova, SW Turkey. Geophysical Journal International, 214(1), 185–199. https://doi.org/10.1093/gji/ggy114
Kassaras, I., Kapetanidis, V., Karakonstantis, A., & Papadimitriou, P. (2020). Deep structure of the Hellenic lithosphere from teleseismic Rayleigh-wave tomography. Geophysical Journal International, 221(1), 205–230. https://doi.org/10.1093/gji/ggz579
Kayal, J. R., Zhao, D., Mishra, O. P., De, R., & Singh, O. P. (2002). The 2001 Bhuj earthquake: Tomographic evidence for fluids at the hypocenter and its implications for rupture nucleation. Geophysical Research Letters, 29(24), 5-1-5–4. https://doi.org/10.1029/2002GL015177
Kiratzi, A. (2018). The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion. Tectonophysics, 724–725, 1–10. https://doi.org/https://doi.org/10.1016/j.tecto.2018.01.003
Klaver, M., Matveev, S., Berndt, J., Lissenberg, C. J., & Vroon, P. Z. (2017). A mineral and cumulate perspective to magma differentiation at Nisyros volcano, Aegean arc. Contributions to Mineralogy and Petrology, 172(11–12), 95. https://doi.org/10.1007/s00410-017-1414-5
Konstantinou, K. I. (2010). Crustal rheology of the Santorini–Amorgos zone: Implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. Journal of Geodynamics, 50(5), 400–409. https://doi.org/10.1016/J.JOG.2010.05.002
Konstantinou, K. I. (2020). Magma chamber evolution during the 1650 AD Kolumbo eruption provides clues about past and future volcanic activity. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-71991-y
Konstantinou, K. I. (2014). Moment magnitude–rupture area scaling and stress-drop variations for Earthquakes in the Mediterranean region. Bulletin of the Seismological Society of America, 104(5), 2378–2386. https://doi.org/10.1785/0120140062
Konstantinou, K. I., Evangelidis, C. P., Liang, W. T., Melis, N. S., & Kalogeras, I. (2013). Seismicity, Vp/Vs and shear wave anisotropy variations during the 2011 unrest at Santorini caldera, southern Aegean. Journal of Volcanology and Geothermal Research, 267, 57–67. https://doi.org/10.1016/j.jvolgeores.2013.10.001
Konstantinou, K. I., Evangelidis, C. P., & Melis, N. S. (2011). The 8 June 2008 Mw 6.4 earthquake in northwest Peloponnese, western Greece: A case of fault reactivation in an overpressured lower crust? Bulletin of the Seismological Society of America. GeoScienceWorld. https://doi.org/10.1785/0120100074
Konstantinou, K. I., & Melis, N. S. (2008) High-Frequency Shear-Wave Propagation across the Hellenic Subduction Zone. Bulletin of the Seismological Society of America 98 (2): 797–803. doi: https://doi.org/10.1785/0120060238
Konstantinou, K. I., Mouslopoulou, V., Liang, W. ‐T., Heidbach, O., Oncken, O., & Suppe, J. (2017). Present‐day crustal stress field in Greece inferred from regional‐scale damped inversion of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 122(1), 506–523. https://doi.org/10.1002/2016JB013272
Konstantinou, K. I., Syahra, V., & Ranjan, P. (2021). Crustal anisotropy in the southern Aegean from shear wave splitting of local earthquakes. Journal of Geodynamics, 143, 101810. https://doi.org/10.1016/j.jog.2020.101810
Koulakov, I. (2009). LOTOS Code for Local Earthquake Tomographic Inversion: Benchmarks for Testing Tomographic Algorithms. Bulletin of the Seismological Society of America, 99(1), 194–214. https://doi.org/10.1785/0120080013
Koulakov, I., Kaban, M. K., Tesauro, M., & Cloetingh, S. (2009). P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. Geophysical Journal International, 179(1), 345–366. https://doi.org/10.1111/j.1365-246X.2009.04279.x
Koulakov, I., & Sobolev, S. V. (2006). A tomographic image of Indian lithosphere break-off beneath the Pamir–Hindukush region. Geophysical Journal International, 164(2), 425–440. https://doi.org/10.1111/j.1365-246X.2005.02841.x
Lallemand, S., Heuret, A., & Boutelier, D. (2005). On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry, Geophysics, Geosystems, 6(9), n/a-n/a. https://doi.org/10.1029/2005GC000917
Latorre, D., Virieux, J., Monfret, T., Monteiller, V., Vanorio, T., Got, J. L., & Lyon-Caen, H. (2004). A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set. Geophysical Journal International, 159(3), 1013–1031. https://doi.org/10.1111/j.1365-246X.2004.02412.x
Lee, L. C., & Jokipii, J. R. (1975). Strong scintillations in astrophysics. II - A theory of temporal broadening of pulses. The Astrophysical Journal, 201, 532. https://doi.org/10.1086/153916
Li, X., Bock, G., Vafidis, A., Kind, R., Harjes, H. P., Hanka, W., et al. (2003). Receiver function study of the Hellenic subduction zone: Imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere. Geophysical Journal International, 155(2), 733–748. https://doi.org/10.1046/j.1365-246X.2003.02100.x
Lomax, A., Virieux, J., Volant, P., & Berge-Thierry, C. (2000). Probabilistic Earthquake Location in 3D and Layered Models (pp. 101–134). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_5
Malfait, W. J., Seifert, R., Petitgirard, S., Perrillat, J. P., Mezouar, M., Ota, T., et al. (2014). Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geoscience, 7(2), 122–125. https://doi.org/10.1038/ngeo2042
Margerin, L. (2017). Breakdown of equipartition in diffuse fields caused by energy leakage. The European Physical Journal Special Topics, 226(7), 1353–1370. https://doi.org/10.1140/epjst/e2016-60165-6
Margerin, L., Campillo, M., & Tiggelen, B. (1998). Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q. Geophysical Journal International, 134(2), 596–612. https://doi.org/10.1111/j.1365-246X.1998.tb07142.x
Mayor, J., Calvet, M., Margerin, L., Vanderhaeghe, O., & Traversa, P. (2016). Crustal structure of the Alps as seen by attenuation tomography. Earth and Planetary Science Letters, 439, 71–80. https://doi.org/https://doi.org/10.1016/j.epsl.2016.01.025
Mayor, J., Margerin, L., & Calvet, M. (2014). Sensitivity of coda waves to spatial variations of absorption and scattering: radiative transfer theory and 2-D examples. Geophysical Journal International, 197(2), 1117–1137. https://doi.org/10.1093/gji/ggu046
McVey, B. G., Hooft, E. E. E., Heath, B. A., Toomey, D. R., Paulatto, M., Morgan, J. V, et al. (2020). Magma accumulation beneath Santorini volcano, Greece, from P-wave tomography. Geology, 48(3), 231–235. https://doi.org/10.1130/G47127.1
Meier, T., Becker, D., Endrun, B., Rische, M., Bohnhoff, M., Stöckhert, B., & Harjes, H.-P. (2007). A model for the Hellenic subduction zone in the area of Crete based on seismological investigations. Geological Society, London, Special Publications, 291(1), 183–199. https://doi.org/10.1144/SP291.9
Meier, T., Bohnhoff, M., & Harjes, H.-P. (2004). Cyclades project 2002-2005 and Libyan Sea offshore project 2003-2004, RUB Bochum, Germany. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/MM7557265463
Mesimeri, M., & Karakostas, V. (2018). Repeating earthquakes in western Corinth Gulf (Greece): implications for aseismic slip near locked faults. Geophysical Journal International, 215(1), 659–676. https://doi.org/10.1093/gji/ggy301
Mesimeri, M., Karakostas, V., Papadimitriou, E., & Tsaklidis, G. (2019). Characteristics of earthquake clusters: Application to western Corinth Gulf (Greece). Tectonophysics, 767, 228160. https://doi.org/10.1016/j.tecto.2019.228160
Mesimeri, M., Karakostas, V., Papadimitriou, E., Tsaklidis, G., & Tsapanos, T. (2017). Detailed microseismicity study in the area of Florina (Greece): Evidence for fluid driven seismicity. Tectonophysics, 694, 424–435. https://doi.org/10.1016/j.tecto.2016.11.027
Mouslopoulou, V., Nicol, A., Begg, J., Oncken, O., & Moreno, M. (2015). Clusters of megaearthquakes on upper plate faults control the Eastern Mediterranean hazard. Geophysical Research Letters, 42(23), 10,282-10,289. https://doi.org/10.1002/2015GL066371
Napolitano, F., De Siena, L., Gervasi, A., Guerra, I., Scarpa, R., & La Rocca, M. (2020). Scattering and absorption imaging of a highly fractured fluid-filled seismogenetic volume in a region of slow deformation. Geoscience Frontiers, 11(3), 989–998. https://doi.org/https://doi.org/10.1016/j.gsf.2019.09.014
National Observatory Of Athens, I. O. G. (1997). National Observatory of Athens Seismic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HL
Newman, A. V., Stiros, S., Feng, L., Psimoulis, P., Moschas, F., Saltogianni, V., et al. (2012). Recent geodetic unrest at Santorini Caldera, Greece. Geophysical Research Letters, 39(6), n/a-n/a. https://doi.org/10.1029/2012GL051286
Nomikou, P., Hübscher, C., Papanikolaou, D., Farangitakis, G. P., Ruhnau, M., & Lampridou, D. (2018). Expanding extension, subsidence and lateral segmentation within the Santorini - Amorgos basins during Quaternary: Implications for the 1956 Amorgos events, central - south Aegean Sea, Greece. Tectonophysics, 722, 138–153. https://doi.org/10.1016/j.tecto.2017.10.016
Nomikou, P., & Papanikolaou, D. (2011). Extension of active fault zones on Nisyros volcano across the Yali-Nisyros Channel based on onshore and offshore data. Marine Geophysical Research, 32(1), 181–192. https://doi.org/10.1007/s11001-011-9119-z
Nur, A., Marion, D., & Yin, H. (1991). Wave Velocities in Sediments BT - Shear Waves in Marine Sediments. In J. M. Hovem, M. D. Richardson, & R. D. Stoll (Eds.) (pp. 131–140). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-3568-9_15
Obara, K., & Sato, H. (1995). Regional differences of random inhomogeneities around the volcanic front in the Kanto-Tokai area, Japan, revealed from the broadening of S wave seismogram envelopes. Journal of Geophysical Research: Solid Earth, 100(B2), 2103–2121. https://doi.org/10.1029/94JB02644
Ott, R. F., Gallen, S. F., Wegmann, K. W., Biswas, R. H., Herman, F., & Willett, S. D. (2019). Pleistocene terrace formation, Quaternary rock uplift rates and geodynamics of the Hellenic Subduction Zone revealed from dating of paleoshorelines on Crete, Greece. Earth and Planetary Science Letters, 525, 115757. https://doi.org/10.1016/j.epsl.2019.115757
Özbakır, A. D., Govers, R., & Fichtner, A. (2020). The Kefalonia Transform Fault: A STEP fault in the making. Tectonophysics, 787, 228471. https://doi.org/10.1016/j.tecto.2020.228471
Paasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 56(1), 1135–1141. https://doi.org/10.1103/PhysRevE.56.1135
Pacchiani, F., & Lyon-Caen, H. (2010). Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophysical Journal International, 180(1), 59–72. https://doi.org/10.1111/j.1365-246X.2009.04409.x
Papadimitriou, P., Kapetanidis, V., Karakonstantis, A., Kaviris, G., Voulgaris, N., & Makropoulos, K. (2015). The Santorini Volcanic Complex: A detailed multi-parameter seismological approach with emphasis on the 2011-2012 unrest period. Journal of Geodynamics, 85, 32–57. https://doi.org/10.1016/j.jog.2014.12.004
Papadimitriou, P., Karakonstantis, A., Kapetanidis, V., Bozionelos, G., Kaviris, G., & Voulgaris, N. (2018). Seismicity and Tomographic Imaging of the Broader Nisyros Region (Greece) BT - Nisyros Volcano: The Kos - Yali - Nisyros Volcanic Field. In V. J. Dietrich & E. Lagios (Eds.) (pp. 245–271). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-55460-0_8
Papazachos, B. C., Dimitriadis, S. T., Panagiotopoulos, D. G., Papazachos, C. B., & Papadimitriou, E. E. (2005). Deep structure and active tectonics of the southern Aegean volcanic arc. Developments in Volcanology, 7, 47–64. https://doi.org/10.1016/S1871-644X(05)80032-4
Papazachos, C. B., Hatzidimitriou, P. M., Panagiotopoulos, D. G., & Tsokas, G. N. (1995). Tomography of the crust and upper mantle in southeast Europe. Journal of Geophysical Research: Solid Earth, 100(B7), 12405–12422. https://doi.org/10.1029/95JB00669
Papazachos, B. C., Karakostas, V. G., Papazachos, C. B., & Scordilis, E. M. (2000). The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics, 319(4), 275–300. https://doi.org/10.1016/S0040-1951(99)00299-1
Papazachos, C., & Nolet, G. (1997). P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times. Journal of Geophysical Research: Solid Earth, 102(B4), 8349–8367. https://doi.org/10.1029/96jb03730
Paige, C., & Saunders, M. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Softw. 8, 1 (March 1982), 43–71. DOI: https://doi.org/10.1145/355984.355989
Parks, M. M., Moore, J. D. P., Papanikolaou, X., Biggs, J., Mather, T. A., Pyle, D. M., et al. (2015). From quiescence to unrest: 20 years of satellite geodetic measurements at Santorini volcano, Greece. Journal of Geophysical Research: Solid Earth, 120(2), 1309–1328. https://doi.org/10.1002/2014JB011540
Paul, A., Karabulut, H., Mutlu, A. K., & Salaün, G. (2014). A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth and Planetary Science Letters, 389, 14-22. https://doi.org/10.1016/j.epsl.2013.12.019
Peacock, S. M. (1993). The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin, 105(5), 684–694. https://doi.org/10.1130/0016-7606(1993)105<0684:TIOBED>2.3.CO;2
Pearce, F. D., Rondenay, S., Sachpazi, M., Charalampakis, M., & Royden, L. H. (2012). Seismic investigation of the transition from continental to oceanic subduction along the western Hellenic Subduction Zone. Journal of Geophysical Research: Solid Earth, 117(B7), n/a-n/a. https://doi.org/10.1029/2011JB009023
Pe-Piper, G., & Piper, D. J. W. (2005). The South Aegean active volcanic arc: relationships between magmatism and tectonics. In M. Fytikas & G. E. B. T.-D. in V. Vougioukalakis (Eds.), The South Aegean Active Volcanic Arc (Vol. 7, pp. 113–133). Elsevier. https://doi.org/https://doi.org/10.1016/S1871-644X(05)80034-8
Pe-Piper, G., & Piper, D. J. W. (2013). The effect of changing regional tectonics on an arc volcano: Methana, Greece. Journal of Volcanology and Geothermal Research, 260, 146–163. https://doi.org/10.1016/j.jvolgeores.2013.05.011
Pik, R., & Marty, B. (2009). Helium isotopic signature of modern and fossil fluids associated with the Corinth rift fault zone (Greece): Implication for fault connectivity in the lower crust. Chemical Geology, 266(1–2), 67–75. https://doi.org/10.1016/j.chemgeo.2008.09.024
Piromallo, C., & Morelli, A. (2003). P wave tomography of the mantle under the Alpine-Mediterranean area. Journal of Geophysical Research: Solid Earth, 108(B2), 2065. https://doi.org/10.1029/2002JB001757
Pitilakis, K., Roumelioti, Z., Raptakis, D., Manakou, M., Liakakis, K., Anastasiadis, A., & Pitilakis, D. (2013). The EUROSEISTEST Strong‐Motion Database and Web Portal. Seismological Research Letters, 84(5), 796–804. https://doi.org/10.1785/0220130030
Popa, R. G., Bachmann, O., Ellis, B. S., Degruyter, W., Tollan, P., & Kyriakopoulos, K. (2019). A connection between magma chamber processes and eruptive styles revealed at Nisyros-Yali volcano (Greece). Journal of Volcanology and Geothermal Research, 387, 106666. https://doi.org/10.1016/j.jvolgeores.2019.106666
Popa, R. G., Dietrich, V. J., & Bachmann, O. (2020). Effusive-explosive transitions of water-undersaturated magmas. The case study of Methana Volcano, South Aegean Arc. Journal of Volcanology and Geothermal Research, 399, 106884. https://doi.org/10.1016/j.jvolgeores.2020.106884
Prudencio, J., Del Pezzo, E., Garcia-Yeguas, A., & Ibanez, J. M. (2013). Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island. Geophysical Journal International, 195(3), 1942–1956. https://doi.org/10.1093/gji/ggt361
Prudencio, J., Manga, M., & Taira, T. (2018). Subsurface Structure of Long Valley Caldera Imaged With Seismic Scattering and Intrinsic Attenuation. Journal of Geophysical Research: Solid Earth, 123(7), 5987–5999. https://doi.org/10.1029/2017JB014986
Prudencio, J., Taira, T., Aoki, Y., Aoyama, H., & Onizawa, S. (2017). Intrinsic and scattering attenuation images of Usu volcano, Japan. Bulletin of Volcanology, 79(4), 1–12. https://doi.org/10.1007/s00445-017-1117-9
Punturo, R., Kern, H., Cirrincione, R., Mazzoleni, P., & Pezzino, A. (2005). P- and S-wave velocities and densities in silicate and calcite rocks from the Peloritani Mountains, Sicily (Italy): The effect of pressure, temperature and the direction of wave propagation. Tectonophysics, 409(1), 55–72. https://doi.org/https://doi.org/10.1016/j.tecto.2005.08.006
Rabillard, A., Jolivet, L., Arbaret, L., Bessière, E., Laurent, V., Menant, A., et al. (2018). Synextensional Granitoids and Detachment Systems Within Cycladic Metamorphic Core Complexes (Aegean Sea, Greece): Toward a Regional Tectonomagmatic Model. Tectonics, 37(8), 2328–2362. https://doi.org/10.1029/2017TC004697
Ranjan, P., Konstantinou, K. I., & Andinisari, R. (2019). Spatial Distribution of Random Velocity Inhomogeneities in the Southern Aegean From Inversion of S Wave Peak Delay Times. Journal of Geophysical Research: Solid Earth, 124(10), 10393–10412. https://doi.org/10.1029/2018JB017198
Ranjan, P., & Konstantinou, K. I. (2020). Mapping Intrinsic and Scattering Attenuation in the Southern Aegean Crust Using S Wave Envelope Inversion and Sensitivity Kernels Derived From Perturbation Theory. Journal of Geophysical Research: Solid Earth, 125(10), e2020JB020821. https://doi.org/https://doi.org/10.1029/2020JB020821
Rawlinson, N., & Spakman, W. (2016). On the use of sensitivity tests in seismic tomography. Geophysical Journal International, 205(2), 1221–1243. https://doi.org/10.1093/gji/ggw084
Ring, U., Glodny, J., Will, T., & Thomson, S. (2010). The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. https://doi.org/10.1146/annurev.earth.050708.170910
Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, 488(1–4), 22–30. https://doi.org/10.1016/J.TECTO.2009.05.027
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., et al. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111,B05411. https://doi.org/10.1029/2005JB004051
Robertson, J., Meschis, M., Roberts, G. P., Ganas, A., & Gheorghiu, D. M. (2019). Temporally Constant Quaternary Uplift Rates and Their Relationship With Extensional Upper-Plate Faults in South Crete (Greece), Constrained With 36Cl Cosmogenic Exposure Dating. Tectonics, 38(4), 1189–1222. https://doi.org/10.1029/2018TC005410
Royden, L. H., & Papanikolaou, D. J. (2011). Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochemistry, Geophysics, Geosystems, 12(3). https://doi.org/https://doi.org/10.1029/2010GC003280
Ruscic, M., Bocchini, G. M., Becker, D., Meier, T., & van Keken, P. E. (2019). Variable spatio-temporal clustering of microseismicity in the Hellenic Subduction Zone as possible indicator for fluid migration. Lithos, 346–347, 105154. https://doi.org/10.1016/j.lithos.2019.105154
Rushmer, T. (1995). An experimental deformation study of partially molten amphibolite: Application to low-melt fraction segregation. Journal of Geophysical Research: Solid Earth, 100(B8), 15681–15695. https://doi.org/https://doi.org/10.1029/95JB00077
Saito, T., Sato, H., & Ohtake, M. (2002). Envelope broadening of spherically outgoing waves in three-dimensional random media having power law spectra. Journal of Geophysical Research, 107(B5), 2089. https://doi.org/10.1029/2001JB000264
Saltogianni, V., Gianniou, M., Taymaz, T., Yolsal‐Çevikbilen, S., & Stiros, S. (2015). Fault slip source models for the 2014 M w 6.9 Samothraki‐Gökçeada earthquake (North Aegean Trough) combining geodetic and seismological observations. Journal of Geophysical Research: Solid Earth, 120(12), 8610–8622. https://doi.org/10.1002/2015JB012052
Sambridge, M. (2014). A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization. Geophysical Journal International, 196(1), 357–374. https://doi.org/10.1093/gji/ggt342
Sato, H. (1989). Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: southeastern Honshu, Japan. Journal of Geophysical Research, 94(B12), 17735. https://doi.org/10.1029/JB094iB12p17735
Sato, H., Fehler, M. C., & Maeda, T. (2012). Seismic wave propagation and scattering in the heterogeneous earth. Springer.
Sector For Seismology, I. O. H. (1982). Montenegrin Seismic Network. Sector for Seismology, Institute of Hydrometeorology and Seismology of Montenegro. https://doi.org/10.7914/SN/ME
Sevostianov, I. (2020). Gassmann equation and replacement relations in micromechanics: A review. International Journal of Engineering Science. Elsevier Ltd. https://doi.org/10.1016/j.ijengsci.2020.103344
Shaw, B., & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International, 181(2), 966–984. https://doi.org/10.1111/j.1365-246X.2010.04551.x
Shiomi, K., Sato, H., & Ohtake, M. (1997). Broad-band power-law spectra of well-log data in Japan. Geophysical Journal International, 130(1), 57–64. https://doi.org/10.1111/j.1365-246X.1997.tb00987.x
Sodoudi, F., Kind, R., Hatzfeld, D., Priestley, K., Hanka, W., Wylegalla, K., et al. (2006). Lithospheric structure of the Aegean obtained from P and S receiver functions. Journal of Geophysical Research: Solid Earth, 111(B12), n/a-n/a. https://doi.org/10.1029/2005JB003932
Sokos, E., Zahradník, J., Gallovič, F., Serpetsidaki, A., Plicka, V., and Kiratzi, A. (2016), Asperity break after 12 years: The Mw6.4 2015 Lefkada (Greece) earthquake, Geophys. Res. Lett., 43, 6137– 6145, doi:10.1002/2016GL069427.
Spakman, W., Wortel, M. J. R., & Vlaar, N. J. (1988). The Hellenic Subduction Zone: A tomographic image and its geodynamic implications. Geophysical Research Letters, 15(1), 60–63. https://doi.org/10.1029/GL015i001p00060
Sreenivasiah, I., Ishimaru, A., & Hong, S. T. (1976). Two-frequency mutual coherence function and pulse propagation in a random medium: An analytic solution to the plane wave case. Radio Science, 11(10), 775–778. https://doi.org/10.1029/RS011i010p00775
Strobl, M., Hetzel, R., Fassoulas, C., & Kubik, P. W. (2014). A long-term rock uplift rate for eastern Crete and geodynamic implications for the Hellenic subduction zone. Journal of Geodynamics, 78, 21–31. https://doi.org/10.1016/j.jog.2014.04.002
Suckale, J., Rondenay, S., Sachpazi, M., Charalampakis, M., Hosa, A., & Royden, L. H. (2009). High-resolution seismic imaging of the western Hellenic subduction zone using teleseismic scattered waves. Geophysical Journal International, 178(2), 775–791. https://doi.org/10.1111/j.1365-246X.2009.04170.x
Takahashi, T., Obana, K., Yamamoto, Y., Nakanishi, A., Kodaira, S., & Kaneda, Y. (2013). The 3-D distribution of random velocity inhomogeneities in southwestern Japan and the western part of the Nankai subduction zone. Journal of Geophysical Research: Solid Earth, 118(5), 2246–2257. https://doi.org/10.1002/jgrb.50200
Takahashi, T., Sato, H., & Nishimura, T. (2008). Recursive formula for the peak delay time with travel distance in von Kármán-type non-uniform random media on the basis of the Markov approximation. Geophysical Journal International, 173(2), 534–545. https://doi.org/10.1111/j.1365-246X.2008.03739.x
Takahashi, T., Sato, H., Nishimura, T., & Obara, K. (2007). Strong inhomogeneity beneath Quaternary volcanoes revealed from the peak delay analysis of S -wave seismograms of microearthquakes in northeastern Japan. Geophysical Journal International, 168(1), 90–99. https://doi.org/10.1111/j.1365-246X.2006.03197.x
Takahashi, T., Sato, H., Nishimura, T., & Obara, K. (2009). Tomographic inversion of the peak delay times to reveal random velocity fluctuations in the lithosphere: method and application to northeastern Japan. Geophysical Journal International, 178(3), 1437–1455. https://doi.org/10.1111/j.1365-246X.2009.04227.x
Tatarskii, V. I. (1971). The effects of the turbulent atmosphere on wave propagation. Jerusalem: Israel Program for Scientific Translations, 1971.
Technological Educational Institute Of Crete. (2006). Seismological Network of Crete. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HC
Tiberti, M. M., Basili, R., & Vannoli, P. (2014). Ups and downs in western Crete (Hellenic subduction zone). Scientific Reports, 4(1), 1–7. https://doi.org/10.1038/srep05677
Tirel, C., Brun, J. P., Burov, E., Wortel, M. J. R., & Lebedev, S. (2013). A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust. Geology, 41(5), 555–558. https://doi.org/10.1130/G33862.1
Toyokuni, G., Zhao, D., & Chen, K. H. (2021). Structural control on the 2018 and 2019 Hualien earthquakes in Taiwan. Physics of the Earth and Planetary Interiors, 312, 106673. https://doi.org/10.1016/j.pepi.2021.106673
Ueki, K., & Iwamori, H. (2016). Density and seismic velocity of hydrous melts under crustal and upper mantle conditions. Geochemistry, Geophysics, Geosystems, 17(5), 1799–1814. https://doi.org/https://doi.org/10.1002/2015GC006242
Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological Society of America, 77(3), 972–986.
University Of Athens. (2008). University of Athens, Seismological Laboratory. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HA
University Of Patras, G. D. (2000). PSLNET, permanent seismic network operated by the University of Patras, Greece. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/HP
van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E., & Wortel, R. (2005). Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology, 33(4), 325–328. https://doi.org/10.1130/G20878.1
Ventouzi, C., Papazachos, C., Hatzidimitriou, P., & Papaioannou, C. (2018). Anelastic P- and S- upper mantle attenuation tomography of the southern Aegean Sea subduction area (Hellenic Arc) using intermediate-depth earthquake data. Geophysical Journal International, 215(1), 635–658. https://doi.org/10.1093/gji/ggy292
Vougioukalakis, G. E., Satow, C. G., & Druitt, T. H. (2019). Volcanism of the South Aegean volcanic arc. Elements, 15(3), 159–164. https://doi.org/10.2138/gselements.15.3.159
Wang, H., Zhao, D., Huang, Z., Xu, M., Wang, L., Nishizono, Y., & Inakura, H. (2018). Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data. Geophysical Journal International, 214(2), 1151–1163. https://doi.org/10.1093/gji/ggy177
Ward, K. M., Porter, R. C., Zandt, G., Beck, S. L., Wagner, L. S., Minaya, E., & Tavera, H. (2013). Ambient noise tomography across the Central Andes. Geophysical Journal International, 194(3), 1559-1573. https://doi.org/10.1093/gji/ggt166
Watkins, W. D., Thurber, C. H., Abbott, E. R., & Brudzinski, M. R. (2018). Local earthquake tomography of the Jalisco, Mexico region. Tectonophysics, 724–725, 51–64. https://doi.org/10.1016/j.tecto.2018.01.002
Wegler, U. (2003). Analysis of multiple scattering at Vesuvius volcano, Italy, using data of the TomoVes active seismic experiment. Journal of Volcanology and Geothermal Research, 128(1–3), 45–63. https://doi.org/10.1016/S0377-0273(03)00246-4
Wei, W., Zhao, D., Wei, F., Bai, X., & Xu, J. (2019). Mantle Dynamics of the Eastern Mediterranean and Middle East: Constraints From P-Wave Anisotropic Tomography. Geochemistry, Geophysics, Geosystems, 20(10), 4505–4530. https://doi.org/10.1029/2019GC008512
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools Version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
Zhao, D., Kanamori, H., Negishi, H., & Wiens, D. (1996). Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? Science, 274(5294), 1891–1894. https://doi.org/10.1126/science.274.5294.1891
指導教授 柯士達(Konstantinos I. Konstantinou) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明