博碩士論文 104690603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.145.86.211
姓名 葉海亞(Yahya Darmawan)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 蘇門答臘島北部地區夏季年際間降水變化之機制探討
(Driving Mechanism of Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分析比較蘇門答臘島北部地區由大尺度環流引導之降水異常特徵,並探討其與亞澳季風(Asian-Australian Monsoon,AAM)系統及其它環流系統間之遙相關。我們利用水氣收支分析方法量化北半球夏季六至八月(June, July, August;JJA)期間的降水變化,並探討造成此降水變化的主導要素。接著,再以合成分析及統計方法確認水氣收支的結果。除此之外,我們亦利用線性迴歸分析方法,比較各氣候指數在不同時空尺度的差異,如,偶極指數(Dipole Mode Index;DMI)、海洋聖嬰指數(Oceanic Niño Index ;ONI)及西北太平洋副高指數(Western North Pacific Subtropical High index;WNPSH index)。本研究使用1981至2016年歐洲中期預報中心(European Centre for Medium-Range Weather Forecasts;ECMWF)的再分析資料(Re-Analysis Interim;ERA-Interim),分析蘇門答臘島北部地區夏季年際間之降水異常特徵。其中,我們分別定義九個乾季年及六個濕季年作為後續分析探討的依據。分析結果顯示,研究區域的乾/濕季年主要與下沉/上升垂直風速異常有關,而與比濕、水平風速及蒸發量較無明顯相關。另外,相較於聖嬰-南方震盪(El Niño-Southern Oscillation;ENSO)及印度洋偶極(Indian Ocean Dipole;IOD),WNPSH與研究區域的降水異常有顯著相關性。然而,WNPSH指數卻與降水變化不一致,此指數無法在定義之乾/濕季年個案中顯現。比對結果顯示,絕大多數的濕季個案於熱帶西北太平洋區域,伴隨緯向風場的變動。此風場變化解釋了WNPSH指數與區域降水異常存在高度相關的原因。接著,我們定義一個新的氣候指數:東風指數(Easterly Wind Index;EWI),以此指數探討蘇門答臘島北部地區的降水異常。EWI的強正/負相位和東/西風的強度異常有關,並導致蘇門答臘島北部地區正/負回饋的降水異常。此東/西風風場的異常可能與太平洋沃克環流(Pacific Walker Circulation)有關。AAM的變化在此地區降水變化扮演一個重要的角色。AAM與其他全球環流間的遙相關顯示,蘇門答臘島北部地區的降水異常並非一個區域現象,而是與菲律賓海與海洋大陸/東印度洋上空之大尺度熱帶環流有關。總結而言,東風風場異常為造成蘇門答臘島北部地區降水異常的主要特徵。當於北蘇門答臘地區產生下沉氣流的季風西風風場減弱(東風風場異常)時,此地區的降水將增加,反之亦然。
摘要(英) This study explores the contrasting characteristics of large-scale circulation that led to the precipitation anomalies over the northern parts of Sumatra Island and investigates the schematic mechanism of teleconnection between the Asian-Australian Monsoon (AAM) and other circulations. The moisture budget analysis was applied to quantify the most dominant component that induces precipitation variability during the JJA (June, July, and August) period. Then, the composite analysis and statistical approach were applied to confirm the result of the moisture budget. The linear regression analysis was applied to compare the climate indices in both spatial and temporal scales, such as Dipole Mode Index (DMI), the Oceanic Niño Index (ONI), and the Western North Pacific Subtropical High (WNPSH) index. Using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim (ERA-Interim) from 1981 to 2016, we identified 9 (nine) dry and 6 (six) wet years based on precipitation anomalies, respectively. The dry years (wet years) anomalies over the study area were supported mainly by downward (upward) vertical velocity anomaly instead of other variables such as specific humidity, horizontal velocity, and evaporation. Instead of El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), WNPSH has a stronger relationship with the study area′s precipitation anomalies. However, the WNPSH index is inconsistent with the precipitation variability because it cannot be found in all wet/dry year cases. By contrast, most cases (especially the wet events) were associated with the fluctuation of zonal winds in the tropical western North Pacific. This fluctuation explains why the WNPSH index has a stronger correlation with the precipitation in the study area. Then, a new climate index was proposed to identify the precipitation anomalies over the north of Sumatra Island, called the Easterly Wind Index (EWI). A strong positive (negative) phase of EWI is related to the magnitude of easterly (westerly) wind anomaly, which induces the positive (negative) precipitation anomaly over the northern part of Sumatra Island. The westerly and easterly wind anomaly is possibly related to the PWC modulation (Pacific Walker Circulation). Further, the AAM variability proven has a significant role in the precipitation variability over the study area. A teleconnection between the AAM and other global circulations implies that the precipitation variability over the northern part of Sumatra Island is not a regional phenomenon related to the large-scale tropical circulation over the Philippine Sea and the Maritime Continent/eastern Indian Ocean region. In conclusion, the easterly anomaly is the main feature resulting in precipitation anomaly over the northern Sumatra Island. When the monsoon westerly that creates subsidence in northern Sumatra is weaker (easterly anomaly), there tends to be more precipitation and conversely.
關鍵字(中) ★ 降水
★ 水氣收支
★ 亞澳季風(AAM)
★ 蘇門答臘島
★ 歐洲中期預報中心再分析資料(ERA-Interim)
關鍵字(英) ★ Precipitation
★ Moisture Budget
★ AAM
★ Sumatra Island
★ ERA-Interim
論文目次 摘要 i
Abstract ii
Acknowledgments iii
Table of Content iv
List of Figures vi
List of Table ix
Chapter 1. Introduction 1
1.1. Research backgrounds 1
1.2. Hypothesis 8
1.3. Benefit of outcomes 9
1.4. Objectives 9
1.5. Overview of approach 10
1.5.1. Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Is-land during Boreal Summer 10
1.5.2. Large-scale teleconnection impacting on summer precipitation variability over Northern Sumatra Island 10
1.6. Outline of Dissertation 10
Chapter 2. Methodology 12
2.1. Study Area 12
2.2. Data used 12
2.3. Methods 14
Chapter 3. Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer 19
3.1. Precipitation of Northern Parts of Indonesia Based on ERA-Interim 19
3.2. Precipitation Variability over Northern Parts of Sumatra Island 21
3.3. Moisture Budget Analysis 27
3.3.1. The Dry Years 27
3.3.2. The Wet Years 30
3.4. Moisture Flux Convergence (MFC) 33
3.5. Velocity Potential 35
3.6. Summary 36
Chapter 4. Large-scale teleconnection impacting on summer precipitation variability over Northern Sumatra Island 38
4.1. Time series analysis 38
4.2. Linear Regression Analysis 40
4.3. Diagnosis of the wet years 42
4.3.1. The wet year in 1988: DMI (N), ONI (-), WNPSH (+) 43
4.3.2. The wet year in 1995: DMI (N), ONI (N), WNPSH (+) 44
4.3.3. The wet year in 1996: DMI (-), ONI (N), WNPSH (+) 45
4.3.4. The wet year in 1998: DMI (-), ONI (-), WNPSH (+) 46
4.3.5. The wet year in 2008: DMI (N), ONI (N), WNPSH (N) 48
4.3.6. The wet year in 2015: DMI (+), ONI (+) 49
4.4. Diagnosis of the dry year 50
4.4.1. The dry year in 1981, 2005 & 2006: DMI (N), ONI (N), WNPSH (N) 51
4.4.2. The dry year in 1985: DMI (-), ONI (-), WNPSH (-) 53
4.4.3. The dry year in 2000: DMI (N), ONI (-), WNPSH (N) 55
4.4.4. The dry year in 2001: DMI (-), ONI (N), WNPSH (-) 56
4.4.5. The dry year in 2004: DMI (-), ONI (+), WNPSH (-) 57
4.4.6. The dry year in 2011: DMI (+), ONI (-), WNPSH (N) 58
4.4.7. The dry year in 2012: DMI (+), WNPSH (-) 59
4.5. A proposed index: The Easterly Wind Index (EWI) 60
4.6. Summary 64
Chapter 5. Conclusions, recommendations and future works 66
5.1. Conclusions 66
5.2. Recommendations 69
5.3. Future works 70
References 70
參考文獻 AKBAR, K. 2014. Analysis of Seasonal Rainfall Pattern and Frequency of the Extreme Rainfall relate to the Rainfall Control Anomalies in Aceh Province. Master Thesis of Disaster Management, Unsyiah University.

ALDRIAN, E. & DJAMIL, Y. S. 2008. Spatio-temporal climatic change of rainfall in East Java Indonesia. International Journal of Climatology, 28, 435-448.

ALDRIAN, E., DÜMENIL GATES, L. & WIDODO, F. H. 2006. Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theoretical and Applied Climatology, 87, 41-59.

ALDRIAN, E. & DWI SUSANTO, R. 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23, 1435-1452.

ALFAHMI, F., BOER, R., HIDAYAT, R., PERDINAN & SOPAHELUWAKAN, A. 2019. The Impact of Concave Coastline on Rainfall Offshore Distribution over Indonesian Maritime Continent. The Scientific World Journal, 2019, 1-11.

AS-SYAKUR, A. R., ADNYANA, I. W. S., MAHENDRA, M. S., ARTHANA, I. W., MERIT, I. N., KASA, I. W., EKAYANTI, N. W., NUARSA, I. W. & SUNARTA, I. N. 2014. Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). International Journal of Climatology, 34, 3825-3839.

AS-SYAKUR, A. R., TANAKA, T., OSAWA, T. & MAHENDRA, M. S. 2013. Indonesian rainfall variability observation using TRMM multi-satellite data. International Journal of Remote Sensing, 34, 7723-7738.

B. HARIJONO, S. W. 2007. The Indian Summer Monsson Contribution to the JJA Rainfall over the Northern Part of Sumatra during the co-occuring El-Nino and Dipole Mode (+) Years. International Journal of Remote Sensing and Earth Sciences (IJReSES), 4, 18-24.

BANACOS, P. C. & SCHULTZ, D. M. 2005. The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives. Weather and Forecasting, 20, 351-366.
BMKG 2018. Prediction for Indonesia drought season in 2008, Jakarta, Indonesia Agency for Meteorology, Climatology and Geophysical (BMKG).

BNPB. 2019. Disaster database in Indonesia [Online]. Available: http://bnpb.cloud/dibi/tabel1 [Accessed 19 November 2019].

BRUBAKER, K. L., ENTEKHABI, D. & EAGLESON, P. S. 1993. Estimation of Continental Precipitation Recycling. Journal of Climate, 6, 1077-1089.

CHEN, W., GUAN, Z., YANG, H. & XU, Q. 2020. East Asian-Australian Monsoon Variations and Their Impacts on Regional Climate during Boreal Summer. Journal of the Meteorological Society of Japan. Ser. II, advpub.

CHEN, Z., WEN, Z., WU, R., LIN, X. & WANG, J. 2015. Relative importance of tropical SST anomalies in maintaining the Western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dynamics, 46, 1027-1041.

CHOU, C., NEELIN, J. D., CHEN, C.-A. & TU, J.-Y. 2009. Evaluating the “Rich-Get-Richer” Mechanism in Tropical Precipitation Change under Global Warming. Journal of ClimateW4 22, 1982-2005.

CHUNG, E.-S., TIMMERMANN, A., SODEN, B. J., HA, K.-J., SHI, L. & JOHN, V. O. 2019. Reconciling opposing Walker circulation trends in observations and model projections. Nature Climate Change, 9, 405-412.

CHUNG, P.-H., SUI, C.-H. & LI, T. 2011. Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. Journal of Geophysical Research, 116.

DARMAWAN, Y., HSU, H.-H. & YU, J.-Y. 2021. Characteristics of Large-Scale Circulation Affecting the Inter-Annual Precipitation Variability in Northern Sumatra Island during Boreal Summer. Atmosphere, 12.

FUNK, C., PETERSON, P., LANDSFELD, M., PEDREROS, D., VERDIN, J., SHUKLA, S., HUSAK, G., ROWLAND, J., HARRISON, L., HOELL, A. & MICHAELSEN, J. 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2, 150066.

GAO, L., BERNHARDT, M. & SCHULZ, K. 2012. Elevation correction of ERA-Interim temperature data in complex terrain. Hydrology and Earth System Sciences, 16, 4661-4673.

GARCIA, S. R. & KAYANO, M. T. 2011. Moisture and heat budgets associated with the South American monsoon system and the Atlantic ITCZ. International Journal of Climatology, 31, 2154-2167.

GLEIXNER, S., DEMISSIE, T. & DIRO, G. T. 2020. Did ERA5 Improve Temperature and Precipitation Reanalysis over East Africa? Atmosphere, 11, 996.

GRABOWSKI, W. W. & MONCRIEFF, M. W. 2004. Moisture–convection feedback in the tropics. Quarterly Journal of the Royal Meteorological Society, 130, 3081-3104.
HAMADA, J.-I., YAMANAKA, M. D., MATSUMOTO, J., FUKAO, S., WINARSO, P. A. & SRIBIMAWATI, T. 2002. Spatial and Temporal Variations of the Rainy Season over Indonesia and their Link to ENSO. Journal of the Meteorological Society of Japan. Ser. II, 80, 285-310.

HAYLOCK, M. & MCBRIDE, J. 2001. Spatial Coherence and Predictability of Indonesian Wet Season Rainfall. Journal of Climate, 14, 3882-3887.

HE, C., ZHOU, T., LIN, A., WU, B., GU, D., LI, C. & ZHENG, B. 2015. Enhanced or Weakened Western North Pacific Subtropical High under Global Warming? Sci Rep, 5, 16771.

HSU, P.-C., LI, T., MURAKAMI, H. & KITOH, A. 2013. Future change of the global monsoon revealed from 19 CMIP5 models. Journal of Geophysical Research: Atmospheres, 118, 1247-1260.

HUNTER, L. M., MURRAY, S. & RIOSMENA, F. 2013. Rainfall Patterns and U.S. Migration from Rural Mexico. The International migration review, 47, 874-909.

JIANG, L. & LI, T. 2017. Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Climate Dynamics.

JIN, F., KITOH, A. & ALPERT, P. 2011. Climatological relationships among the moisture budget components and rainfall amounts over the Mediterranean based on a super-high-resolution climate model. Journal of Geophysical Research, 116.

JIN, F. F., PAN, L. L. & WATANABE, M. 2006. Dynamics of Synoptic Eddy and Low-Frequency Flow Interaction. Part I: A Linear Closure. Journal of the Atmospheric Sciences, 63, 1677-1694.

JONGARAMRUNGRUANG, S., SEO, H. & UMMENHOFER, C. C. 2017. Intraseasonal rainfall variability in the Bay of Bengal during the Summer Monsoon: coupling with the ocean and modulation by the Indian Ocean Dipole. Atmospheric Science Letters, 18, 88-95.

JU, J. & SLINGO, J. 1995. The Asian summer monsoon and ENSO. Quarterly Journal of the Royal Meteorological Society, 121, 1133-1168.

KIM, B.-H. & HA, K.-J. 2018. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes. Climate Dynamics, 51, 3999-4013.

KIM, H.-R., HA, K.-J., MOON, S., OH, H. & SHARMA, S. 2020. Impact of the Indo-Pacific Warm Pool on the Hadley, Walker, and Monsoon Circulations. Atmosphere, 11, 1030.

KIRANMAYI, L. & MALONEY, E. D. 2011. Intraseasonal moist static energy budget in reanalysis data. Journal of Geophysical Research: Atmospheres, 116.

KUMAR, K. K., RAJAGOPALAN B FAU - HOERLING, M., HOERLING M FAU - BATES, G., BATES G FAU - CANE, M. & CANE, M. Unraveling the mystery of Indian monsoon failure during El Niño.

LI, J., YANG, Y.-M. & WANG, B. 2018. Evaluation of NESMv3 and CMIP5 Models’ Performance on Simulation of Asian-Australian Monsoon. Atmosphere, 9, 327.

LI, L., LI, W. & BARROS, A. P. 2013. Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Climate Dynamics, 41, 613-631.
LI, T., CHEN, M., SHEN, X. & WU, B. 2016. Relative Roles of Dynamic and Thermodynamic Processes in Causing Evolution Asymmetry between El Niño and La Niña*. Journal of Climate, 29, 2201-2220.

LIEBMANN, B. & HENDON, H. H. 1990. Synoptic-Scale Disturbances near the Equator. Journal of Atmospheric Sciences, 47, 1463-1479.

LIU, C.-Y., ARYASTANA, P., LIU, G.-R. & HUANG, W.-R. 2020. Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244, 105032.

LIU, H.-W., YU, J.-Y. & CHEN, C.-A. 2018. Changes of tropical precipitation and convective structure under global warming projected by CMIP5 model simulations Terr. Atmos. Ocean. Sci., 29, 429-440.

MOLLER, A. R. 2001. Severe Local Storms Forecasting. In: DOSWELL, C. A. (ed.) Severe Convective Storms. Boston, MA: American Meteorological Society.

MÜLLER, R., KUNZ, A., HURST, D. F., ROLF, C., KRÄMER, M. & RIESE, M. The need for accurate long-term measurements of water vapor in the upper troposphere and lower stratosphere with global coverage.

NICHOLLS, N. 1995. All-India Summer Monsoon Rainfall and Sea Surface Temperatures around Northern Australia and Indonesia. Journal of Climate, 8, 1463-1467.

NOAA, P. 2020. Sea Level Pressure (SLP) [Online]. Available: https://psl.noaa.gov/ [Accessed 19 January 2021].

PARK, J.-Y., JHUN, J.-G., YIM, S.-Y. & KIM, W.-M. 2010. Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Niño–Southern Oscillation connections. Journal of Geophysical Research, 115.

PORTIS, D. H., LAMB, P. J. & ZANGVIL, A. 2012. Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007). Journal of Hydrometeorology, 13, 1719-1738.

QIAN, J.-H., ROBERTSON, A. W. & MORON, V. 2010. Interactions among ENSO, the Monsoon, and Diurnal Cycle in Rainfall Variability over Java, Indonesia. Journal of the Atmospheric Sciences, 67, 3509-3524.

RAHIM, A. & HIDAYATI, R. F., AKHMAD MAMENUN 2015. Model Prediction Analysis of Rainy Season onset in South Sulawesi. Meteorology dan Geophysics Journal 12, 65-75.
RAMAGE, C. S. 1968. Role of a tropical "maritime continent" in the atmospheric circulation. Monthly Weather Review, 96, 365-370.

SHINODA, T., HURLBURT, H. E. & METZGER, E. J. 2011. Anomalous tropical ocean circulation associated with La Niña Modoki. Journal of Geophysical Research, 116.

SISWANTO, VAN DER SCHRIER, G., JAN VAN OLDENBORGH, G., VAN DEN HURK, B., ALDRIAN, E., SWARINOTO, Y., SULISTYA, W. & EKA SAKYA, A. 2017. A very unusual precipitation event associated with the 2015 floods in Jakarta: an analysis of the meteorological factors. Weather and Climate Extremes, 16, 23-28.
SOHN, B. J., YEH, S.-W., SCHMETZ, J. & SONG, H.-J. 2012. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dynamics, 40, 1721-1732.

SOMAN, M. K. & SLINGO, J. 1997. Sensitivity of the asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical pacific ocean. Quarterly Journal of the Royal Meteorological Society, 123, 309-336.

SUPARI, S., MUHARSYAH, R. & WAHYUNI, N. 2016. Impact of the 2015 Godzilla El Niño event on the Indonesian rainfall. Scientific Journal of PPI - UKM; Vol 3, No 1 (2016): Science and Engineering.

SUSILO, G. E., YAMAMOTO, K., IMAI, T., ISHII, Y., FUKAMI, H. & SEKINE, M. 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrological Sciences Journal, 58, 539-548.

WANG, B., WU, R. & LI, T. 2003. Atmosphere–Warm Ocean Interaction and Its Impacts on Asian–Australian Monsoon Variation. Journal of Climate, 16, 1195-1211.

WANG, B., YIM, S.-Y., LEE, J.-Y., LIU, J. & HA, K.-J. 2013. Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Climate Dynamics, 42, 83-100.

WANG, Z., DUAN, A., YANG, S. & ULLAH, K. 2017. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122, 614-630.

WEBSTER, P. J., MAGAÑA, V. O., PALMER, T. N., SHUKLA, J., TOMAS, R. A., YANAI, M. & YASUNARI, T. 1998. Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103, 14451-14510.

WEBSTER, P. J., MOORE, A. M., LOSCHNIGG, J. P. & LEBEN, R. R. 1999. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356.

WHEELER, M. C. & MCBRIDE, J. L. 2005. Australian-Indonesian monsoon. In: LAU, W. K. M. & WALISER, D. E. (eds.) Intraseasonal Variability in the Atmosphere-Ocean Climate System. Berlin, Heidelberg: Springer Berlin Heidelberg.

WYRTKI, K. 1961. Physical Oceanography of the Southeast Asian Waters. In: REPORT, N. (ed.). San Diego.

XIANG, B., WANG, B., YU, W. & XU, S. 2013. How can anomalous western North Pacific Subtropical High intensify in late summer? Geophysical Research Letters, 40, 2349-2354.

YUN, K. S., YEH, S. W. & HA, K. J. 2015. Covariability of western tropical Pacific-North Pacific atmospheric circulation during summer. Sci Rep, 5, 16980.
指導教授 許晃雄 余嘉裕(Huang-Hsiung Hsu Jia-Yuh Yu) 審核日期 2021-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明