博碩士論文 108225011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.147.77.51
姓名 林威廷(Wei-Ting Lin)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 風險回歸模型下時間相依 ROC 曲線
(Hazard Regression Model-base Time-dependent ROC Curve)
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 醫學研究中,受試者特徵曲線(Receiver Operating Characteristic curve,簡稱ROC曲線)常被用於評估生物指標對疾病預測能力。目前文獻研究在於建構時間相依 ROC 曲線,提高預測效率且可評估生物指標動態(Dynamic)預測能力。過去已導出具有固定共變數的比例風險模型(Proportional hazard model,簡稱 PH)時間相依 ROC 曲線,本研究將其延伸至時間相依共變數。此外,基於時間相依 ROC 曲線可得到時間相依曲線下面積 (the area under the ROC curves,簡稱 AUC),並對各時間下的 AUC 加權平均後取得一致性指標(Concordance),此指標被已被證明對預測精準度有一致性。我們將時間相依 AUC 與一致性指標推導為風險回歸的函數,透過不同風險迴歸模型得到對應模型的時間相依 AUC 與一致性指標。PH 模型為最常用的風險回歸模型,但若資料不符合比例風險假設,則考慮使用 AFT 模型為替代,本研究提出修正 AFT 模型風險的估計並以比例勝算模型(Proportional Odds model,簡稱 PO)建構風險回歸模型,當資料來自不同風險回歸模型下,比較三種模型在錯誤配適時的 AUC 與一致性指標。目前仍未有文獻討論時間相依 AUC 與一致性指標的信賴區間,我們更進一步利用大樣本理論推導出對應風險回歸模型下時間相依 AUC 與一致性指標的信賴區間,並以模擬驗證其覆蓋機率的準確性,最後以實際愛滋病資料來展示三種模型分析的結果。
摘要(英) The ROC (receiver operating characteristic) curve methodology is currently a well-developed statistical tool to evaluate the ability of biomarkers to discriminate the case (disease) and control (non-disease) of patients. Recent research has been focused on incorporating time-dependency to ROC framework to gain efficiency and to do dynamic prediction. In the literature, the time-dependent ROC curves for the Proportional hazards (PH) model with fixed covariates has been derived. We further extends it to time-dependent covariates. Moreover, we prove that the time-dependent AUC and concordance are actually functions of hazard regression models. Those hazards regression models studies in this thesis include the PH model, the accelerated failure time (AFT) model and the Proportional Odds (PO) model. The PH model is the most commonly used hazard regression model. However, if the data does not follow the proportional hazard assumption, the AFT model is an attractive alternative model. We propose a kernel-smooth approach to derive hazard estimation for the AFT model. In addition, we investigate the PO model through transformation model setting. We further use large sample theory to derive the confidence interval of time-dependent AUC and concordance under the corresponding hazard regression model, and verify its coverage probability in the simulation chapter , and uses AIDS data to show the results based on three hazard regression models.
關鍵字(中) ★ 比例風險模型
★ 加速失敗模型
★ 比例勝算模型
★ 聯合模型
★ 時間相依接受者作業特徵曲線下面積
關鍵字(英) ★ Cox model
★ AFT model
★ PO model
★ Joint model
★ Time-dependent AUC
論文目次 目錄
摘要i
Abstract ii
致謝iii
目錄iv
圖目錄vi
表目錄vii
第一章緒論1
1.1 ROC 曲線介紹2
1.2 時間相依ROC 曲線推廣7
1.3 PH 模型-預測精準度13
1.4 AFT 模型-預測精準度15
1.5 Semiparametric transformation 半參數轉換模型17
1.6 聯合模型18
第二章統計方法20
2.1 PO 模型-預測精準度21
2.2 修正AFT 模型- 預測精準度23
2.3 AUC 與一致性指標信賴區間25
第三章模擬研究30
3.1 PO 模型31
3.2 模型錯誤配適38
3.3 AUC 與一致性指標信賴區間45
3.4 時間相依共變數58
第四章資料分析65
4.1 愛滋病資料介紹65
4.2 時間獨立共變數存活模型66
4.3 時間相依共變數存活模型68
4.4 資料分析結論71
第五章結論72
參考文獻73
附錄A.1 I/D 定義下之AUC 與一致性指標推導77
附錄A.2 Weibull PO 模型推導80
附錄A.3 Lognormal PO 模型推導82
附錄A.4 Loglogistic PO 模型推導84
附錄A.5 PH 模型AUC 與一致性指標大樣本性質推導86
附錄A.6 PO 模型AUC 與一致性指標大樣本性質推導89
附錄A.7 AFT 模型AUC 與一致性指標大樣本性質推導92
附錄A.8 R code - AUC 與一致性指標估計95
附錄A.9 R code - 真實值計算110
參考文獻 參考文獻

Bennett, S. (1983). Analysis of Survival Data by the Proportional Odds Model. Statistics in Medicine 2, 273–277.

Box, G., and Cox, D. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society Series B, 26, 211-252.

Cheng, F. (2017). Asymptotic Properties of Hazard Rate Estimator in Censored Linear Regression. Sankhya A 79, 1–12.

Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee. Journal of Statistical Software 61, 1–23.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistics Society series B 34, 187-220.

Cox, D. R. (1975). Partial likelihood. Biometrics 62, 269-276.

Doksum, K. (1987). An Extension of Partial Likelihood Methods for Proportional Hazard Models to General Transformation Models. The Annals of Statistics 15, 325-345.

Heagerty, P. J., Saha-Chaudhuri, P. and Saha-Chaudhuri, M. P. (2012). Package`risksetROC': riskset ROC curve estimation from censored survival data.

Heagerty, P.J. and Zheng, Y. (2005). Survival Model Predictive Accuracy and ROC Curves. Biometrika 61, 92-105.

Hsieh F, Tseng Y.K. and Wang JL (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited. Biometrics 62, 1037–1043.

Jones, M. C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statistics and Probability Letter 9, 129–132.

Jones, M. C. and Sheather, S. J. (1991). Using non-statistic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letter 11, 511–514.

Kamarudin, A. N., Cox, T. and Kolamunnage-Dona, R. (2017). Time-dependent ROC curve analysis in medical research: current methods and applications. BMC Medical Research Methodology, 17-53.

Lin, Y. H. (2017). Model-base Time dependent AUC and Predictive Accuracy. Graduate Institute of Statistics, National Central University.

Wei, L. J. (1992). The accelerated failure time model: A useful alternative to the cox regression model in survival analysis. Statistics in Medicine 11, 1871–1879.

Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data, New York: Springer.
MuKller, H. G. and Wang, J. L. (1994). Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50, 61–76.

Tseng, Y. K., Wang, J. L. and Hsieh, F.(2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika 92, 587-603.

Tseng, Y. K. and Shu, K. N. (2011). Efficient Estimation for a Semiparametric Extended Hazards Model. Communications in Statistics—Simulation and Computation 40, 258-273.

Tseng, Y. K., Wang, J. L., Su, Y. R., and Mao, M. (2015). An extended hazard model with longitudinal covariates. Biometrika 102, 135-150.

Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447-458.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics 53, 330-339.

Xu, C., Hadjipantelis, P. Z. and Wang, J. L. (2020). Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM. Journal of Statistical Software 93, 1-29.

Zeng, D. and Lin, D. Y. (2007). Efficient estimation for the accelerated failure time model. Journal of American Statistical Association 102, 1387–1396.

林冠廷(2019)。對於右設限存活模型預測精準度的估計。國立中央大學統計研究所碩士論文。
指導教授 曾議寬(Yi-Kuan Tseng) 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明